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Abstract. Realistic rendering of outdoor terrain requires both that the geometry
of the environment be modeled accurately and that appropriate texturing be laid
down on top of that geometry. While elevation data is widely available for much
of the world and many methods exist for converting this data to forms suitable for
graphics systems, we have much less experience with patterning the resulting sur-
face. This paper describes an approach for using panchromatic (grayscale) aerial
imagery to produce color views of alpine scenes. The method is able to remove
shading and shadowing effects in the original image so that shading and shad-
owing appropriate to variable times of day can be added. Seasonal snow cover
can be added in a physically plausible manner. Finally, 3–D instancing of trees
and brush can be added in locations consistent with the imagery, significantly
improving the visual quality.

1 Introduction

Sophisticated techniques exist for converting real-world elevation data into aterrain
skinappropriate for graphical rendering [7, 10, 11, 17]. In most such systems, however,
visual realism suffers because of the stylized texture maps or simplistic coloring used
to pattern the terrain skin. To improve image quality, some high-end real-time visual
simulators now supportgeospecific texturingin which texture maps are derived from
aerial images registered to the terrain skin. Software techniques are also available for
draping large aerial images over terrain data [5].

While draping aerial imagery onto a terrain skin adds a great deal of visual richness
(Figure 1), visual realism still suffers in a number of important ways. Available high-
resolution imagery is almost always panchromatic. Shadowing in the source imagery
makes rendering views for times of day other than when the imagery was acquired
problematic. Similar problems occur when simulating views at different times of year,
particularly in alpine terrain when snow cover is an issue. Finally, texture mapping with
aerial imagery in and of itself does not provide the fine scale three-dimensionality that
is critical to perceiving a sense of scale over long distances. In the case of alpine envi-
ronments, in particular, the three-dimensionality of trees is apparent even over distances
of several kilometers.

The rendering shown in Figure 2 (see Color Plate) was produced by starting with the
same source data as used to generate Figure 1. Using no additional data, terrain types
and vegetation cover were mapped and this information was used to color the image.
Existing shadows were removed and new shadows, appropriate to a different time of
day, were added. Three-dimensional trees and brush were added at locations consistent
with their appearance in the original aerial image. Finally, snow cover was added in
locations appropriate for a particular time of year.
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Fig. 1. A traditional drape of panchromatic aerial imagery onto an elevation grid

1.1 The nature of the data

Geospecific rendering of terrain requires information about both the geometry and the
photometry of the scene. Raw information about the geometric shape of the terrain
itself is most often available as aDigital Elevation Model(DEM), in which elevation
values are represented in a rectangular grid. The highest resolution widely available
elevation data1 for the continental U.S. are United States Geological Survey (USGS)
7.5-Minute DEMs [24]. Elevation values with a nominal precision of 1m are provided
at 30m intervals (post spacing) on the ground. The 7.5-Minute DEMs are created by
optically scanning contour maps and then fitting an approximation surface. They are
subject to a number of systematic distortions that, depending on the technology used
when a particular DEM was produced, can result in the actual resolvability of ground
features being far worse than the 30m post spacing might suggest.

The most direct way to render geospecific photometry is to start with an image of
the area to be rendered. Perspective effects make it difficult to register conventional
aerial imagery with elevation data. As a result, anorthorectificationprocess is often
performed, in which the perspective image is warped to remove the effects of lens pro-
jection, camera orientation, and terrain. The result is an image that is effectively a scaled
orthographic projection. The USGS provides 1m resolution panchromaticDigital Or-
thoimagery(DOQ) for much of the continental U.S. [23]. No comparable source for
color orthoimagery exists, although aerial survey companies can produce such imagery
on a custom basis with significant cost. Satellite images are often used to render terrain.
While not true color imagery as that term is commonly used, multi-spectral satellite
data can be converted to an RGB format that closely approximates perceptual color. In
addition, much work has gone into the classification of multi-spectral satellite data to
determine properties such as vegetation cover. See [3] for an example of using this for
terrain rendering. Unfortunately, the resolution of available multi-spectral satellite data
is at best on the order of 20m on the ground [1, 20].

If actual imagery of the terrain being rendered is to be used, the available choices
are usually limited to false-colored multi-spectral satellite data of limited resolution or
USGS high-resolution panchromatic orthoimagery. Since visual realism in terrain ren-
dering depends in part on high resolution texturing, it is important to explore whether or

1http://edcwww.cr.usgs.gov/doc/edchome/ndcdb/ndcdb.html
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not panchromatic orthoimagery can be effectively utilized. Can realistic color be gen-
erated? Can we get enough information about ground cover to add detail not resolved
in the imagery? Can we remove shadows and shading effects so as to simulate views
at times other than when the original imagery was acquired? Can we simulate seasonal
effects not present in the original imagery?

1.2 System overview

We developed a modeling and rendering environment that meets the goals and con-
siderations described above (Figure 3). Input consists of terrain elevation data and
orthophoto data. These two sources of information are used as input by a pattern classi-
fication system to categorize each pixel in the image into one of a set of possible classes
(e.g., rock, snow, tree, etc.). The classifier is also capable of identifying shadowed re-
gions in the original image, together with unshadowed areas of the same class. This is
sufficient to enable a deshadowing process in which shadowed areas of a given type are
made to be visually similar to the corresponding unshadowed regions. The classifica-
tion is also used to develop explicit geometric models for larger objects such as trees.
Finally, a physically-based snow simulation is used to compute snow cover for a given
date. All of these are combined to form a terrain skin covered by a colored texture map
and a set of geospecific vegetation models.

The major obstacles that must be crossed to create such a system include:

• removing shadows and shading effects from orthoimagery (Sections 2.1 and 2.3),
• classifying the pixels in orthoimages into categories (Section 2.2),
• adding seasonal effects (Section 3),
• adding geometry for the major vegetation in the appropriate locations.

2 Normalizing and classifying orthoimages

Orthoimages are produced from conventional aerial photographs and are subject to all
of the common problems of the photographic process. Though care is taken to use im-
ages taken when the sun angle is high, shadows still occur. This is particularly true
in images of alpine terrain due to the steep slopes that are often present. To determine
surface type at each location in an orthoimage, it is desirable to first reduce those bright-
ness effects in the image that are due to shading rather than surface reflectivity. In order
to render a view with a simulated sun angle different from the actual sun angle when
the image was acquired, this same shading normalization must be accompanied by a
process that removes the existing shadows.

2.1 Removing shading effects

To use aerial imagery in the rendering of terrain as it would appear at different times
of day, we need to minimize the luminance variability in the source imagery that is
due to illumination effects at the time the imagery was acquired. If we had a way
to recover surface albedo from luminance, this would also aid in determining what
sort of surface cover was present at a given location in the image. Given Lambertian
surfaces, a known distribution of illumination, and surface orientation at every point, it
is straightforward to determine surface reflectances. In practice, we know none of these
properties. Surface reflectance is far from Lambertian, illumination depends not only
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on sun angle but also on complex, weather dependent variations in sky brightness, and
DEMs provide only low resolution information about surface orientation.

Nevertheless, shading effects can be reduced by applying a normalization based on
the cosine of the angle between the approximate surface orientation, as specified in a
DEM, and an estimate of the direct illumination direction. Sun angle is often provided
with satellite data. For USGS orthoimages, it must be estimated from the imagery.
Computer vision shape-from-shading methods can be used to solve this problem [4].
If shadows are present and one or more matches can be established between points
on shadow generating contours and the corresponding point on the trailing edge of
the shadow, then the direction of direct illumination can be inferred from the DEM-
specified elevations of the corresponding points.

2.2 Classifying orthoimages

Figure 4 shows a 480m by 340m section of an orthoimage of an area of the Wasatch
Mountains near Salt Lake City, Utah. Included within the image are regions of pine
trees, brush, talus, rock cliffs, and snow. The pine trees are surrounded by an understory
consisting of dirt, grass, and shrub. Portions of talus, cliff, and snow are in shadow.
Each of these classes of surface cover has a distinct coloration. Given the panchromatic
brightness at each pixel and the corresponding surface type, it is straightforward to
produce a relatively accurate color version of the image.

Image brightness can yield a rough categorization of these regions: pine is dark,
talus a mid-gray, and snow is bright. A quantitative examination of image values, how-
ever, quickly demonstrates that thresholding cannot adequately separate the classes of
interest, no matter how carefully the thresholds are chosen. Computer vision techniques
based on 2–D shape analysis are not likely to succeed either, given the complexity of
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Fig. 4. 480m by 340m section of an orthoimage of the Wasatch Mountains

the images. Instead, we have successfully used a pattern classification approach similar
to that used to classify multi-spectral satellite data.

For each pixel in the deshaded orthoimage, we computed eight features:

1. pixel brightness
2. average neighborhood brightness
3. minimum neighborhood brightness
4. maximum neighborhood brightness
5. elevation
6. slope
7. aspect
8. angle to southern occluder

Features 2–4 allow consideration of brightness within a local context. Features 5–8
are computed by interpolating 30m DEM values. Feature 7 measures the direction a
given point on a slope is facing, an important determinant of vegetation cover. Feature
8 measures the angle from a given point to the southern skyline. Larger values increase
the likelihood that the point will be in shadow when the image was acquired.

A simple normal distribution, maximum likelihood Bayes classifier [22] proved suf-
ficient, avoiding the need for complex training procedures, hand tuning of parameters,
or other manual adjustments. This classifier assumes that the values of each feature for
each class are generated by a normally distributed random process, possibly involving
correlation between different features. Population statistics,p(x|Ck), are computed for
feature values, represented as a vectorx, given that the features came from a partic-
ular class,Ck. Since the feature values arising from a given class are assumed to be
normally distributed, their statistics are completely characterized by a mean vector,µk,
and a covariance matrix,Φk. Given thea priori likelihood of each class,P (Ck), the
minimum error classifier is achieved by assigning the classCk such that:

P (Ck|x) ≥ P (Cj |x) ∀ j 6= k.
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Bayes law is used to convert this to a discriminant function formulation, in whichCk is
chosen maximizing:

gk = −1

2
xt[Φk]−1x + xt[Φk]−1µk −

1

2
µtk[Φk]

−1µk + lnP (Ck)−
1

2
ln |Φk|.

For each class, several hundred image locations were selected manually to form
a training set, in a process requiring only a few minutes of time. Statistics on the
distributions of feature values for the training set were determined and used to form
the discriminant functions for the maximum likelihood Bayes classifier, assuming alla
priori probabilities to be equal. This classifier was then used to categorize each pixel
location in the full orthoimage. A final decluttering step reclassified very small regions
based on the dominant surrounding class.

Classification results are shown in Figure 5. While ground-truth validation has not
been done, spot checking of the results corresponds closely with what would be ex-
pected from a careful examination of the orthoimage. The actual statistical distribution
characterizing the features is almost certainly not multi-variate normal. The fact that
the classifier still performed well is an indication that the features for each class are
well separated in a statistical sense. As is often the experience in pattern recognition,
appropriately chosen features allowed the use of a simple classifier.

2.3 Removing shadows

While the aerial imagery used to generate orthoimages is chosen to minimize shadows,
shadowing is still present. As would be expected, the severity of this problem increases
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Fig. 6. Figure 4 deshaded, colored, and with shadows removed

with the ruggedness of the terrain. These shadows need to be removed and replaced by
simulated shadows resulting from a different illumination direction if we want to use
the imagery to texture a terrain scene for a date/time different from when the source
image was taken. Given accurate information about the direction of incident direct
illumination and high resolution elevation data, expected shadow locations could be
easily computed. In practice, we seldom have either and so another approach is needed.

The maximum likelihood classifier does a good job of identifying shadow areas and
can even categorize different surface covers within the shadowed regions. This can be
used to remove the photometric effects of shadowing, even when the direction of illu-
mination is not known. For purposes of visual rendering, it is enough to renormalize
shadowed portions of the orthoimage to have a brightness distribution statistically simi-
lar to unshadowed regions of the same surface type. In practice, it appears to be enough
to standardize the mean and standard deviations of the shadowed regions.

To improve the visual qualities of our talus texture, we apply image processing. The
real talus exhibits shadowing and highlights from individual stones. Most of this is lost
in the blurring of the photographics process. To add some shading variation, we apply
two steps. First, we apply mean-variance normalization. Because the dynamic range
in the shadows is so low, the variance normalization effectively translates quantization
noise into uncorrelated additive noise. We then apply a gaussian blur, thus adding
correlation to the noise for an appearance that more resembles the mid-size rocks of
talus.

Often, shadow boundaries in orthoimages exhibit a penumbra-like effect, though at
a scale much larger than the shadow penumbra that would be generated by a light source
the angular extent of the sun. The causes of this phenomenon are not clear, but are likely
due to a combination of interreflection, variations in sky brightness, and photographic
dodging done as a pre-processing step in orthophoto preparation. Whatever the cause,
these shadow fringes are visually distracting and can generate ground type misclassifi-
cations. Fortunately, it is an easy matter to replace dark pixels near classified shadow
regions with lighter pixels slightly farther away, largely eliminating the problem.

Figure 6 shows the results of deshading and shadow removal applied to Figure 4
and followed by coloring based on the classification shown in Figure 5.
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3 Modeling snow cover

In alpine environments, snow cover is the predominant seasonal effect. Snow cover
normally develops from a series of winter storms and is modified by the action of rain,
wind and melting. Thus, to show seasonal effects not present in the original orthoim-
agery, we need to simulate effects such as snow accumulation, snow ablation and melt.
In mountainous areas, the amount of snow present at any given location is highly vari-
able. This is particularly noticeable in late spring and early summer, as southern and
western aspects melt out exposing the underlying ground, while north facing slopes are
still covered in deep snow.

3.1 Snow accumulation

Snow accumulation and loss is controlled primarily by atmospheric conditions and the
elevation and slope of the terrain [9]. Atmospheric processes of interest are precipi-
tation, deposition, condensation, turbulent transfer of heat and moisture, radiative ex-
change and air movement. Land features influence snow accumulation by slope, orien-
tation, and by shadowing properties. These factors act together and are related to each
other [2]. For example, mountain ranges interrupt the winds that can redistribute the
snow into drifts, slope and aspect influence incoming solar radiation and humidity, and
latitude and elevation control air and ground temperature.

The variability of snow cover is commonly considered on three geometric scales [9]:

• Regional scale: large areas with linear distances up to 1000km in which dynamic
meteorological effects such as wind flow around barriers and lake effects are
important
• Local scale: areas with linear distances of 100m to 1000m in which accumulation

may be related to the elevation, aspect and slope of the terrain and to the canopy
and crop density, tree species, height and extent of the vegetative cover
• Microscale: distances of 10m to 100m over which accumulation patterns result

primarily due to surface roughness

For our simulations, we consider only local scale and microscale.

3.2 Snow ablation and melt

The rate of snow melt is dependent on energy availability, which is mostly in the form of
radiation [13]. Cold snowpacks have a negative energy balance, but warming causes the
snowpack to become isothermal (0oC) and additional energy results in positive energy
balance and melt. Daily snow melt in forested areas is considerably less than melt in
open areas, as forests protect the snow cover from solar radiation and wind. Canopy
warming can increase longwave radiation, but the net effect of forest is reduction in
melt. Rain falling on snowpack may accelerate its melt rate, but intense sunshine of
late spring and summer is the principal melting energy source.

Most operational procedures for snow melt prediction rely on ambient air temper-
ature as the index of the energy available for melt. Thetemperature indexis usually
used to characterize the level of the energy balance because it is superior to other sim-
ple methods for the full energy balance at the snow surface [6]. The most common
expression relating snow melt to the temperature index is:

M = Cm(Tair − Tmelt),
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whereM is the daily snow melt (mm/day),Cm is the melt rate factor (mm/oC per day),
Tair is the daily ambient temperature (oC) andTmelt is the threshold melt tempera-
ture (oC). The critical melt temperature is often set to 0oC but can be optimized for a
particular location. In our simulations the melt temperature was set to 0oC.

3.3 Snow cover simulation

Our model divides the height field into a grid storing the amount of snow assnow water
equivalent. This is the depth of water that would be obtained by melting the snow
cover. Snow is first deposited by elevation and then is melted in a simulation that varies
temperature with height and available radiation. The available radiation is based on
surface orientation and the times of day it is shadowed. The shadowing is computed at
the center of each grid cell.

Ambient air temperature is a fundamental component of the calculations for snow
accumulation, melt and evapotranspiration. Temperature data at specified base elevation
is provided as user input and contains: (i) minimum, (ii) maximum, and (iii) average
temperature. An average environmental lapse rate can also be user specified, but we
adopted a rate of−0.6oC per 100m [15]. Warm air advection can make a standard
lapse rate inadequate for temperature predictions in alpine environment [19]. However,
over time fluctuations about the mean lapse rate will tend to even out.

Elevation is believed to be the single most important factor in snow cover distribu-
tion. Precipitation data at specified base elevation is provided as user input and contains:
(i) amount of precipitation, and (ii) precipitation density (1 g/cm3 for rain). Elevation
rise from the base elevation is treated very simply using an optional user specified lapse
rate. We adopted a 10% increase in precipitation per 100m. As with air temperature, the
simplified precipitation distribution assumptions are less likely to pose problems over
long time periods.

The amount of snow accumulated depends on the balance between rain and snow-
fall [19]. The usual method to classify precipitation is to set a threshold ambient air
temperature (Tsnow) above which all precipitation is assumed to be rain. For every
simulation time step, we determine precipitation type from ambient air temperature. If
precipitation is snow, the snow water equivalent is computed from snowfall and den-
sity, and accumulated. If precipitation is rain no accumulation occurs and the simulation
continues to melting phase.

The major variables controlling the snow melt factor are determined using the rela-
tionship suggested by Eggleston et al. [14]:

Cm = kmkvRI(1−A),

wherekm (≈ 0.4) is a proportionally constant,kv is a vegetation transmission coeffi-
cient for radiation,RI is a solar radiation index, andA is the snow albedo. The change
in snow albedo with timet (days) is described by

A = 0.4[1 + e−ket],

whereke (≈ 0.2/day) is a time constant. A fall of new snow increases the albedo to
0.8 while rain reduces it to 0.4. The vegetation transmission coefficientkv is computed
as

kv = e−4Cv ,

whereCv is the vegetation canopy density.

9



RI is the ratio of the radiation received by a surface with a given slope and aspect,
normalized to that received by a horizontal surface at the same latitude and time of
year. Note that only the ratio of energies needs to be computed. A slightly modified
method of Swift [21] is used for this computation. For periods of rain the melt factor
Cm is adjusted as follows:

Cm(rain) = Cm + 0.00126Prain,

wherePrain is amount of rainfall (mm).
Every simulation time step, if the ambient air temperature (Tair) is greater than

the threshold melt temperature (Tmelt), the melt rate factorCm is computed and the
snowpack water equivalent is adjusted accordingly. When the simulation is done, grid
cells with non-zero snow water equivalent are assumed to have snow cover. We do not
model snow depth so we use the snow cover information only to decide where to render
snow in the final image. Adding snow to regions that are uncovered in the original
orthoimage is straightforward, since at a distance snow appears as a relatively diffuse
reflector except for glancing illumination and viewing angles. Subtracting snow that
was on the ground when the aerial image was shot is a bit more complicated. However,
since almost all of the raw imagery is acquired in summer to minimize sun angle effects,
we can be pretty much assured that the underlying surface cover is rock or talus.

4 Results

Figure 7 (see Color Plate) shows renderings produced for a 2km by 2km region in the
Wasatch Mountains. This particular region was selected because it includes both rugged
and fairly gentle terrain, significant shadowing, a fairly wide range of surface types,
and slopes of varying aspect, all within a relatively compact area. The sole source data
utilized was standard issue USGS DEM elevation and DOQ image data. A classification
map was created as described in Section 2.2. This was used for deshadowing, coloring,
and for seeding a plant growth simulation in the manner of Deussen et al. [16], with
the individual plants represented using ellipsoids in the spirit of Gardner [8]. For a
given time of year, a snow simulation is run and the appropriate parts of the colored
orthotexture are replaced with snow color. The texture and plant data was input to a
Monte Carlo path tracer [12] with a sky model similar to that used by Preetham et
al. [18] that appropriately controls illumination based on time/date/place.

Figure 7(a) and 7(b) show renderings with and without explicit plant geometry.
Figure 7(c) and 7(d) show variation of appearance at different times of day. Figure 7(e)
and 7(f) show variation of appearance at different times of year. Figure 7(e) and 7(f)
show variation due to seasonal effects. Higher resolution images are available on our
web page athttp://www2.cs.utah.edu/vissim/alpineTerrain .
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Fig 2. A rendering of the same data as used to generate Figure 1,
after processing using the techniques from this paper.

a. Image without explicit plant geometry. b. Image with explicit plant geometry.

c. Rendering for winter morning. d. Rendering for winter afternoon.

e. Late spring. f. Early summer.
Fig 7. Renderings of a 2km by 2km region in the Wasatch Mountains

at different time of day/year.
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