
Approximating the Location of Integrand
Discontinuities for Penumbral Illumination

with Area Light Sources
Marc J. Ouellette Eugene Fiume

Department of Computer Science
University of Toronto, Toronto, Canada

Toronto, ON M5S 3G4 Canada
e-mail:fvv1jelfg@dgp.toronto.edu

Abstract. The problem of computing soft shadows with area light sources has
received considerable attention in computer graphics. In part, this is a difficult
problem because the integral that defines the radiance at a point must take into
account the visibility function. Most of the solutions proposed have been limited
to polygonal environments, and require a full visibility determination preprocess-
ing step. The result is typically a partitioning of the environment into regions that
have a similar view of the light source. We propose a new approach that can
be successfully applied to arbitrary environments. The approach is based on the
observation that, in the presence of occluders, the primary difficulty in comput-
ing the integral that defines the contribution of an area light source, is that of
determining the visible domain of the integrand. We extend a recent shadow al-
gorithm for linear light sources in order to calculate a polygonal approximation
to this visible domain. We demonstrate for an important class of shadowing prob-
lems, and in particular, for convex occluders, that the shape of the visible domain
only needs to be roughly approximated by a polygonal boundary. We then use
this boundary to subdivide an area light source into a small number of triangles
that can be integrated efficiently using either a deterministic solution, or a low
degree numerical cubature.

Keywords: numerical cubatures, random seed bisection, area sources, soft shadows.

1 Introduction

The efficient computation of soft shadows due to area light sources remains one of
the most challenging problems in computer graphics. The synthesis of realistic images
depends on this computation; however, the discontinuities that arise, and the complexity
of the visibility computation itself, can conspire to create renderings that are either too
slow to compute or unsatisfactory in appearance. The problem of determining the direct
illumination reaching a specific point from a given light source can be separated into
two tasks: determining the visible portion of the source from that point, and calculating
the reflected light due to this visible portion. In this paper, we propose a new solution
to the first half of this problem, based on providing a polygonal approximation to the
visible portion of the source. The resulting integrals can be solved efficiently using
either an analytical solution for diffuse surfaces [10], or a numerical cubature of low
degree. This algorithm naturally permits nonpolyhedral scene geometries.

In the general setting of area light sources, three main techniques have been used
to determine the visibility of a source. The earliest techniques determined visibility
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of a source by either approximating it by point light sources [1], or by point sampling
the source itself [4, 15]. This approach is subject to aliasing if too few samples are
used. Images of a higher quality can be achieved using algorithms that use shadow
volumes and/or discontinuity meshing to determine the exact visibility of a source [2,
3, 5, 7, 9, 14]. These techniques are very expensive and have only been designed to
compute exact visibility for polygonal environments. Finally, shadow maps have also
been used to texture map soft shadows, either by pre-calculating an approximation using
multiple light source samples and combining them in an accumulation buffer [6], or,
most recently, by convolving source and occluder images to produce a soft shadow
texture[12, 13]. The latter algorithm can produce convincing shadows for environments
with arbitrary types of objects; however, correct shadows are sometimes difficult to
produce, for example, if a large occluder touches a receiver.

In this paper, we useRandom Seed Bisection(RSB) and theTwo Discontinuity Find-
ing (TDF) algorithm developed in [11] to approximate the visible portion of a polygonal
light source. RSB and TDF efficiently find the approximate location of (two or fewer)
discontinuities in a one-dimensional integrand caused by (arbitrary) occluders. Given a
triangular source, we use RSB and TDF to determine the number and approximate lo-
cation of the discontinuities caused by occluders along each edge of the source. Given
the number of discontinuities along each edge, we classify the triangle into one of six
edge visibility configurations. Depending on the resulting configuration, we may com-
pute one or two additional interior discontinuities. We then approximate the visible
portion of the triangle using the polygonal boundary defined by the vertices and the dis-
continuities, and partition the visible domain into sub-triangles. Finally, we calculate
the integral over each sub-triangle using either an analytical solution (in the case of a
diffuse emitter and a diffuse surface), or a low degree numerical cubature.

This paper is organized as follows: in Section 2, we review the one dimensional
discontinuity finding algorithms of [11]. In Section 3, we present the algorithm for cal-
culating a polygonal approximation to the visible portion of a triangular light source. In
Section 4, we present the extension of the algorithm to quadrilateral and general polyg-
onal sources. In Section 5, we present results for triangular sources and a discussion of
the algorithm developed. Finally, in Section 6, we present our conclusions.

2 One Dimensional Discontinuity Finding Algorithms

In this section, we briefly review the one dimensional discontinuity finding algorithms
that were introduced in [11]. We want to find the approximate location of the disconti-
nuities in a visibility functionV(x) defined over[0; 1] such thatV(x)=1 if x is visible,
andV(x)=0 otherwise.

2.1 Random Seed Bisection

If V has at most one discontinuity in[0; 1], thenV has one discontinuityλ 2 [0; 1] iff
V(0) 6=V(1). In such a case,V is a step function, and given a toleranceε, we calculate
λ̃, the approximate location ofλ, such thatkλ̃� λk � ε.

Suppose thatV has exactly one discontinuity over an interval[a; b] such thatV(a) 6=
V(b). Letm2 [a; b]. If V(a) 6=V(m), thenV has a discontinuity over[a;m], otherwiseV
has a discontinuity over[m; b]. TheRandom Seed Bisection(RSB) algorithm is based
on this observation. In RSB,[a; b] is initially set to[0; 1], andm is set to a random seed
taken from a uniform distribution over[0; 1]. At each iterationi, V(m) is evaluated and
compared toV(a). The appropriate subinterval is chosen as the(i + 1)st interval, and
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m is set to its midpoint. The iteration terminates when theka� bk < 2ε, and we set
λ̃=m. The expected error of RSB aftern iterations is(2=3)(1=2)n�1, which is almost
optimal.

The functionEn(λ̃) is the expected value of̃λ in terms ofλ and of the number
of iterationsn. For RSB,En(λ̃) is a continuous function ofλ over [0; 1]. Because
En(λ̃) is continuous, we can use RSB to efficiently find the approximate location of a
discontinuity for an integrand in a linear light source, while avoiding banding problems
inherent to purely deterministic methods, as was shown in [11].

2.2 Two Discontinuity Finding Algorithm

Suppose thatV has at most two discontinuities in[0; 1]. If V(0) = V(1), thenV has
either zero or two discontinuities in[0; 1]. If we can find a pointm2 (0; 1) such that
V(0) 6= V(m), then we can use RSB to find a discontinuity on each side ofm. The
Two Discontinuity Finding(TDF) algorithm uses heuristics based on scene coherence
to determine if such a pointm exists. The heuristics either succeed in finding such a
valuem and we find two discontinuities, or they fail and we conclude that there are no
discontinuities. LetP be the number of discontinuities detected in the integrand for the
previous (and adjacent) pixel, and let these discontinuities bep1 and p2, if they exist.
We have different heuristics based on the value ofP.

StateP = 0. Let ν be a user-specified tolerance, and letx
�2=0 andx

�1=1. Choose
a random valuex0 2 [0; 1] and determineV(x0). If V(x0) 6=V(0), then letm= x0 and
return. Otherwise, at each stepi, choosexi as the midpoint of the largest subinterval
[xa; xb] such thata; b2 [�2; i � 1] and there is noc2 [�2; i � 1] such thatxc2 (xa; xb),
with ties being broken randomly. The iteration stops as soon as someV(xi) 6=V(0), in
which case we letm= xi and return. If the largest subinterval becomes smaller thanν,
we stop and conclude that, probabilistically,1 we have zero discontinuities, and return a
failed status. We refer to this algorithm as theVoronoi Search(VS).

State P = 1. Since the previous pixel had one integrand discontinuityp1, we had
V(0) 6= V(1). Since nowV(0) = V(1), one of the end points has changed visibility,
sayvi . It is likely that if a change of visibility still occurs in the integrand, it does so
betweenvi and p1. We letm= (p1 + vi)=2 and computeV(m). If V(m) 6=V(0), we
return successfully. Otherwise, we use VS to look for a change of visibility betweenp1
andvi .

StateP = 2. The integrand for the previous pixel had two discontinuitiesp1 andp2.
It is likely that if we still have two discontinuities, the midpointm=(p1 + p2)=2 will
be such thatV(m) 6=V(0). If this is the case, return successfully. Otherwise, we use VS
to look for a change of visibility in[0; 1].

3 Triangular Shadow Algorithm

We now present an algorithm for finding the approximate shape of the visible por-
tion of a triangular light sourceT for an important class of occluders. We define

1Specifically, there is no gapG � [0; 1] of sizekGk > ν such thatV(x) 6=V(0);8x2G.
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the class ofOccluders Causing Two or fewer Discontinuities In Any Linear Subdo-
main (OCTDIALS) to be the class of occluders that cause at most two discontinuities
along any linear subdomain ofT. GivenT and a point to be shadedP, an occluder
O is of class OCTDIALS(T;P) iff, given any line segmentL � T, O causes at most
two discontinuities in the visibility function ofL, as seen fromP. In a sense, this class
includes any object, or collection of objects, that causes a locally convex occlusion of
T as viewed fromP. This class includes, but is not limited to, convex occluders and
convex “visibility holes.” In the remainder of this section, we will assume that any
occluderO is of the class OCTDIALS(T;P).

We define the visibility functionV(x), 8x 2 T, such thatV(x) = 1 if x is visible
from P, andV(x) = 0 otherwise. We can use RSB and TDF to determine efficiently
the number and approximate location of discontinuities inV(x) along any line segment
L � T, and in particular, along the edges ofT. Given the location of discontinuities
along the edges ofT, the location ofT’s vertices, and, if necessary, the location of
one or two additional discontinuities insideT, we can approximate the visible domain
of T with a polygonal boundary. We now formulate this approximation algorithm by
examining the edge configurations and the configuration transitions.

3.1 Edge Configurations

The first step in approximating the visible domain ofT is to find the number and approx-
imate location of the discontinuities inV(x) along the edges ofT. Let the three vertices
of T bev0, v1, andv1. Since the edges share these vertices, we first calculateV(v) at
each vertexv. For each edge defined by a pair of verticesvi andvj , we then compare
V(vi) to V(vj ). If the values are different, we use RSB to find the single discontinuity
along this edge, otherwise we use TDF to find either zero or two discontinuities.

We classifyT according to itsedge configuration, that is, according to the number
of discontinuities found along each edge. There are only two possible classes of vertex
visibility: either all the vertices have the same visibility, or one vertex has a visibility
that is distinct from the other two. This leads to a natural classification of the possible
edge configurations.

If all vertices have the same visibility, then every edge has either zero or two dis-
continuities. We can then classifyT into one of the following four configurations:

C000 : All three edges have zero discontinuities.
C002 : One edge has two discontinuities, two edges have zero discontinuities.
C022 : Two edges have two discontinuities, one edge has zero discontinuities.
C222 : All three edges have two discontinuities.

If a vertex v has a different visibility than the other two, then two edges have one
discontinuity, and the other edge either has zero or two discontinuities. We can then
classifyT into one of the following configurations:

C011 : Two edges have one discontinuity, one edge has zero discontinuities.
C112 : Two edges have one discontinuity, one edge has two discontinuities.

If the visibility of the triangle is of typeC000, we will classifyT as fully occluded
if its vertices are occluded, and as fully visible otherwise. This assumption will fail
only if the occluderO is entirely contained within the tetrahedron defined byP andT.
Because of the unlikelihood of this happening, and because the resulting contribution
to the penumbra may often be negligible, we have chosen to make this simplifying
assumption.
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Given a configuration of typeC112 orC222, we approximate the shape of the blocker
by joining discontinuities with non-intersecting lines. These lines partition the triangle
into visible and occluded polygons. Given a neighbourhood of pixels that have the same
configuration, this type of approximation produces smooth varying shadows.

Unfortunately, given a configuration of typeC002, C011, or C022, simply joining
the edge discontinuities can lead to dramatic discontinuities in the penumbral shadow.
These discontinuities occur at the boundaries with other configurations, and correspond
to the traditional discontinuities encountered in discontinuity meshing. To both under-
stand and to alleviate these problems, we must examine the transitions that can happen
between the various configurations.

3.2 Configuration Transitions

As we determine visibility from one pixel to the next, the occluder appears to move with
respect to the source. We say that a transition pair exists between two configurations
Ca andCb iff it is possible for an occluder to be translated from positionα to positionβ
such that:

� At positionα, the configuration due to the occluder isCa.
� At positionβ, the configuration due to the occluder isCb.
� For any positionγ=α+ s(β�α) such thats2 [0; 1], the configuration due to the

occluder is eitherCa or Cb.

There are only 8 possible transitions pairs,2 and these are illustrated in Figure 1.
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Fig. 1. Configuration Transition Pairs

If we simply use the discontinuities along the edges ofT to approximate the shape of
the occluder in each of the configurations, some transitions can becomeill-conditioned
(see [8]), in the sense that small changes in the location of the occluder can cause
large changes in our approximation of the visible portion. The following transitions are

2If the fully-visible assumption about theC000 configuration is violated, other transitions are possible.
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potentially ill-conditioned:C002 , C011, C002 , C022, C002 , C222, C011 , C112, and
C022 , C222. An ill-conditioned transition is illustrated in Figure 2. Notice that the
approximation to the visible portion of the source suddenly increases in value in the
last transition, as the occluder finally pierces the right edge.

011
C

011
C

011
C

011
C C

112

Fig. 2. Ill-ConditionedC011 ,C112 transition. Approximate visible domain shown in black.

The problem with the simple approximation is that it is impossible to maintain
a consistent approximation across certain configuration transitions. To alleviate ill-
conditioning, we must account for the shape of the occluder insideT. This is critical
for the ill-conditioned configurations C002, C011, andC022. These are the configura-
tions that have one or two edges with zero discontinuities, and for which we have no
information about the closeness of the occluder to these edges.

Our goal is to approximate the shape of the occluder such that the approximation
varies smoothly across a region of pixels that have the same configuration, and varies
continuously at the boundaries where the configuration changes. To achieve this goal,
we use effective heuristics to approximate the internal shape of an occluder near one or
more edges with zero discontinuities.

3.3 Finding the Closest Point to an Edge

Without loss of generality, we can relabel a triangleT in an ill-conditioned configuration
as illustrated in Figure 3. Specifically,

C011 : There is a discontinuityd1 between verticesv0 andv1, a discontinuityd2 be-
tweenv0 andv2, and no discontinuities betweenv1 andv2. See Figure 3(a).

C022 : There are two discontinuitiesd0 andd1 betweenv0 andv1, two discontinuities
d2 andd3 betweenv0 andv2 (with d1 andd2 being the discontinuities closest to
v2), and no discontinuities betweenv1 andv2. See Figure 3(b).

C002 : There are two discontinuitiesd0 and d1 betweenv0 and v1 (with d1 being
the discontinuity closest tov1), no discontinuities betweenv0 and v2, and no
discontinuities betweenv1 andv2. See Figure 3(c).

(b) C (c) C(a) C

v1 v1 v1

d3 d22d

011 022 002

v2v v2v0 v2v0

md d

d

d

d

d

0

1
0

1

0

1

2

Fig. 3. Relabelling of ill-conditioned triangles, with dashed lines representing linear boundaries.
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If a triangle is of typeC002, we let m be the midpoint between the discontinuitiesd0
andd1. Since the occluder is of class OCTDIALS(T;P), thenV(m) 6=V(v2), and we
can use RSB to find a discontinuityd2 betweenm andv2. The triangle can then be split
along the edgem-v2, which results in two triangles of typeC011.

Given that any triangle of typeC002 can be subdivided into two triangles of type
C011, we only need to be able to handle triangles of configuration typeC011 andC022, to
effectively handle all ill-conditioned triangles. Examining Figure 3(a) and Figure 3(b),
we see that approximating the internal shape of the visible domain ofT can be expressed
as follows: given the boundary of the occluder that extends fromd1 to d2, find the point
on this boundary that is closest to the edgev1-v2.

Let v( f )=v1(1� f )+ f v2 be a parameterization of the edgev1-v2, wheref 2 [0; 1].
Let d( f ) be the discontinuity betweenv0 andv( f ) that is the furthest fromv0. This
is the intersection of the linev0-v( f ) with the boundary of the occluder that extends
from d1 to d2, and in fact,d( f ) is the boundary curve. LetD( f ) be the perpendicular
distance fromd( f ) to the edgev1-v2. Since the occluder is of class OCTDIALS(T;P),
the functionD( f ) can have only one of three possible shapes:

� Concave upward — ifD00( f ) � 0.
� Concave downward — ifD00( f ) � 0.
� Straight line — ifD00( f )=0.

Only if D00( f ) � 0 canD have a minimum atm, with d(m) closer to the edgev1-v2
than bothd1 andd2. How closed(m) is to the edge determines the ill-conditioning that
would be inherent to an approximation of the visible domain wered(m) not to be taken
into account. Since in practice this is the most common (and most difficult) type of
ill-conditioning to detect, we now present an algorithm that determines ifD is concave
upward, and if so, finds the minimumm and the pointd(m), within a toleranceµ.

In general, the boundary functiond( f ) is not explicitly available. However, we
can use RSB to calculated( f ). First, we compute the intersection of the linev0-v( f )
with the lined1-d2, giving the intersection pointi. Since the edgev1-v2 has no dis-
continuities, we know thatV(v( f )) = V(v1). We then computeV(i), and compare it
to V(v( f )). If they are the same, the functionD( f ) is not concave upward, and we
cannot find a point on the boundary closer to edgev1-v2 than bothd1 andd2. If they are
different, we use RSB to findd( f ), and then compute its perpendicular distance from
the edgev1-v2.

Figure 4 contains theMinimum Finding(MF) algorithm. Given the toleranceµ, MF
returns FALSE if the function is concave downward, otherwise returns TRUE and the
approximate location of the minimum, within the specified tolerance. MF first deter-
mines if D( f ) is concave upward by examining a midpoint chosen randomly from a
uniform distribution over[0; 1], and comparing it toD(0) andD(1) to determine if the
function can possibly be concave upward.

If the function is concave upward, MF iteratively refines the interval containing
the minimum value ofD( f ) by applying theMean Value Theoremof calculus. The
algorithm terminates when the interval is smaller thanµ. The algorithm returns a TRUE
value, and the midpointm of the final interval is the location of the minimum ofD( f ).
The point on the boundary closest to the edge is thend(m).

If the point d(m) is closer tov1-v2 than bothd1 and d2, it is used to refine the
visible domain of the triangle. Since the occluder is of class OCTDIALS(T;P), the
visible domain can be (uniquely) approximated by the polygonal boundary defined by
the vertices of the triangle, the discontinuities, and the closest pointd(m). The accuracy
of d(m) is controlled by the toleranceµ, which in turn controls the continuity of the
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lo = 0; hi = 1; mid = choose randomly in [0,1]

// If boundary is concave downward, return FALSE

if( ( D(mid) > D(lo) ) and ( D(mid) > D(hi) ) ){

return( FALSE );

} else if( D(mid) > min(D(lo),D(hi)) ){

// lineMid is the value of D(mid) if boundary is a line

lineMid = ( D(lo)*(hi-mid) + D(hi)*(mid-lo) ) / (hi-lo);

if ( D(mid) > maxMid ){

// D(mid) above line, thus boundary is concave downward

return( FALSE );

}

}

while( (hi-lo) > tolerance ){

if( D(mid) > min(D(lo),D(hi)) ){

if( D(lo) < D(hi) ){

hi = mid; // Minimum is in [lo,mid]

} else {

lo = mid; // Minimum is in [mid,hi]

}

mid = (lo+hi)/2;

} else { // Test midpoints of lower and upper subintervals

midlo = (lo+mid)/2; midhi = (hi+mid)/2;

if( D(midlo) < D(mid) ){

hi = mid; mid = midlo; // Minimum in [lo,mid]

} else if( D(midhi) < D(mid) ){

lo = mid; mid = midhi; // Minimum in [mid,hi]

} else {

lo = midlo; hi = midhi; // Minimum in [midlo,midhi]

}

}

}

// Desired point is mid, and distance from edge is D(mid)

return( TRUE );

Fig. 4. Minimum Finding Algorithm

approximation of the visible domain of the triangle. As the occluderO gets closer to
an edge with zero discontinuities, so does the pointd(m), and thus the approximation
to the visible domain gradually converges to the approximation that will result when
the occluder finally pierces the edge. In Figure 5, the three types of boundaries and the
resulting approximation to the visible domain are illustrated for a triangle of typeC011.

Similarly to RSB, MF uses a random initial subdivision to avoid banding artifacts.
After the initial subdivision, the interval containing the minimum is reduced by half at
each iteration. Each iteration requires at most two evaluations ofD( f ), thus aftern iter-
ations, we have evaluatedD( f ) at most 2n times, and the expected error isO(1=2n�1).

Finally, a word of caution on the MF algorithm. Since MF relies on RSB, and since
both are numerical algorithms, additional care must be exerted in controlling the error
levels. As a rule of thumb [8], a nested numerical method should be roughly one order
of magnitude more precise than the calling method. In our implementation, we have
made the RSB routine (as used within MF) ten times as accurate as the MF routine.
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4 Quadrilateral and General Polygon Algorithms

We now present an algorithm for finding the approximate shape of the visible domain
of a (convex) quadrilateral light sourceQ. Since the four edges share the vertices ofQ,
we first compute visibility at all four vertices. We then use RSB and TDF to determine
the number and approximate location of the discontinuities on the edges ofQ.

TDF RSB

RSB
RSB

(a) (b) (d)(c)

Fig. 6. Four possible vertex configurations for a quadrilateral light source.

Given the visibility at the vertices ofQ, there are four different types of configu-
rations possible. We enumerate the configurations and the criteria used to select the
diagonal along whichQ is subdivided and rendered as two triangles.

1. All four vertices have the same visibility. Choose a random diagonal and deter-
mine the number of discontinuities using TDF. See Figure 6(a).

2. One vertex has a different visibility than the other three. Choose the diagonal that
has the vertex with a different visibility since we can use RSB to find the discon-
tinuity, and avoid a call to the more expensive TDF routine. See Figure 6(b).

3. Two adjacent vertices have the same visibility and the other two vertices have the
opposite visibility. Choose a random diagonal and find the discontinuity using
RSB. See Figure 6(c).

4. Two diagonally opposite vertices have the same visibility and the other two ver-
tices have the opposite visibility. Find the intersection pointi of the two diagonals
and determine its visibility. Choose the diagonalvi-vj whose end points have a
different visibility thani, and use RSB to find the discontinuity betweeni andvi ,
and to find the discontinuity betweeni andvj . See Figure 6(d).

Once we have chosen the diagonal, we subdivideQ using this diagonal and render
the light source as two triangles, using the algorithms of Section 3.
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4.1 Extending to Polygons with More than 4 Sides

Our algorithm can also be extended in a straightforward manner to polygons with more
than 4 vertices. The key is to first test the vertices for visibility and to split the polygon
along one of these types of diagonals, if possible:

1. Diagonals whose end points have opposite visibilities, since we can use RSB to
find the discontinuity (e.g., Cases 2 and 3 of the Quadrilateral Algorithm).

2. If two intersecting diagonals are such that one diagonal has two visible vertices
and the other has two occluded vertices, then the intersection will have a different
visibility than the end points of one diagonal. Choose this diagonal and use RSB
to find the two discontinuities (e.g., Case 4 of Quadrilateral Algorithm).

5 Results and Discussion

In Figure 7, we show the result of illuminating three different types of objects with a
triangular light source. The source is located parallel to the floor, above and slightly be-
hind the objects. In Figure7(a), the image was computed using the heuristics designed
in Section 3: RSB with a tolerance ofε = 0:05, TDF with a tolerance ofν = 0:25, and
MF with a tolerance ofµ = 0:333. The approximate visibility of the objects required
about 26 visibility tests per pixel. The shadows are smooth within each configuration
region, and seemless across the boundaries between these regions. Notice that the shad-
ows are rendered nicely for all three different types of objects. In Figure7(b), we show
the result of computing the same scene with a super sampling of slightly higher cost
(28 samples with visibility testing for each pixel). Slight banding is noticeable in the
penumbra of all objects, especially in the shadow cast by the sphere and by the tip of
the cone.

Our results point to an interesting new direction of research involving the approxi-
mation of the visible domain of area light sources. We believe that one of the keys to
the successful approximation of the visible domain of an integrand lies in the consis-
tency of the approximation. The algorithms we have developed provide an approximate
solution to the visible domain that is both smooth within a configuration region, and
continuous as we move from one configuration to the other.

TheMinimum Finding(MF) algorithm developed has several important properties.
Ill-conditioned transitions are alleviated by allowing a more consistent approximation
of the visible domain of the integrand. Banding is eliminated without sacrificing ef-
ficiency by the introduction of a random seed. The toleranceµ provides an effective
mechanism for controlling the cost and quality of the approximation. For a given
toleranceµ, the complexity of MF is nearly that of a pure bisection method, namely
O((log 1=µ)2). This is a result of MF having the RSB method (which has a complexity
of O(log 1=ε) for a tolerance ofε) embedded within a method of similar complexity.
The squared complexity of MF (with respect to RSB) comes as no surprise, since dou-
bling the dimensionality of an integration problem typically squares the cost of the so-
lution. Finally, note that contrary to other sampling methods, the difference between a
small occluder being detected or not is bounded by its actual contribution to the penum-
bral shadow, since the resulting occlusion will be approximated to withinµ.

Many improvements are still possible to these approximation algorithms. In par-
ticular, approximating the internal shape of the occluder is a difficult (and expensive)
problem to solve. Interesting areas of investigation to improve the algorithms presented
in this paper include: taking advantage of scene coherence to speed up the outer loop
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(a) RSB (ε = 0:05), TDF (ν = 0:25), and MF (µ= 0:333), with 26.2 visibility tests

(b) Super sampling with 28 samples

Fig. 7. Penumbral region comparison for locally convex occluders

of MF, and investigating more efficient methods for finding the minimum point on a
concave upward boundary, such as perhaps theSecant Method[8].

Finally, an important area of future research is to determine how the algorithms
presented in this paper can be extended to more complex computer graphics scenes.
Assuming the convex occluder problem can be solved efficiently, how can this solution
be extended to an arbitrary class of occluders and larger sets of discontinuity regions? In
both cases, a possible approach would be to subdivide either the source or the occluder,
so as to reduce the combinatorial complexity in the case analyses.

An interesting hybrid approach could combine the best properties of the algorithms
we introduced, with those of shadow mapping techniques [12, 13]. An environment
could be partitioned into classes of occluders best suited to each type, with the algo-
rithm of this paper handling large occluders, particularly if an occluder and a receiver
are abutting and causing few discontinuities in the integrand, and shadow mapping tech-
niques used to approximate more complex occluders.
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6 Conclusions

In this paper, we used theRandom Seed Bisection(RSB) and theTwo Discontinuity
Finding (TDF) algorithms to approximate the location of discontinuities for polygonal
light sources, and for the class of locally convex occluders. Given a triangular light
source, we used RSB and TDF to determine the discontinuities along each edge, and
to classify the triangle into one of six possible configurations. We introduced theMin-
imum Finding(MF) algorithm to approximate the shape of the visible domain within
the triangle. Finally, we approximated the visible domain with a polygonal approxima-
tion using the discontinuities found. The resulting integrals can be solved efficiently
using either a low degree numerical cubature, or in the case of diffuse surface and light
sources, using an analytic solution. We then proposed an extension of these algorithms
to general polygons. We believe that this an important first step in addressing the issue
of the approximate knowledge of visible domains and its application toward efficient
rendering of penumbral shadows.
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