
Reducing Memory Requirements for
Interactive Radiosity Using Movement

Prediction
Frank Sch¨offel

Fraunhofer Institute for Computer Graphics
Darmstadt, Germany
schoeffe@igd.fhg.de

Andreas Pomi
vrcom GmbH

Darmstadt, Germany
apomi@vrcom.de

Abstract. The line-space hierarchy is a very powerful approach for the effi-
cient update of radiosity solutions according to geometry changes. However, it
suffers from its enormous memory consumption when storing shafts for the en-
tire scene. We propose a method for reducing the memory requirements of the
line-space hierarchy by the dynamic management of shaft storage. We store shaft
information only locally for those parts of the scene that are currently affected by
the geometry change. When the dynamic object enters new regions, new shaft
data has to be computed, but on the other hand we can get rid of outdated data
’behind’ the dynamic object. Simple movement prediction schemes are applied,
so that we can provide shaft data to the radiosity update process in time when
needed. We show how storage management and pre-calculation of shafts can be
efficiently performed in parallel to the radiosity update process itself.

1 Introduction

Realistic global illumination simulations are applied more and more in three-dimen-
sional computer-generated environments, e.g., in Virtual Reality applications. Due to
its view-independent nature, the radiosity method is very well suited for illumination
simulation in those applications. However, updating the illumination in interactive en-
vironments according to modifications in scene geometry is a demanding task, since
radiosity updates are expensive to calculate. Interactive update rates are hard to achieve.

Several methods for updating radiosity solutions according to scene modifications
have been presented in literature, both for progressive refinement radiosity and for hier-
archical radiosity, amongst which the line-space hierarchy approach [5] is one of the
most powerful ones. Although this method can provide very fast update rates in the
context of hierarchical radiosity, it still has several drawbacks. Its high storage demand
is the most important disadvantage, prohibiting a wide-spread use of the line-space
approach for complex real-world scenes.

In this paper, we address this problem and propose a method for the dynamic man-
agement of storage, thus reducing storage requirements significantly and enabling the
line-space hierarchy method to be applied even to complex scenes. In the original line-
space hierarchy method, shafts are stored within the entire scene. Our method limits

1

the spatial regions for which this data is stored to those regions in which interaction
currently takes place. When an object is moved into new regions, missing shafts can be
computed during radiosity update. To avoid this additional calculation, movement pre-
diction schemes can be applied: The object movement is extrapolated for future frames,
thus allowing to pre-compute shaft data so that it is available to the update process in
time when needed. Furthermore, a garbage collector removes shafts that are no longer
necessary behind the object. The method is scalable according to the storage available
and can reduce storage requirements dramatically. It is especially useful when running
on a multi-processor system, but can also be applied on single-processor machines when
doing without movement prediction, taking into account slightly lower performance.

In the remainder of this paper, we briefly review previous work and then present our
method for dynamic shaft management with movement prediction. We proceed with
results of a first implementation and, finally, conclude and give an outlook on directions
of future work.

2 Context and Previous Work

2.1 The radiosity method

The radiosity method simulates global illumination on a physical basis within diffuse
environments. Improvements on the original algorithm [8] reduced the quadratic stor-
age requirements: Progressive refinement radiosity [4] requires storage that is only
linear in the number of patches, allowing radiosity simulations to be applied to com-
plex environments. Hierarchical radiosity [10] simulates light transfer at different levels
of accuracy and has also significantly less than quadratic storage costs. It subdivides
the input polygons intohierarchical elementsand createslinks, across which energy
is transferred between elements at appropriate levels. Links are initially established
between all pairs of input polygons and refined according to the amount of energy
transferred and other criteria. The quadratic cost of the initial linking phase is a major
drawback of this method, which can be avoided by applying ’lazy linking’ mecha-
nisms [11] or clustering. The clustering approach [15][17] extends the hierarchy above
the polygon level up to one single root element for the scene, and allows the efficient
treatment of very complex environments.

2.2 Radiosity in dynamic environments

Since the radiosity process takes into account the whole scene geometry, the simulation
has to be repeated whenever the geometry is modified, in order to maintain a consistent
solution. However, the most important effects of geometry changes are often spatially
limited, and coherence can be exploited in order to obtain an efficiently updated radios-
ity solution. Several approaches for fast radiosity updates have been proposed, some of
which require the path of the dynamic object to be known in advance (e.g., [1]). These
methods are obviously not suited for interactive applications, where the user may freely
modify the scene, and therefore are not discussed in this paper.

Other approaches have been developed for both progressive refinement and hier-
archical radiosity. Two very similar algorithms based on progressive refinement have
been proposed by Chen [2] and George et al. [7]. These methods update an existing ra-
diosity solution by shooting (possibly negative) ’correction values’ to patches on which
illumination has changed due to object movements, and they account for indirect effects
by applying further iterations. In [13], an efficient data structure has been proposed by

2

Müller et al., enabling the efficient exploitation of coherence. However, these methods
still cannot provide feedback at interactive rates for moderately complex environments.

For hierarchical radiosity, a first approach on dynamic updates was presented by
Forsyth [6]. He proposed to move links up and down in the hierarchy, according
to changes in occlusions and energy transfers. This idea was further developed by
Shaw [14] to the idea of keeping track of link refinement and storing visibility infor-
mation in ’ghost links’ and ’shadow links’. Eventually, an efficient update algorithm
for hierarchical radiosity and clustering, based on a line-space hierarchy, has been pre-
sented by Drettakis and Sillion [5].

2.3 The line-space hierarchy

This approach uses the line-space hierarchy for the rapid identification of links affected
by a scene modification. The line-space between two hierarchical elements (which may
be either patches or clusters) is represented byshafts[9] associated with the links.

While in traditional hierarchical radiosity a link that has been subdivided may be
discarded, those links are kept in the line-space hierarchy but marked aspassive. In
contrast toactivelinks, across which energy is transferred, passive links do not partici-
pate in energy transfer, but maintain a history of the link subdivision. The form-factor
associated with these links is kept, in order to easily re-establish the links when needed.

Once an object is moved within the scene, one has to check the object’s bounding
boxes at its old and new position for intersection with the shafts in order to find which
links are affected, descending in the shaft hierarchy. For the affected links, new form-
factors have to be calculated and the links possibly have to be subdivided. On the other
hand, some previous subdivisions may have become too fine and therefore passive links
at higher levels have to be activated again. Finally, energy has to be gathered across the
modified links, and a limited push-pull operation ensures a consistent global solution.

3 Reducing Memory Consumption by Movement Prediction

3.1 Memory requirements of the line-space hierarchy

Hierarchical radiosity approaches require a lot of memory when storing all links across
which energy is transferred. For the line-space approach, memory requirements are
even higher, since a complete hierarchy including passive links is kept, and usually
shafts are stored for all links. While for hierarchical radiosity, link caching schemes
can significantly reduce link storage [18], these methods cannot be applied to the line-
space method for fast radiosity updates, where the complete link hierarchy is essential.

For fast identification of affected regions, shafts are needed to be available through-
out the scene. Unfortunately, shafts are much more expensive in terms of storage than
links: While a link just consists of a pointer to the element it transfers energy from and
a form-factor, a shaft is made up of bounding boxes for the receiver and the sender, as
well as a compound bounding box, a slab counter and up to eight slabs, altogether eas-
ily requiring more than 400 bytes per shaft, when assuming a float to be 8 bytes wide.
Although this data of course can be compressed, the shafts still require a significant
amount of memory. Thus, reducing the number of shafts will significantly reduce the
overall memory consumption. Deleted shafts, of course, have to be re-calculated when
needed for intersection tests during line-space traversal. A possible way to save this ad-
ditional calculation time is to have a separate process providing shaftsjust beforethey
are needed. Such a process could predict the regions in which shafts will be required in
future frames and pre-calculate missing data.

3

3.2 Predicting object movement

For predicting future positions of a dynamic object that is moved interactively by a
user just by looking at recent positions, literature offers many different methods. These
approaches range from simple translation extrapolation and transformation matrix ex-
trapolation to complicated prediction schemes taking into account kinematics and other
constraints. For the purpose of roughly predicting regions into which the dynamic ob-
ject will move, we do not need sophisticated methods like, e.g., Kalman filtering [12],
but instead will use a fast and simple linear extrapolation of object movement.

Extrapolation. We define the translation vector~t0 from the previous to the current
object location by~t0 = ~c0 � ~c

�1, where~c0 and~c
�1 are the bounding box centers of

the dynamic object at the current and the previous position, respectively.~t0 is added to
the current position~p0 of the dynamic object in order to obtain its position~p+1 in the
next frame. When adding~t0 multiple times, we get the future positions for the nextn
frames:

~p+n = ~p0 + n � ~t0 (1)

Jittered motion in interactive systems can be smoothened by considering not onlyone
previous position, but the lastm positions and translation vectors~t

�i; i = 0; : : : ;m�1:

~p+n = ~p0 +
1

m

m�1X

i=0

~t
�i (2)

In addition, the previous positions do not have to be weighted equally. For example, ex-
ponential weighting leads to the most recent positions being considered more important
than older ones [3]. If not only previous bounding box positions are known, but also
the object transformation matricesT

�i, then object rotation can be considered, too. For
example, Eq. 1 then can be extended to:

~p+n = Tn
0 � ~p0 (3)

Compensating for prediction errors. The presented simple prediction scheme is fast
to apply, but it may introduce errors since non-linear object movements cannot be cov-
ered very well. These errors, resulting in the predicted bounding box position being
different from the actual one, are not crucial, since missing shafts can be generatedon-
the-flyduring shaft testing (see Section 3.3). But, since missing shafts reduce update
rates, we want to compensate for the prediction error: In order to keep things simple
and fast, we scale the predicted object’s bounding box by some factors > 1.

Thus, the probability of missing affected shafts is reduced, but the appropriate val-
ues fors have to be chosen carefully: Ifs is too great, lots of unnecessary shafts will
be generated, and if it is chosen too small, one might miss many affected shafts. An
example for predicted bounding volumes is depicted in Fig. 4 (see Appendix). Note
that for simplifying intersection tests we always use axis-aligned bounding boxes, even
if the object is being rotated.

3.3 Dynamic shaft management

Since we do not store shafts forall links any longer, mechanisms are needed for cal-
culating shafts when required. There are two reasons for a link not having shaft data
available:

4

� The link has never been asked for its shaft before. This is true especially at
initialisation time.

� The shaft once was available, but has been removed for saving memory.

Initially, there are virtually no shafts; a shaft is calculated only when required (or when
predicted to be required). In a clustering environment, the only shaft available at startup
time is the one associated with the self-link of the root cluster, which is identical with
the scene’s total bounding box (root shaft). For hierarchical radiosity without clustering,
all top-level shafts (associated with the links resulting from the initial linking phase) are
available and should be kept in storage. In the following, we describe the algorithm for a
clustering environment, but it can also be applied directly to non-clustering hierarchical
radiosity when considering all top-level shafts instead of just a single root shaft.

Shaft generation. One possible approach is to generate shafts at exactly the time when
needed during line-space traversal. Moreover, it is not necessary to store a shaft at
all—we can destroy it immediately after the intersection test has been finished and re-
calculate it again when required. This approach minimises storage demands, but slows
down line-space traversal significantly.

Therefore, it is preferable to minimise the number of shafts to be calculated on-the-
fly by the update process, and to have missing shafts be provided automatically by the
movement prediction process running in parallel. We use the bounding boxes predicted
as described in Section 3.2 and check for intersection with existing shafts, starting with
the root shaft and traversing the shaft hierarchy. For reducing the number of line-space
traversals, we check for intersection withall predicted volumes for future frames inone
traversal step. If more than one dynamic object exists, all predicted bounding boxes of
all dynamic objects are used during the intersection test. If an intersection between any
of the bounding boxes and a shaft is found, we store that shaft, and for passive links we
descend in the hierarchy and test child links accordingly. Shafts that are not available
for a child link are generated before testing. If such a newly created shaft intersects
with a bounding box, we store it. Otherwise, we stop descending and may discard the
shaft. This process is depicted in Fig. 1.

CreateShaftsOnPrediction (Helemp, IndexRangeidx, BBoxList bbl)
f

for each linkL of p
f

Helemq = L!src

if (TestAndCreateShaft (L!shaft, bbl))
if ((L is passive) and (q!idx � idx))

for each child nodec of p
CreateShaftsOnPrediction (c, q!idx, bbl)

g
g

Fig. 1. Checking for affected links and creating associated shafts.

Links of the dynamic object itself are always affected by the modification and there-
fore are calculated without checking. These shafts are trivial to detect since the dynamic
object is known. However, care has to be taken to keep these shafts’ geometry up-to-
date during object movement.

5

Shaft deletion. Shafts which are not needed any longer should be deleted in order to
save storage. However, it is not easy to decide which shafts are good candidates for
deletion. Shafts can be outdated for several reasons:

� If a passive link is being re-established asactive, all its child links, including the
shafts, can be removed.

� Amongst the remaining links, many shafts can be deleted, too. For example,
shafts located behind the dynamic object are very unlikely to be needed in the
near future, when we assume the object not to turn around suddenly.

� Wrongly predicted shafts will never be used and therefore have to be deleted.
This occurs, for example, when the object moves differently from the predicted
path or when the user selects another object for interaction.

While the first category of outdated shafts is trivial to identify, shafts behind the dy-
namic object have to be searched for: These shafts intersect previous dynamic object
bounding boxes, but not future ones. Identification of wrongly predicted shafts is quite
hard. We suggest to establish agarbage collectorthat deletes shafts which have not
been used for a certain time.

Garbage collection. In order to keep the total size of shaft storage approximately
constant, about the same number of old shafts should be deleted when creating new
shafts. We introduce a shaft counterNshafts and a link counterNlinks, and denote
the rate of links with shaft data available byPshafts =

Nshafts

Nlinks
. Defining a threshold

Tshafts 2 [0; 1], we start the garbage collector wheneverPshafts > Tshafts.1 This is
checked after each line-space update.

The garbage collector removes those shafts which have not been used for the longest
time. We add a new counterage to each shaft, and we reset this counter to its inital
value0 whenever the shaft is used for an intersection test. Once the garbage collector
is triggered, it traverses the link hierarchy, incrementing ages of all existing shafts.
Any shaft reaching a certain thresholdagemax is deleted. The garbage collector may
be stopped as soon asTshafts > Pshafts, or when a lower thresholdTmin;shafts is
reached byPshafts, or it may resume, traversing the hierarchy completely. The process
of garbage collection is outlined in Fig. 2.

GarbageCollect (Helemp, int agemax)
f

for each child nodec of p
GarbageCollect (c, agemax)

for each linkL of p
f

if (L!shaft exists)
f

incrementageL!shaft

if (ageL!shaft > agemax)
DeleteShaft (L!shaft)

g
g

g

Fig. 2. The garbage collector.

1Alternatively, one could check forNshafts exceeding some fixed maximum number of shafts. This
allows for a fixed storage size being ensured and therefore should be preferred if memory is very limited.

6

Algorithm overview and parallelisation. After each radiosity update the dynamic
shaft management is triggered. Firstly, the garbage collector is started if too many
shafts are stored. In a second step, the movement prediction calculates future positions
of the dynamic object. If more than one object is moving, we come up with a list of
predicted bounding volumes for all dynamic objects for the nextn frames. The line-
space is traversed, and shafts are calculated as discussed above for the predicted object
positions.

Although the proposed method can be applied on single processor machines for re-
ducing memory consumption, it is especially useful if movement prediction and shaft
management can be performed on a separate processor in parallel to the line-space up-
date itself. Only in this case, shaft prediction can show to advantage, when compared to
on-the-fly shaft generation. Since line-space update and shaft prediction/garbage col-
lection can work independently, these tasks can be performed simultaneously by two
processes, which we will refer to asupdate processandshaft management process. On
the other hand, since both the shaft prediction and the update process traverse the same
hierarchy, data access conflicts can occur. Therefore, data access has to be synchro-
nised, e.g., by locking sub-trees of the hierarchy. But when both processes traverse the
hierarchy in the same manner, there may occur many situations where the processes
have to wait for each other, thus slowing down the whole update. To reduce the num-
ber of possible conflicts, we propose to organise hierarchy traversal in a way that both
processes traverse the hierachy in opposite directions, as shown in Fig. 3 (left). The
simultaneous execution of the update process and the shaft management process is de-
picted in Fig. 3 (right).

Garbage Collector

Process
Management

Hierarchy

& Prediction

Node

Patch
Hierarchy

Polygon

HR Solution

yes

no

Update Process

Rendering

Modification ?
Geometry

Update Process

Cluster

On-the-fly

Generation
Shaft

& Partial Push-Pull
Link Update

Still Time left ?

Refinement

Shaft Generation

& Link Cleanup
Line-Space Trav.

yes

no

Movement Predict.

Garbage Collection

Shaft

Fig. 3. Parallelisation of movement prediction and update process. Left: For avoiding conflicts,
the link hierarchy is traversed by the update process and the shaft management process in opposite
directions. Right: Performing shaft management in parallel to the line-space update. Missing
shafts are generatedon-the-flyduring line-space traversal in the update process.

7

4 Results

We realised a first implementation in our hierarchical radiosity system without cluster-
ing. For movement prediction, we implemented a transformation matrix extrapolation
scheme according to Eq. 3, accounting for both translation and rotation. We took into
account only one previous object position and predict only one future position. Pre-
dicting future positions forn > 1 is difficult in practice in interactive environments,
where users often change movement directions. For the scaling factors of the predicted
bounding boxes, values slightly greater than1 usually proved to be useful (s 2 (1; 1:2]);
we applied a value ofs = 1:1 to obtain the results presented in this paper.

Dynamic shaft generation and reduction is shown in Fig. 5 (see Appendix): Shafts
do only exist in the region of the chair that forms the dynamic object. New shafts are
added in the region into which the chair is moved, and outdated shafts are finally deleted
by the garbage collector.

In the following, we report on shaft statistics for two test scenes. Scene 1 is the test
environment shown in Fig. 5 (see Appendix), the more complex scene 2 is shown in
Fig. 6 (see Appendix). We have simulated only one iteration of hierarchical radiosity in
both example scenes. Statistics for the hierarchical solution are given in Table 1.

Table 1. Number of links for the two test scenes after initial hierarchical radiosity solution.

scene 1 scene 2
input polygons 227 1339
links (total) 31130 43679
passive links 7932 10715
hierarchy elements 32108 31414
hierarchy leaves 23679 23447
time for first HR iteration (sec) 81.4 129.6

Calculation times reported have been measured on an SGI Onyx IR with a 195 MHz
R10000 processor. All computation was performed on the same processor, i.e., shafts
were computed on-the-fly during line-space update when needed. Table 2 lists the num-
ber of shafts for both test scenes. In each scene, an object has been moved three times
after initial hierarchical radiosity computation (in scene 1 the chair has been moved,
in scene 2 the seat was selected as dynamic object). Initially, virtually no shafts exist
and, thus, for the first movement step all necessary shafts are calculated. The number of
shafts to compute is significantly reduced in subsequent steps, where most of the shafts
are already available. Significant memory savings (79–95 %) are achieved, compared
to the storage needed when storing shafts for the complete link hierarchy.

5 Conclusions and Future Work

We have presented a method for controlling the memory consumption for the line-
space approach. We identified the shafts as the most memory-consuming part of the
line-space data structure, which can be efficiently re-calculated instead of storing. In
contrast to the straight-forward approach of not storing any shafts and re-calculating
them when needed during line-space traversal, we have presented an approach for the
dynamical management of shaft storage. A simple movement prediction is applied to

8

Table 2. Shaft statistics for test scenes 1 and 2, where objects have been moved in three steps.

scene 1 scene 2
move 1 2 3 1 2 3
shafts at old pos. 1516 1392 1270 6208 6239 492
shafts at new pos. 1392 1270 915 6239 492 485
shaft tests 3128 2912 2728 18320 17586 6748
shafts generatedon-the-fly 1564 4 48 9160 152 355
shafts already existing 0 1452 1316 0 8641 3019
shafts deleted by garbage coll. 0 167 128 0 874 5538
shafts (total) 1564 1401 1321 9160 8438 3255
shaft memory needed (MB) 0.88 0.79 0.74 5.15 4.75 1.83
shaft memory forall links (MB) 14.90 14.90 14.90 24.58 24.58 24.58
memory savings 94.1% 94.7% 95.0% 79.0% 80.7% 92.6%
time for line-space trav. (sec) 0.078 0.033 0.032 0.448 0.191 0.083
time for shaft generation (sec) 0.041 <0.001 0.002 0.239 0.004 0.011

let us know the necessary shafts for the next frames and prepare this data in time so that
they are available to the line-space traversal when needed. Furthermore, a garbage col-
lection is introduced to get rid of outdated shaft information. The presented approach
is adjustable to the available memory size. Memory consumption can be reduced sig-
nificantly, which allows to apply the line-space hierarchy method also to complex en-
vironments. We believe that even greater savings will be obtained when applying our
method to more complex scenes than the test scenes described in the previous Section,
and we therefore intend to do extensive tests on more complex real-world scenes.

While it is possible to apply this approach on a single processor machine for a better
control of shaft storage, it comes to full advantage when the shaft pre-calculation and
shaft deletion can be performed simultaneously with the line-space update itself on a
separate processor. We have outlined how parallelisation can be organised. Even when
performing shaft calculation on-the-fly, additional computation time turned out to be
very small compared to line-space update time. Nevertheless, we intend to study in
more detail the improvements achieved by parallel execution.

We feel that better prediction methods will not have great benefits in this con-
text, since movements are not always smooth in interactive applications. Therefore,
we chose a simple prediction method which is fast to perform. However, it should be
investigated whether more exact movement prediction methods can improve the ratio of
correctly predicted shafts, or if a rough but fast method performs better when combined
with an efficient garbage collector.

An interesting direction for further research is to combine the presented approach
with importance-driven approaches similar to [16]. Thus, update rates can be increased
by focussing on the most ’important’ regions of the scene first, and accordingly storage
can be further reduced when only ’important’ shafts are generated and held in memory.

Finally, of course, further parallelisation efforts can help to speed up the update
process. For example, the line-space traversal itself could be split into parallel sub-
tasks, and load balancing issues would then have to be investigated in order to gain
maximum speed-up.

9

6 Acknowledgments

This work was funded in part by the European Union (Esprit LTR 24944: ARCADE).
The authors wish to thank George Drettakis and Franc¸ois Sillion for fruitful dicussions
and for providing helpful information about details on the line-space hierarchy.

References

1. Baum, D., Wallace, J., Cohen, M., Greenberg, D.: The back-buffer algorithm: an extension
of the radiosity method to dynamic environments.The Visual Computer, 2(5):298–306, 1986.

2. Chen, S.: Incremental radiosity: An extension of progressive refinement radiosity to an
interactive image synthesis system.Computer Graphics (Proc. SIGGRAPH ’90), 24(4):135–
144, August 1990.

3. Chim, J., Lau R., Si, A., Leong, H., To, D., Green, M., Lam, M.: Multi-resolution model
transmission in Distributed Virtual Environments.Proceedings of the ACM Symposium on
Virtual Reality Software and Technology (VRST ’98), pages 25–33, November 1998.

4. Cohen, M., Chen, S., Wallace, J., Greenberg, D.: A progressive refinement approach to
fast radiosity image generation.Computer Graphics (Proc. SIGGRAPH ’88), 22(4):75–84,
August 1988.

5. Drettakis, G., Sillion, F.: Interactive update of global illumination using a line-space hierar-
chy.Computer Graphics (Proc. SIGGRAPH ’97), 31(3):57–64, August 1997.

6. Forsyth, D., Yang, C., Teo, K.: Efficient radiosity in dynamic environments. In Sakas, G.
et al. (eds.):Photorealistic Rendering Techniques, pages 313–323, Springer-Verlag, 1995.
Proc. 5th Eurographics Workshop on Rendering (Darmstadt, 1994).

7. George, D., Sillion, F., Greenberg, D.: Radiosity redistribution for dynamic environments.
IEEE Computer Graphics and Applications, 10(4):26–34, July 1990.

8. Goral, C., Torrance, K., Greenberg, D., Battaile, B.: Modeling the interaction of light be-
tween diffuse surfaces.Computer Graphics (Proc. SIGGRAPH ’84), 18(3):213–222, July
1984.

9. Haines, E., Wallace, J.: Shaft culling for efficient ray-traced radiosity. Proc. 2nd Eurograph-
ics Workshop on Rendering (Barcelona, 1991). Proc. 2nd Eurographics Workshop on Ren-
dering (Barcelona, 1991).

10. Hanrahan, P., Saltzman, D., Aupperle, L.: A rapid hierarchical radiosity algorithm.Computer
Graphics (Proc. SIGGRAPH ’91), 25(4):197–206, August 1991.

11. Holzschuch, N., Sillion, F., Drettakis, G.: An efficient progressive refinement strategy for
hierarchical radiosity. In Sakas, G. et al. (eds.):Photorealistic Rendering Techniques, pages
357–372, Springer-Verlag, 1995. Proc. 5th Eurographics Workshop on Rendering (Darm-
stadt, 1994).

12. Kalman, R.: A new approach to linear filtering and prediction problems.J. Basic Eng., Series
82D, pages 35–45, 1960.

13. Müller, S., Sch¨offel, F.: Fast radiosity repropagation for interactive virtual environments
using a shadow-form-factor-list. In Sakas, G. et al. (eds.):Photorealistic Rendering Tech-
niques, pages 339–356, Springer-Verlag, 1995. Proc. 5th Eurographics Workshop on Ren-
dering (Darmstadt, 1994).

14. Shaw, E.: Hierarchical radiosity for dynamic environments.Computer Graphics Forum,
16(2)107–118, 1997.

15. Sillion, F.: A unified hierarchical algorithm for global illumination with scattering volumes
and object clusters.IEEE Trans. on Vis. and Comp. Graphics, 1(3):240–254, Sep. 1995.

16. Smits, B., Arvo, J., Salesin, D.: An importance-driven radiosity algorithm.Computer Graph-
ics (Proc. SIGGRAPH ’92), 26(4):273–282, July 1992.

17. Smits, B., Arvo, J., Greenberg, D.: A clustering algorithm for radiosity in complex environ-
ments.Computer Graphics (Proc. SIGGRAPH ’94), 28(2):435–442, July 1994.

18. Stamminger, M., Schirmacher, H., Slusallek, Ph., Seidel, H.-P.: Getting rid of links in hier-
archical radiosity. In Ferreira, N., G¨obel, M. (eds.):Computer Graphics Forum (Proc. Euro-
graphics ’98), 17(3):C165–C174, 1998.

10

Fig. 4. Examples of predicted bounding volumes: The red wireframe box indicates the current
position of the dynamic object, the blue box outlines the previous one. Predicted volumes are
drawn in green. In the left example, two future positions have been calculated, while in the right
image, five predicted positions are shown, taking into account object translation and rotation.

Fig. 5. Dynamic shaft management: In the bottom row, links are displayed for those shafts that
are stored (only links for the light sources are shown); the same scene without links is shown
above. The chair is being moved from the right to the left. Left: Shafts at the old position of the
chair. Middle: Shafts for the new position are added. Right: After line-space update, outdated
shafts are removed by the garbage collector.

Fig. 6. A more complex test environment. Only links from the light source to the floor that are
affected by moving the seat are shown. Note that due to balancing, mesh resolution on the floor
appears finer than link resolution.

11

