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Abstract. We present a simple technique that improves the efficiency of random
walk algorithms for radiosity. Each generated random walk is used to simultan-
eously sample two distinct radiosity estimators. The first estimator is the com-
monly used shooting estimator, in which the radiosity due to self-emitted light
at the origin of the random walk is recorded at each subsequently visited patch.
With the second estimator, the radiosity due to self-emitted light at subsequent
destinations is recorded at each visited patch. Closed formulae for the variance
of the involved estimators allow to derive a cheap heuristic for combining the
resulting radiosity estimates. Empirical results agree well with the heuristic pre-
diction. A fair error reduction is obtained at a negligible additional cost.
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1 Random walk estimators for radiosity

We first review the two random walk estimators for radiosity that will be combined in
x2. A discussion of the technique and its results are presented inx3.

1.1 The shooting estimator

The distribution of light powerPi in a scene, discretised in patchesi, can be obtained
by solving the following system of linear equations1:

Pi = Φi +∑
j

PjFji Ri (1)

= ∑
j0

Φ j0δ j0i + ∑
j0; j1

Φ j0Fj0 j1Rj1δ j1i + ∑
j0; j1; j2

Φ j0Fj0 j1Rj1Fj1 j2Rj2δ j2i + � � �

Now consider a random variableb̂S
is taking valueŝbS

is(J) with probabilitypS(J) where

Aib̂
S
is(J) = δs j0

Φs

ps
�

n

∑
k=1

Rjkδ jki (2)

pS(J) = pj0 �Fj0 j1Rj1 � � �Fjn�2 jn�1Rjn�1Fjn�1 jn(1�Rjn): (3)

J denotes any sequencej0; : : : ; jn;n � 1 of patches. Such a random variable can be
sampled by generating random walksJ with origin selection probabilitypj0, transition

1The meaning of all symbols used in this paper is tabulated in table 1.
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Pi Total power emitted by patchi
Φi Self-emitted power;ΦT = ∑sΦs
Ai Area;AT = ∑i Ai is the total surface area
Ri Reflectivity;Rave= (1=AT)∑i AiRi is the area-average reflectivity
Bi Total radiosity emitted byi;
Ei Self-emitted radiosity;Eave= ΦT=AT : average self-emitted radiosity
bi Non-self-emitted radiositybi = Bi�Ei
bis Radiosity oni due to self-emitted radiosity on sources; bi = ∑sbis

b̂is An estimator forbis; b̂i = ∑sb̂is; b̂S
i : shooting estimator,̂bG

i : gathering estimator.
E[b̂is] Expectation of the estimatorb̂is

V[b̂is] Variance of the estimator̂bis
J A sequence of patchesj0; : : : ; jn (used to denote a random walk)

b̂is(J) Contribution of the random walkJ to the estimator̂bis
pi Probability of starting a random walk oni

p(J) Probability of generating the random walkJ
δi j Kronecker’s delta: 1 ifi = j and 0 if i 6= j
ξi Incident power received back ati due to emission of one unit of power byi

Table 1. Symbols used in this paper. Symbols likei, s, j0; : : : ; jn denote a patch.

probabilities equal to the form factorFkl from patchk to patchl and survival probabil-
ities equal to the reflectivityRk on each patchk. The transitions can be simulated using
local lines, as in [8], or global lines [7]. If such a random walk originates ats, a con-
tribution of RiΦs=Ai ps is recorded each time the patchi is visited. No contribution is
recorded at the originj0 itself of a random walk however.

It can be shown that the expectationE[b̂S
is] = ∑J b̂S

is(J)p
S(J) of this random variable

equals the radiositybis on i due to self-emitted radiosity on the sources. The sums
b̂S

i (J) = ∑sb̂S
is(J) over all sourcess in the scene yield an estimatorb̂S

i for the total non-
self-emitted radiositybi . It can be shown that the variance is given by [4, 5]:

V[b̂S
i ] =

Ri(1+2Riξi)

Ai
∑
s

Φs

ps
bis�b2

i : (4)

This random walk estimator leads to a “discretised” version of the particle tracing al-
gorithm [2]. In an implementation, incident particles are “warped” to a uniformly
chosen other position on each hit patch. It is closely related to various other Monte
Carlo radiosity algorithms.

1.2 The gathering estimator

A similar random walk estimator can be derived from the radiosity equations:

Bi = Ei +∑
j

RiFi j Bj (5)

= ∑
j0

δi j0Ej0 + ∑
j0; j1

δi j0Rj0Fj0 j1Ej1 + ∑
j0; j1; j2

δi j0Rj0Fj0 j1Rj1Fj1 j2Ej2 + : : :

Consider the random variableb̂G
is taking valueŝbG

is(J) with probabilitypG(J) where

b̂G
is(J) = δi j0

Ri

pi
�

n

∑
k=1

Ejkδ jks (6)

pG(J) = pj0 �Fj0 j1Rj1 � � �Fjn�2 jn�1Rjn�1Fjn�1 jn(1�Rjn): (7)
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Again, J denotes a sequence of patchesj0; : : : ; jn;n� 1. The random variablêbG
is can

be sampled by generating random walks as for samplingb̂S
is. This time however, only

walks originating fromi instead ofs will contribute. If originating ati, a contribution
RiEs is recorded every time the light sources is visited during the random walk. Also
in this case, only visitsjk = s for k� 1 count.

It can be shown that the expectationE[b̂G
is] equalsbis as well. The sumŝbG

i (J) =
∑sb̂G

is(J) over all sourcessyield an estimator̂bG
i for bi with variance [4]:

V[b̂G
i ] =

Ri

pi
∑
s
(Es+2bs)bis�bi

2: (8)

This random walk estimator leads to an algorithm that is similar to ray-tracing. No next
event estimators (shadow rays) are traced however and incident particles are “warped”
to a uniformly chosen new point on each hit patch. Instead of using next-event estimat-
ors, direct illumination can be used as a source light distribution rather than self-emitted
illumination. Direct illumination can be computed first using a depth-one shooting pass
[6]. A more advanced such “smoothing” pass is proposed in [1].

2 The new algorithm: gathering for free

2.1 Simultaneous shooting and gathering

Consider first a fixed pair of patchess andi. Consider any random walkJ = j0; : : : ; jn,
n� 1; j0 = s; jn = i originating atsand being absorbed oni, but furthermore generated
as described above. The probabilitiespS(J) (3) andpG(J) (7) are identical for each such
a random walk. They can therefore be used to sample both estimatorsb̂S

is andb̂G
si simul-

taneously: to “gather” an amount of radiosityb̂G
si(J) (6) ats from i2 while “shooting”

an amount of radiositŷbS
is(J) (2) froms to i.

Each random walk can however be used to obtain gathering or shooting contribu-
tions to the total non-self-emitted radiositybjk ateveryvisited patchjk (see figure 1):

� Shooting: the radiosity due to all sourcess is estimated by generating random
walks from each sourceswith probabilityps=Φs=ΦT . A contributionRjkΦT=Ajk
is recorded at every visited patchjk;k� 1 (no contribution at the origin);

� Gathering: the radiosity ats is estimated more efficiently by recording a gathering
contribution ats for every visited patchjk;k� 1. Moreover, since each sub-path
jk; : : : ; jn;k� 1 is an independent path for every visited patchjk [3], it is allowed
to accumulate a gathering contribution at eachjk;k < n for each subsequently
visited patchjl ; l > k3. In short, a gathering contribution ofRjk(Ejk+1 + � � �+Ejn)

shall be recorded at eachjk;k= 0; : : : ;n�1.

In an implementation, shooting and gathering contributions shall be accumulated sep-
arately on each patchi. Eventually, the shooting contributions ati shall be divided by
the total numberN of random walks. The gathering contributions ati shall be divided
by the number of gathering contributionsNG

i at i. After adding self-emitted radiosity
Ei , two independent estimatesBS

i andBG
i for the radiosity on each pathi are obtained.

2Note the switch of indices compared to (6).
3It is possible to use the sub-paths for shooting as well, but this results in increased variance.
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Figure 1. Contributions of a random walkj0; j1; j2; j3: (a,b,c) gathering atj0; (d) shooting atj1;
(e,f) gathering atj1; (g) shooting atj2; (h) gathering atj2; (i) shooting atj3.

The gathering estimatesBG
i are obtained at negligible extra computation cost. Stor-

age requirements are however slightly higher due to the need to store the count of gath-
ering contributionsNG

i per patch as well as two radiosity estimates instead of one.

2.2 Combination of the radiosity estimates

The optimal combinationαiBS
i + βiBG

i is obtained by chosingαi + βi = 1 with each
coefficient inverse proportional to the variance of the corresponding estimators:

βi

αi
=

V[b̂S
i ]=N

V[b̂G
i ]=NG

i

: (9)

Closed formulae for the variancesV[b̂S
i ] andV[b̂G

i ] were given above. Unfortunately,
these formulae require very detailed knowledge of the radiosity solution, which is not
available in practice. Near-optimal weights can be obtained however by using approx-
imations for the variances in (9).

A very simple but reasonably good heuristic for determining the weights is obtained
by introducing the following assumptions:

� The origin selection probability for the random walks isps = Φs=ΦT in (4), and
only those random walks that yield a gathering contribution at patchi are counted
in NG

i (pi = 1 in (8));
� Riξi , the fraction of power received back ati due to own emission, is small in (4);
� ∑s(Es+2bs)bis � (∑sAs(Es+2bs)=AT) �∑sbis in (8);
� After a smoothing pass, almost every patchi can be considered a source [6, 1],

so that∑sAsbs� ∑i Aibi �
RaveΦT
1�Rave

;

With these assumptions, the following approximation for (9) is obtained:

βi

αi
�

NG
i AT

NAi
�k�

Bi

Eave
�k with optimalk=

1�Rave

1+Rave
: (10)

The second alternative follows fromE[NG
i ] = NPi=ΦT , which is easy to prove, and

suggests the use of a (a-posteriori) radiosity estimate, e.g.BS
i � Bi, instead ofNG

i .
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3 Results and discussion

The combination is asymptotically unbiased. SinceE[αiBS
i +βiBG

i ] =E[BS
i +βi(BG

i �

BS
i )] andE[BS

i ] = Bi , the bias is given byE[βi(BG
i �BS

i )]. Sinceβi � 1, the bias is

bounded byE[jBG
i �BS

i j] =
q

2
π (V[b̂S

i ]=N+V[b̂G
i ]=NG

i ) for sufficiently largeN andNG
i

so that the central limit theorem applies.

The heuristic weights are reasonable.Figure 2 show that in three tested scenes with
average reflectivity 0.2, 0.45, and 0.8 the choice ofk in (10) is near to the optimal choice
indeed. The assumptions inx2.2 are satisfied well in these scenes.

Fair error reduction at nearly no additional cost. In the tested scenes, a mean
square error (MSE) reduction of 9.8%, 19%, and 49% respectively was observed. Res-
ulting images for the scene with average reflectivity 0.8 are shown in figure 3. A re-
duction of the MSE by 49% does not translate in dramatic improvements in visual
appearance. The reduction of the error is however obtained at nearly no additional
computation cost. With shooting only, 49% more random walks would be needed in
order to achieve a given error level.

Related work. In [9], heuristics are presented for combining an a-priori known num-
ber of samples of a single integrand drawn from several probability distributions. In
our case, we deal with samples of two distinct sums drawn from a single probability
distribution. It is possible to reformulate the problem so that the heuristics in [9] can be
applied when gathering to/shooting from only the origin of the paths. The heuristics in
[9] cannot be used for combining shooting and gathering over all sub-paths: this would
require that the probability that a random walk visits any patch is known in advance.
These probabilities are proportional to the fluxPi of the patches, which is the result to be
computed. For our combination heuristic, a a-posteriori radiosity estimate is sufficient.

4 Conclusion

The combination of a shooting random walk estimator with a corresponding gather-
ing estimator which can be sampled at negligible additional cost can yield fair a error
reduction. The technique was presented for the most commonly used shooting estim-
ator, but can be used equally well with other random walk radiosity estimators as well
as with similar estimators for general environments. The main area for improvement
is in the development of more elaborate heuristics to combine the estimates by better
approximation of the variance formulae.
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Figure 2. Mean square error (vertical axis) against combining factork in (10) for a scene with av-
erage reflectance 0.2 (left), 0.45 (middle) and 0.8 (right). The vertical line indicates the proposed
value fork. The scene with reflectance 0.8 is shown in figure 3.

Figure 3. Top left: direct illumination used as the source distribution; Top right: Indirect illu-
mination by combining shooting (bottom left) and gathering (bottom right).
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