Gathering for Free in Random Walk Radiosity
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Abstract. We present a simple technique that improves the efficiency of random
walk algorithms for radiosity. Each generated random walk is used to simultan-
eously sample two distinct radiosity estimators. The first estimator is the com-
monly used shooting estimator, in which the radiosity due to self-emitted light
at the origin of the random walk is recorded at each subsequently visited patch.
With the second estimator, the radiosity due to self-emitted light at subsequent
destinations is recorded at each visited patch. Closed formulae for the variance
of the involved estimators allow to derive a cheap heuristic for combining the
resulting radiosity estimates. Empirical results agree well with the heuristic pre-
diction. A fair error reduction is obtained at a negligible additional cost.
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1 Random walk estimators for radiosity

We first review the two random walk estimators for radiosity that will be combined in
§2. A discussion of the technique and its results are present& in

1.1 The shooting estimator

The distribution of light powePR, in a scene, discretised in patcliesan be obtained
by solving the following system of linear equatidns
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Now consider a random variatﬁ1§ taking vaIueé%(J) with probability pS(J) where
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J denotes any sequengg ..., jn,n > 1 of patches. Such a random variable can be
sampled by generating random walkwith origin selection probabilitypj,, transition

1The meaning of all symbols used in this paper is tabulated in table 1.



R Total power emitted by patah

d; Self-emitted powerpt = 5 Pg

A Area; At = 5 A is the total surface area

Ri Reflectivity; Rave= (1/AT) 3 AiR is the area-average reflectivity

B; Total radiosity emitted by;

Ei Self-emitted radiosityEave = ®7 /AT average self-emitted radiosity
o] Non-self-emitted radiosity; = B; — E;

?is Radiosity oni due toAseIf-en)itteAd radiosity on soursebj = Yshis

bis An estimator fors; bi = ¥ sbis; biS: shooting estimatobiG: gathering estimator
E[bis] | Expectation of the estimatdys

Vbis] | Variance of the estimatdus

A A sequence of patchgs, . .., jn (used to denote a random walk)
bis(J) | Contribution of the random walk to the estimatob;s
pi Probability of starting a random walk an

p(J) | Probability of generating the random walk
&ij Kronecker's delta: 1 if = j and O ifi # j
& Incident power received back iatlue to emission of one unit of power by

Table 1. Symbols used in this paper. Symbols liks, jo,..., jn denote a patch.

probabilities equal to the form factég from patchk to patchl and survival probabil-
ities equal to the reflectivitiRc on each patck. The transitions can be simulated using
local lines, as in [8], or global lines [7]. If such a random walk originates atcon-
tribution of Ri®s/A ps is recorded each time the patcls visited. No contribution is
recorded at the origify itself of a random walk however.

It can be shown that the expectatiBfb}] = 5 ;b3(J) pS(J) of this random variable
equals the radiositpis oni due to self-emitted radiosity on the sourceThe sums
b3(J) = ysb3(J) over all sources in the scene yield an estimatof for the total non-
self-emitted radiosity;. It can be shown that the variance is given by [4, 5]:

rS R(1+2R¢i) « Ps 2
V[bi]—TZEbls_bi- (4)

This random walk estimator leads to a “discretised” version of the particle tracing al-
gorithm [2]. In an implementation, incident particles are “warped” to a uniformly
chosen other position on each hit patch. It is closely related to various other Monte
Carlo radiosity algorithms.

1.2 The gathering estimator
A similar random walk estimator can be derived from the radiosity equations:
Bl = E+) RF;B; (5)
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Consider the random variabi€ taking value$S(J) with probability p®(J) where
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Again, J denotes a sequence of patchgs.-., jn,n > 1. The random variablbg can
be sampled by generating random walks as for sam;ﬁ@ngThis time however, only
walks originating fromi instead ofs will contribute. If originating ati, a contribution
REs is recorded every time the light soursés visited during the random walk. Also
in this case, only visitgx = sfor k > 1 count. )

It can be shown that the expectatiBfb®] equalsbis as well. The sumg®(J) =

zsﬁgu) over all sourcesyield an estimatofJiG for by with variance [4]:
V[BIG] = E Z(Es+ 2bs)bis — bi2. (8)
Pi &5

This random walk estimator leads to an algorithm that is similar to ray-tracing. No next
event estimators (shadow rays) are traced however and incident particles are “warped”
to a uniformly chosen new point on each hit patch. Instead of using next-event estimat-
ors, direct illumination can be used as a source light distribution rather than self-emitted
illumination. Direct illumination can be computed first using a depth-one shooting pass
[6]. A more advanced such “smoothing” pass is proposed in [1].

2 The new algorithm: gathering for free

2.1 Simultaneous shooting and gathering

Consider first a fixed pair of patchesindi. Consider any random walk= jo, ..., jn,
n>1,jo=Ss,jn =1 originating ats and being absorbed anbut furthermore generated
as described above. The probabilit$J) (3) andp®(J) (7) are identical for each such
arandom walk. They can therefore be used to sample both estirb§tarslbG simul-
taneously: to “gather” an amount of radiosﬁg(J) (6) ats from i? while “shooting”

an amount of radiositfag(J) (2) fromstoi.
Each random walk can however be used to obtain gathering or shooting contribu-
tions to the total non-self-emitted radioslty, ateveryvisited patchjy (see figure 1):

e Shooting: the radiosity due to all sourcess estimated by generating random
walks from each sourcewith probability ps = ®s/®r. A contributionR;, Pt /A,
is recorded at every visited pat¢h k > 1 (no contribution at the origin);

e Gathering: the radiosity atis estimated more efficiently by recording a gathering
contribution ats for every visited patchjg, k > 1. Moreover, since each sub-path
ik,---5 In, K> 1is an independent path for every visited paitcf8], it is allowed
to accumulate a gathering contribution at egglk < n for each subsequently
visited patchj;,| > k3. In short, a gathering contribution 8, (Ej, ,, +--- +Ej,)
shall be recorded at eaghk=0,...,n— 1.

In an implementation, shooting and gathering contributions shall be accumulated sep-
arately on each patdh Eventually, the shooting contributionsiaghall be divided by

the total numbeN of random walks. The gathering contributions ahall be divided

by the number of gathering contributiol"ilé(x’J ati. After adding self-emitted radiosity

Ei, two independent estimat&§ andBC for the radiosity on each patrare obtained.

2Note the switch of indices compared to (6).
3|t is possible to use the sub-paths for shooting as well, but this results in increased variance.



Figure 1. Contributions of a random wall, j1, j2, j3: (a,b,c) gathering &jy; (d) shooting af;
(e,f) gathering ajf1; (g) shooting af; (h) gathering af,; (i) shooting atjs.

The gathering estimate&? are obtained at negligible extra computation cost. Stor-
age requirements are however slightly higher due to the need to store the count of gath-
ering contribution&liG per patch as well as two radiosity estimates instead of one.

2.2 Combination of the radiosity estimates

The optimal combinatiom;B® + BiB® is obtained by chosing; + i = 1 with each
coefficient inverse proportional to the variance of the corresponding estimators:
B _ V[bA/N
o VIBCG|/NG” (9)
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Closed formulae for the varianc®¥$b’] andV[b®] were given above. Unfortunately,
these formulae require very detailed knowledge of the radiosity solution, which is not
available in practice. Near-optimal weights can be obtained however by using approx-
imations for the variances in (9).
A very simple but reasonably good heuristic for determining the weights is obtained
by introducing the following assumptions:

e The origin selection probability for the random walkspis= ®s/®7 in (4), and
only those random walks that yield a gathering contribution at paoh counted
in N® (pi = 1 in (8));

e R, the fraction of power received backiatue to own emission, is small in (4);

o 5 s(Es+2bs)bis ~ (Y sAs(Es+ 2bs) /AT) - ¥ shis i (8);

e After a smoothing pass, almost every patatan be considered a source [6, 1],
S0 thaty sAsbs ~ T Aibj & Rauer .

1-Rave’
With these assumptions, the following approximation for (9) is obtained:
) N-GA ) _
Bi JNAT o B with optimalk = L= Rave (10)

Qi NA - Eave 1+ Rave’

The second alternative follows froB[N®] = NR/®r, which is easy to prove, and
suggests the use of a (a-posteriori) radiosity estimateBg.g. B, instead oNC.
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3 Results and discussion
The combination is asymptotically unbiased. SinceE[0iB>+ BiBE] = E[BS+ Bi(BC —
BS)] andE[BY] = B;, the bias is given b¥[Bi(B® — BY)]. Sincefi < 1, the bias is

bounded byE[|BE — BY|] = \/%(V[Bﬂ/N +V[bS]/NC) for sufficiently largeN andNC
so that the central limit theorem applies.

The heuristic weights are reasonable. Figure 2 show that in three tested scenes with
average reflectivity 0.2, 0.45, and 0.8 the choickiof(10) is near to the optimal choice
indeed. The assumptions§A.2 are satisfied well in these scenes.

Fair error reduction at nearly no additional cost. In the tested scenes, a mean
square error (MSE) reduction of 9.8%, 19%, and 49% respectively was observed. Res-
ulting images for the scene with average reflectivity 0.8 are shown in figure 3. A re-
duction of the MSE by 49% does not translate in dramatic improvements in visual
appearance. The reduction of the error is however obtained at nearly no additional
computation cost. With shooting only, 49% more random walks would be needed in
order to achieve a given error level.

Related work. In [9], heuristics are presented for combining an a-priori known num-
ber of samples of a single integrand drawn from several probability distributions. In
our case, we deal with samples of two distinct sums drawn from a single probability
distribution. It is possible to reformulate the problem so that the heuristics in [9] can be
applied when gathering to/shooting from only the origin of the paths. The heuristics in
[9] cannot be used for combining shooting and gathering over all sub-paths: this would
require that the probability that a random walk visits any patch is known in advance.
These probabilities are proportional to the flpof the patches, which is the result to be
computed. For our combination heuristic, a a-posteriori radiosity estimate is sufficient.

4 Conclusion

The combination of a shooting random walk estimator with a corresponding gather-

ing estimator which can be sampled at negligible additional cost can yield fair a error

reduction. The technique was presented for the most commonly used shooting estim-
ator, but can be used equally well with other random walk radiosity estimators as well

as with similar estimators for general environments. The main area for improvement

is in the development of more elaborate heuristics to combine the estimates by better
approximation of the variance formulae.
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erage reflectance 0.2 (left), 0.45 (middle) and 0.8 (right). The vertical line indicates the proposed
value fork. The scene with reflectance 0.8 is shown in figure 3.

Figure 3. Top left: direct illumination used as the source distribution; Top right: Indirect illu-
mination by combining shooting (bottom left) and gathering (bottom right).
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