
Eurographics Symposium on Rendering 2003
Per Christensen and Daniel Cohen-Or (Editors)

Rapid Shadow Generation in Real-World Lighting
Environments

Simon Gibson, Jon Cook, Toby Howard and Roger Hubbold†

Advanced Interfaces Group, University of Manchester, UK

Abstract

We propose a new algorithm that uses consumer-level graphics hardware to render shadows cast by synthetic
objects and a real lighting environment. This has immediate benefit for interactive Augmented Reality applications,
where synthetic objects must be accurately merged with real images. We show how soft shadows cast by direct and
indirect illumination sources may be generated and composited into a background image at interactive rates. We
describe how the sources of light (and hence shadow) affecting each point in an image can be efficiently encoded
using a hierarchical shaft-based subdivision of line-space. This subdivision is then used to determine the sources of
light that are occluded by synthetic objects, and we show how the contributions from these sources may be removed
from a background image using facilities available on modern graphics hardware. A trade-off may be made at run-
time between shadow accuracy and rendering cost, converging towards a result that is subjectively similar to that
obtained using ray-tracing based differential rendering algorithms. Examples of the proposed technique are given
for a variety of different lighting environments, and the visual fidelity of images generated by our algorithm is
compared to both real photographs and synthetic images generated using non-real-time techniques.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Gener-
ationBitmap and framebuffer operations I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism-
Color, shading, shadowing and texture.

1. Introduction

The ability to merge synthetically generated objects into
photographs of a real scene is becoming central to many ap-
plications of computer graphics, and in particular, mixed or
augmented reality. In many situations, this merging must be
done at rates of many frames-per-second if an illusion of in-
teractivity is to be maintained. Also, visually realistic com-
binations of objects and background images are required if
the ultimate goal of augmentation is to present images to the
user that are indistinguishable from reality. To achieve these
goals the synthetic objects must be registered into the cam-
era’s coordinate frame, correctly composited with the image
to resolve occlusions, and illuminated using the same light-
ing conditions as in the real scene. Finally, the augmentation
process requires determining how the synthetic objects af-
fect the illumination already present in the scene. Typically,

† e-mail:{sg|cookj|toby|roger}@cs.man.ac.uk

these changes in illumination take the form of reflections of
the synthetic object in background surfaces, and occlusions
of light transport paths that manifest themselves as shadows
cast onto the real objects.

Traditionally, the competing requirements of real-time
rendering and visual realism have meant that achieving inter-
active photorealistic Augmented Reality has been a distant
goal. Recently however, techniques have been developed
that allow synthetic objects to be illuminated with real-world
lighting environments in real-time (see for example21, 26, 29).
Although these techniques are able to accurately shade sur-
faces, photorealism also requires that synthetic objects inter-
act with the light affecting other real objects in the image.
The addition of soft shadows in particular has been shown
to increase the perception of image realism24, and can also
enhance users’ spatial awareness32, 19. In this paper we de-
scribe a new approach to solving the problem of interactive
shadow generation for photorealistic Augmented Reality.

c© The Eurographics Association 2003.
219

http://www.eg.org
http://diglib.eg.org


Gibson et al. / Rapid Shadow Generation

Figure 1: Interactive shading and shadowing of a 2,500 triangle
synthetic object into a background photograph, running at over 11
frames-per-second on an NVIDIA GeForce4 GPU (left). For com-
parison, a ray-traced image is also shown, rendered in 1 hour using
existing differential rendering algorithms (right).

Our algorithm uses geometry and illumination data cap-
tured using computer vision and high dynamic-range imag-
ing techniques. We use a shaft-based data structure to pro-
vide a hierarchical subdivision of the light transport paths
within the reconstructed environment. Shafts are used to link
a hierarchy of source patches with a hierarchy of the receiver
patches visible in the image, thereby allowing us to quickly
determine the sources of light that are potentially occluded
by any synthetic objects. We will show how hardware ac-
celerated shadow-mapping may be used to identify the pix-
els in an image where light from these sources is occluded
by synthetic objects. Multiple rendering passes are then per-
formed that blend hard shadows together to approximate the
soft shadow cast by the object. We will show how the contri-
butions of light may be easily removed from the background
image using facilities commonly found on modern graphics
hardware. This results in a rendering algorithm capable of
generating complex, visually realistic shadows at interactive
frame-rates.

It is important to note the assumptions we are making in
order to generate these shadows. Most significantly, we as-
sume that a soft shadow can be accurately represented using
multiple overlapping hard-edged shadows18. Whilst this is
rarely true when using small numbers of hard shadows, we
will show that our algorithm is capable of achieving inter-
active frame-rates whilst using a large number of shadow
blending passes, which allows a much wider variety of soft
shadows to be approximated. We also assume that the only
moving objects are the synthetic ones we are introducing,
and that casting shadows is the only effect these synthetic
objects have on the environment.

Figure 1 shows an example of our algorithm in use. On
the left is an image rendered at over 11 frames-per-second
using an NVIDIA GeForce4 graphics card. By way of com-
parison, on the right is an image generated using ray-tracing
and differential rendering techniques5. As the Figure shows,
the shadows appear subjectively similar even though the ray-
traced image took over 1 hour to generate.

The remainder of this paper is organised as follows: Sec-
tion 2 describes related work, and Section 3 briefly outlines
the techniques we use to capture real-world illumination.
The main body of this paper contains a more detailed expla-
nation of our new shadow rendering algorithm, presented in
Sections 4 to 8. Results for a variety of lighting environments
and shadow types are then given in Section 9, along with
visual comparisons between our algorithm, ray-traced im-
ages and photographs. We also illustrate the graceful trade-
off between image quality and rendering time our algorithm
achieves. Finally, we draw conclusions and describe future
work in Section 10.

2. Previous Work

There has been an enormous amount of research devoted to
shadow generation. The literature is too large to review in
this paper, but useful surveys can be found in34 and16. Here,
we will focus on previous work that is related to the problem
of generating realistic shadows at interactive rates, or aims
to composite shadows into a background photograph.

Basic shadow-mapping techniques33 have been extended
to generate soft shadows by approximating the penumbral
regions using several hard-edged shadow3. By rendering
each shadow from a slightly different position on the light
source, and then combining the maps together, realistic rep-
resentations of soft shadows can be generated. Alternative
approaches that attempt to reduce the cost of soft shadow
generation include convolution30, “soft objects”23 or search
techniques2 to approximate the penumbral region.

Radiosity4, 28 has previously been used to generate soft
shadows, but at a large computational cost. More recently,
extensions to these techniques have been made to allow
updates to localised regions of the solution, allowing for
object movement (see, for example8, 13, 31). Following pi-
oneering work by Fournier et al.9, Drettakis et al.7 and
Loscos et al.22used an interactive cluster-based radiosity
system to generate the shadows cast by a synthetic ob-
ject in a real-environment, and composited those shadows
into a background photograph at rates of 1− 2 frames per
second. Keller has also introduced the “Instant Radiosity”
algorithm20 that uses shadow-mapping hardware to acceler-
ate the generation of globally illuminated environments.

The difficulty in applying hardware-based shadow-
mapping to photorealistic Augmented Reality lies in the fact
that real-world lighting environments contain a wide vari-
ety of different types of light sources, ranging from small
focused spot-lights to broad area lights or even diffuse sky-
light. As the number or area of light sources increases, it
becomes harder to apply shadow-mapping and generate be-
lievable synthetic shadows. This is especially so if important
secondary sources of illumination are required to cast shad-
ows.

To deal with the problem of rendering with a wide vari-

c© The Eurographics Association 2003.
220



Gibson et al. / Rapid Shadow Generation

ety of real-world light sources, Debevec proposed the use of
image-based lighting techniques to allow real-world light-
ing environments to be captured and used to illuminate syn-
thetic objects5. High dynamic-range images6 of a light probe
were used in conjunction with a ray-tracing algorithm to ren-
der shadows cast by synthetic objects. Differential render-
ing techniques (discussed in more detail in Section 7) were
used to produce photorealistic augmented images contain-
ing caustics and shadows. A similar algorithm was proposed
by Sato et al.27, with the light probe replaced by a camera
with a hemispherical lens. Unfortunately, due to the com-
pute intensive nature of the ray-tracing algorithms used in
these approaches, interacting with the synthetic objects at
rates required in Augmented Reality applications is not yet
possible.

To achieve interactive update rates whilst rendering with
real-world illumination, Gibson and Murta proposed us-
ing computer graphics hardware to render the shadows cast
by synthetic objects12. Shadows were approximated using
multiple hard-edged shadow-maps, and blended into the
background image using accumulation-buffer hardware. Al-
though capable of generating images at rates of several
frames-per-second, their approach assumed that all light
sources in the scene were distant from the synthetic ob-
jects. Shadows cast by the objects were also only valid when
falling onto a horizontal surface lying immediately below the
object, limiting the applicability of the algorithm.

Unlike the techniques described in12, the approach pre-
sented in this paper is not constrained by the assumption of
distant light sources, allowing for more general lighting en-
vironments to be used. Shadows cast by the synthetic objects
are also accurate for all orientations and positions of receiver
surface. Finally, our algorithm is capable of trading accu-
racy against rendering time, enabling synthetic objects and
subjectively realistic shadows to be merged into background
images in real time.

3. Data Capture

Before we can describe our shadow generation algorithm,
we will first outline the techniques we use to capture the illu-
mination present in a real environment. Currently, we focus
on augmenting real images captured using standard digital
cameras. The examples shown in this paper are for single
images, but the shadow rendering algorithm we propose is
view-independent, and so could also be applied to moving
cameras. Image-based modelling is used to reconstruct an
approximate model of the background scene geometry11 and
high dynamic-range (HDR) photography6 is used to capture
images of a lightprobe5. The transfer function of the cam-
era is estimated, and HDR radiance information is mapped
outwards from the lightprobe onto the approximate scene
model. The scene geometry is then triangulated, and an ap-
proximate diffuse reflectance and radiance value calculated
for each triangular patch. Note that both primary and non-

primary sources of light are accounted for in the triangulated
scene model.

4. Overview

Shadow generation proceeds by first constructing a hierar-
chical subdivision of the line-space between all source and
receiver patches in the scene. This hierarchy is then used
to determine the sources of occluded radiance transfers be-
tween sources and receivers. Finally, shadows are gener-
ated by approximating the removal of each transfer from the
background photograph.

Construction of the line-space subdivision relies on the
patches in the environment being partitioned into two sets,
containing source and receiver patches respectively. Note
that a single patch may be classified as both a source and a
receiver, and hence may appear in both sets. Also, we make
no distinction between primary and non-primary sources of
light, and simply take every patch with non-zero radiance as
a potential member of the source set. In discussions below,
we refer to any patch with a non-zero radiance as a “source
patch”.

The receiver set contains all patches that are visible from
the point of view of the calibrated image camera. The source
set contains the patches that are considered to provide sig-
nificant contributions of light to the image. This set is built
by first sorting all patches in decreasing order of radiance.
The source set is defined as the first N patches in the sorted
list having a total power equal to a user-specified percentage
of the total power of all patches. This has the effect of re-
moving very insignificant sources of light from further con-
sideration. The percentage of radiance can be used to trade
accuracy against shaft hierarchy traversal time, but typically,
a value of around 70% has been found to be satisfactory in
all situations we have encountered, as this accounts for all
primary and important secondary sources of light.

5. Radiance Transfer Pre-computation

One important assumption we make during the shadow ren-
dering process is that the background environment remains
static. This allows us to pre-compute the radiance transfer
from each source patch to the vertices of patches contained
in the receiver set. Assuming each source patch emits light
diffusely, we calculate the form-factor between each source
patch and each receiver vertex4, 28, multiplied by an estimate
of the point-to-patch visibility obtained using ray-casting.
Because an approximate reflectivity for the vertex has al-
ready been estimated, the radiance transfer from one source
patch to each receiver vertex can be found, and stored with
the source patch. These radiance transfers will be used dur-
ing shaft-hierarchy traversal to identify shafts that represent
insignificant transfers of light, and also during shadow com-
positing to remove the contributions of light emitted by oc-
cluded sources from the background image. Although this

c© The Eurographics Association 2003.
221



Gibson et al. / Rapid Shadow Generation

is an O(n2) operation, radiance transfers can be calculated
quickly in practice, due to the small number of receiver ver-
tices and source patches.

6. Shaft-Hierarchy Construction

Before the shaft-hierarchy can be built, patches in the source
and receiver sets must be clustered together into separate
hierarchies. Patches in the receiver set are clustered using
top-down octree subdivision. Subdivision is halted once a
node contains less than a user-specified number of receiver
patches. Typically, we build the hierarchy with at most 8
patches in one leaf node, but this number can be increased
or decreased to trade accuracy against shaft-hierarchy traver-
sal time. For the source set, it is important that we have
fine-grain control over traversal of the source hierarchy (see
Section 6.1 for further details). Because of this, we clus-
ter patches in the source set using top-down binary KD-tree
subdivision, which results in a much deeper hierarchy than
with an octree. Subdivision is halted once a node contains
a single source patch. For non-leaf nodes in the source hi-
erarchy, the total radiance transfer from all child patches to
each receiver vertex is calculated, summed, and stored with
the node. This will be used in Section 8 when generating
shadows from non-leaf positions in the hierarchy.

Once the source and receiver hierarchies are in place, the
sets of line segments connecting nodes in the source and re-
ceiver hierarchies can be constructed using a hierarchy of
shafts15, 8. The purpose of the shaft hierarchy is to allow the
sources of light that are potentially occluded by an object to
be quickly identified.

Shaft-hierarchy construction proceeds in a relatively
straightforward manner, starting with a shaft linking the root
of the source hierarchy to the root of the receiver hierar-
chy. At each level the planes bounding the region of line-
space between patches in the source and receiver nodes are
stored with the shaft. Each shaft is recursively subdivided
until the leaves of both the source and receiver hierarchies
are reached. For each shaft, the total radiance transfer from
its source patches to each of its receiver patch vertices is cal-
culated. Recursion is terminated if it is found that the total
radiance contribution from the shaft’s source patches to each
of its receiver vertices is less than 2% of the total radiance
associated with the vertex. This avoids using many shafts to
store visually insignificant contributions of light17, which in
turn accelerates traversal of the shaft hierarchy and reduces
memory requirements.

The shaft hierarchy introduced in this paper has certain
similarities to that proposed by Drettakis and Sillion8. The
main difference between the two approaches is that our hier-
archy is only used to store a coarse representation of existing
light transport paths in order to identify the source patches
that are potentially affected by a moving object. Once these
sets of patches have been identified, shadow mapping hard-
ware is used to resolve the fine-grain occlusions of light (see

Section 7). Because we are encoding an existing static light-
ing solution, we are also able to remove shafts that trans-
fer insignificant contributions of energy. This is in contrast
to the hierarchy proposed by Drettakis and Sillion, which is
used to encode the complete set of light transport paths in an
environment. As will be demonstrated later, this separation
of coarse and fine-level evaluation allows our shaft hierar-
chy to be constructed very quickly using a small amount of
memory (see Section 9).

6.1. Hierarchy Traversal

In order to augment an image with shadows cast by a syn-
thetic object, the sources of light occluded by the object must
be rapidly identified. The shaft hierarchy described above is
used to perform this task, and in this section we outline how
a list of potentially occluded source patches may be gener-
ated.

Given the bounding box of a synthetic object at one par-
ticular instance in time, we are able to quickly identify the
set of shafts that intersect this box and are therefore poten-
tially occluded by the object. This traversal of line-space is
done by visiting each node of the shaft-hierarchy recursively,
starting at the root. An intersection test is applied between
the shaft s and the object’s bounding box15. If the box does
not intersect s, further traversal of the portion of line-space
associated with the shaft can cease. Alternatively, if an in-
tersection occurs, the test is applied recursively to each of
s’s children. If s is a leaf shaft then the source patch p as-
sociated with s is added to a list. p is then tagged with a
frame-number counter that is incremented after every frame
is rendered. As further source patches are found their counter
tags are checked against the current frame number to make
sure each patch is not added to the list multiple times. Once
traversal of the shaft-hierarchy has been completed, we are
left with a list of source patches that may cast shadows from
the synthetic object (the source list). Similarly, by placing
the receiver patches associated with the leaf shafts in a re-
ceiver list, we are also able to identify the regions of the
scene that will potentially receive a shadow cast by the syn-
thetic object.

The shadow compositing algorithm described in the next
section generates a single hard shadow for each of these
source patches, blending them together to form an approx-
imation to the correct shadow. Typically, the time required
to do this will exceed the amount of time the user is willing
to spend generating each frame. For this reason, our render-
ing algorithm is able to use the source hierarchy to trade ac-
curacy against frame-rate and generate single hard shadows
from groups of source patches in order to render a single
frame within the available time. The mechanisms by which
this is achieved will be described in Section 8.

The memory requirements and time required to traverse
line-space depend on the complexity of both the source and

c© The Eurographics Association 2003.
222



Gibson et al. / Rapid Shadow Generation

receiver hierarchies. As mentioned above, we use an octree
subdivision and large leaf size for the receiver hierarchy, and
deeper KD-tree subdivision with a small leaf size (i.e. a sin-
gle patch) for the source hierarchy. The octree subdivision
of receivers results in a broad but relatively shallow receiver
hierarchy, meaning that large regions of line-space may be
quickly removed from consideration, and traversal to the
leaf nodes occurs rapidly. For the source hierarchy, however,
more fine-grain traversal is required in order to meet the re-
quired frame rate. Because subdivision of a binary KD-tree
node only increases the total number of leaf nodes by one,
this structure is used to store the source patch hierarchy.

7. Shadow Compositing

The process of compositing shadows into the background
image occurs after the synthetic objects have been shaded
and depth composited with the scene model. The overall ap-
proach we take is to generate a shadow-map for each patch
in the source list, and use this shadow-map as a mask to re-
move the corresponding contribution of light from the back-
ground image in regions where the source is occluded from
receivers by the synthetic object. This process is repeated for
each source patch, blending multiple shadows into the back-
ground image and results in a subjectively realistic repre-
sentation of the real shadow. By using facilities available on
modern graphics hardware, the generation of these shadow-
maps and the removal of light contributions from the back-
ground image can be done quickly enough to allow frames
to be generated at interactive rates. In the following discus-
sion we will assume that we are generating a single shadow
from each patch in the source list. In Section 8 we will show
how this assumption may be lifted, allowing the overall ren-
dering speed and quality to be increased or decreased. The
algorithm described here is a modification of the differential
rendering algorithm introduced by Debevec5, enabling us to
work with standard low dynamic-range frame buffers found
in commonly available graphics hardware.

The differential rendering algorithm introduced by De-
bevec describes how two synthetic images of a scene may
be used to compute the changes in a background photograph
caused by the introduction of synthetic objects. Given a ren-
dered image Iob j , containing the synthetic objects and scene
geometry illuminated by the reconstructed lighting data, and
a second image Inoob j that does not contain the synthetic ob-
jects, the difference between these two images, Iε, is sub-
tracted from the background photograph Ib:

I f inal = Ib − Iε = Ib − (Inoob j − Iob j) (1)

in order to generate a final image I f inal that contains the cor-
rect shadowing effects. Wherever Iob j is darker than Inoob j
(i.e. the areas where the synthetic object cast a shadow), light
is subtracted from the background image accordingly.

More specifically, consider a pixel in the image, and
a point x which corresponds to the nearest surface seen

1. Pre-process:
For each source patch j

For each receiver vertex i
Calculate Li j

2. Repeat for each frame:
Render the background image
Render the synthetic objects
For each source patch j

Enable shadow mapping to multiply by Mi j
Subtract contribution from j from the frame-buffer
by rendering the receiver mesh with vertex colours
set to Li j

Figure 2: Two stage compositing process for differential shadow
rendering.

through that pixel. The adjustment εx that must be subtracted
from the radiance associated with the pixel is simply:

εx =
N−1

∑
j=0

Lx j −
N−1

∑
j=0

Lx jVx j =
N−1

∑
j=0

Lx jMx j (2)

where the summation is over all source patches j = 0 . . .N−

1, Lx j is the unoccluded radiance transferred from source j
to x and then reflected at x towards the camera, and Vx j is
the visibility of j with respect to x, i.e. 0 ≤ Vx j ≤ 1, where
Vx j = 0 if the transfer is completely occluded by a synthetic
object, and 1 if it is completely visible. Defining a new term,
Mx j = 1−Vx j , allows the adjustment to be calculated using a
single summation, where Mx j represents an occlusion mask,
which varies between 1 when i is completely occluded from
j , and 0 when it is completely visible.

In order to apply these adjustments to a background im-
age, we assume that the background scene is static, and sep-
arate the term inside the summation in Equation 2 into two
parts: Lx j which can be pre-computed for each x and j, and
Mx j which depends on the position of the dynamic synthetic
objects.

In order to execute this algorithm at rates fast enough for
interactive applications, we take the basic approach of per-
forming the image generation and subtraction operations in
Equation 1 using graphics hardware. In the following dis-
cussion, we assume that the graphics hardware and frame-
buffer are able to process HDR data. Once the basic algo-
rithm is described, extensions that allow us to work with low
dynamic-range (LDR) data will be presented in Section 7.1.
Facilities to perform these LDR operations are available on
NVIDIA GeForce3/4 graphics hardware, using extensions to
OpenGL 1.2.

We first assume that the contribution of a single source
patch j to each scene point x is smoothly varying, allow-
ing us to store Li j for each j at the vertices i of patches in

c© The Eurographics Association 2003.
223



Gibson et al. / Rapid Shadow Generation

the receiver set. We let the graphics hardware linearly inter-
polate the values between each receiver vertex. Differential
rendering of shadows into a background image can then be
performed using the two-stage process presented in Figure 2.
Note that we have explicitly separated the calculation of Mi j
from the subtraction of Li j . This is done because of the dif-
ferent rendering techniques are used to execute each loop:
The first is evaluated using hardware shadow-mapping, ap-
proximating Mi j at each pixel in the image using binary visi-
ble/invisible values. Subtractive blending is then used during
the second loop, and the receiver set is drawn with the colour
of each vertex i set to Li j . Texture combiners are set to use
the shadow-map as a mask, simulating the multiplication by
Mi j .

7.1. Shadow Compositing using Graphics Hardware

The discussion so far has only considered HDR represen-
tations of light where, assuming access to a floating-point
frame buffer, we can operate entirely on floating-point ra-
diance values and map back to pixel intensities as a post-
process. Complications occur, however, when we try to ap-
ply differential rendering algorithms to LDR images, as used
by most digital cameras and graphics hardware. Most impor-
tantly, for the background image we wish to augment, the
relationship between high and low dynamic-range represen-
tations of light is non-linear. Ideally we would like to per-
form all operations using HDR data and apply a non-linear
tone-map after shadow compositing:

I f inal = T (L f inal) = T (Lb −Lε)

where I = T (L) is the tone-map transforming radiance into
pixel colours. Unfortunately, due to the LDR nature of the
frame-buffer we must operate entirely with LDR data.

By letting the graphics hardware interpolate between ver-
tices in the receiver set, we can reduce the problem to one
of performing differential rendering at the receiver vertices
themselves. We will denote the desired HDR differential ren-
dering process at a vertex i as:

I f inali = T (Li −
N−1

∑
j=0

Li jMi j)

where Li represents the radiance obtained from the image at
the pixel location associated with vertex i. Define a new in-
tensity transfer Si j for each pair of a vertex i and source patch
j. These intensity transfers are LDR equivalents of the radi-
ance transfers Li j in Equation 2. We wish to subtract these
intensity transfers from the LDR frame-buffer intensity Ii so
that the overall result is equivalent to when HDR operations
are used:

I f inali = Ii −
N−1

∑
j=0

Si jMi j (3)

Because we will be removing these contributions from the

0

40

80

120

160

200

0 5 10 15 20 25 30 35 40 45 50

P
ix

el
 In

te
ns

ity

Passes

Intensity Change

0
5

10
15
20
25
30
35

0 5 10 15 20 25 30 35 40 45 50

E
rr

or

Occluded Sources

50%/50%

0
5

10
15
20
25
30
35

0 5 10 15 20 25 30 35 40 45 50

E
rr

or

Occluded Sources

100%

0
5

10
15
20
25
30
35

0 5 10 15 20 25 30 35 40 45 50

E
rr

or

Occluded Sources

75%/25%

Figure 3: The reduction in frame-buffer intensity as increasing
number of shadow passes are applied (top-left), and the error (in
pixel colour) caused by the assumption that all patches are occluded
in two equally-sized sets (top-right). Errors for two sets of different
sizes are shown below (bottom row).

frame-buffer using multiple rendering passes, and we do not
know the correct values for Mi j , Equation 3 implies that:

Sik = Ii −T (Li −
k

∑
j=0

Li jMi j)−
k−1

∑
j=0

Si jMi j (4)

must hold for each 0 ≤ k < N. Unfortunately, we are un-
able to pre-compute the intensity transfers exactly from this
relation, because the values of Mi j are not known until ren-
dering occurs. The non-linearity of T () also means that the
final result is dependent on the order the source patches are
considered. We can, however, generate a useful approxima-
tion by assuming that each source patch is either entirely
visible or entirely invisible. Initially, we don’t know which
of the source patches will be visible and which will be invis-
ible, but if we assign estimates to each source patch then we
can calculate Si j and remove the correct contribution from
the background image. If the visibility estimates were cor-
rect, this should result in a correct final image, assuming
the order that the source patches are considered remains the
same. In practice, the order is unlikely to remain fixed, but if
we choose to order patches from brightest to dimmest when
evaluating Equation 3, and ensure we sort any later sets of
source patches in that same order, the approximation error
will be reduced.

Without knowing which patches are actually occluded,
we can generate an approximation by randomly partition-
ing the source patches into two separate sets. By assuming
that when all the patches in the first set are occluded those in
the second remain visible, we can fix the values of Mi j and
calculate intensity transfers for the first set of patches using
Equation 4. Similarly, assuming that when the patches in the
second set are all occluded, those in the first set are visible,
we can determine the remaining intensity transfers.

c© The Eurographics Association 2003.
224



Gibson et al. / Rapid Shadow Generation

Figure 3 illustrates how this approximation affects the fi-
nal shadow intensity for differently sized sets. The graph in
the top-left shows the typical reduction in Ii that occurs af-
ter each successive rendering pass using a set of 50 random
source patches. The remaining graphs plot the error found
when assuming that all source patches are occluded in dif-
ferently sized sets. Intensity transfers were calculated as de-
scribed above. Varying numbers of P (0 ≤ P ≤ 50) source
patches were then randomly selected as being actually oc-
cluded, simulating the evaluation of Mi j using shadow-
mapping (plotted on the horizontal axis of each graph). For
each P, 10000 trials were run over 4 datasets, and P random
patches were selected for each trial. The difference between
the left and right-hand sides of Equation 3 was then mea-
sured, with M· j = 1 for the P random patches, and 0 other-
wise. The graph shows the variance of the error in red green
and blue pixel intensities.

For each set size, the error is insignificant for small P. This
is because subtracting a small number of incorrect intensity
transfers has little effect on the overall image. Similarly, the
error is also small for values of P that match the assumption
being made (e.g. the error is small for P = 25 when assuming
an 50%/50% split). For intermediate values of P, the error
rises as increasing numbers of incorrect intensity transfers
are subtracted from the image.

In practice, we have found that for receivers in the vicin-
ity of synthetic objects, typical occlusion rates run at around
30−50% for the scenes we have examined, and only rarely
rise above 75%. For this reason we have used the 50%/50%
split in all further examples because this split has the small-
est overall error in the 30 − 50% region (see the top-right
graph in Figure 3).

7.1.1. Calculating Intensity Transfers

Intensity transfers can be calculated very quickly for each
frame before the shadows are composited into the back-
ground image. Before these intensity transfers can be deter-
mined, the patches in the source list for the current frame
are sorted in decreasing order of average radiance transfer
to patches in the receiver set. The average transfer of ra-
diance from each source patch can easily be pre-computed
and stored with the source hierarchy because we assume
that light reflected off the synthetic objects does not affect
the overall illumination in the scene. The transfers can then
be calculated using the algorithm presented in Figure 4. For
each receiver vertex, V1 and V2 are initialised to the total
radiance gathered from all source patches and reflected at
the vertex towards the camera. These two radiance values
will be used to calculate the intensity transfers under the as-
sumption that the source patches are occluded in two equally
sized sets, as described above. These initial radiance values
are mapped to pixel colours C1 and C2 using the calibrated
camera response function T ().

A loop is then made over all patches in the source list that

1. Pre-process:
Sort source patches in decreasing order of transfer

2. For each receiver vertex i:
V1 = V2 = Li
C1 = C2 = T (Li)
For each contributing source patch j:

if j is even
V1 = V1 −Li j
C′

1 = T (V1)
Si j = C1 −C′

1
C1 = C′

1
else

V2 = V2 −Li j
C′

2 = T (V2)
Si j = C2 −C′

2
C2 = C′

2
endif

Figure 4: Pseudo-code for estimating intensity transfers, executed
before drawing each frame.

can contribute radiance to the vertex. In order to quickly sim-
ulate a random assignment of patches to sets, we assign each
patch according to a randomly generated id number between
0 and N − 1. For even numbered ids, the pre-calculated ra-
diance transfer from the source to the receiver is subtracted
from V1, and the radiance is then transformed by T () into a
pixel colour C′

1. The intensity transfer Si j is then calculated
as the difference between C1 and C′

1. C1 is set equal to C′
1

and the process repeated for the next source patch. For odd
numbered ids the calculations are performed using V2 and
C2, so as the source list is traversed, two independent radi-
ance values are used to estimate the intensity transfers. Each
of these independent values corresponds to one of the sets
we made in the occlusion assumption described above.

7.2. Shadow-Map Generation

As a pre-process, simplified representations of all synthetic
objects are generated using the techniques described in10,
each containing between 100 and 500 triangles. These sim-
plified objects are used during shadow-map rendering, and
shadow-map resolution is also limited to 256x256 pixels.
This greatly accelerates rendering speed without visibly re-
ducing image quality.

Once the intensity transfers have been estimated for the
current frame, the second inner-loop of the algorithm pre-
sented in Figure 2 can be executed, with Li j replaced by the
transfers Si j . The receiver set is drawn with vertex colours
set to Si j , and graphics hardware used to interpolate be-
tween these values. A shadow map is then generated for each
source j, allowing us to find M· j . This is done by first ini-
tialising the OpenGL projection and model-view matrices so

c© The Eurographics Association 2003.
225



Gibson et al. / Rapid Shadow Generation

(a) (b)

11 2

3 4 5

2

3 4 5 66

Figure 5: (a) Traversal of the shaft-hierarchy identifies 5 out of
6 potentially occluded source patches (marked in blue). (b) The af-
fected portions of the source hierarchy (shown in green)are then
identified by pushing a frame identification tag up towards the root
node.

the synthetic object is contained entirely within the shadow-
map, as seen from the source patch. The simplified repre-
sentation of the synthetic object is then rendered into the
depth buffer to produce the shadow-map. Hardware shadow-
mapping, texture combiners, and blending operations are ini-
tialised so that when the geometric representation of the re-
ceiver set is drawn, the vertex colours (Si j) are multiplied
by M· j , and the product is subtracted from the background
colour buffer. If required, self-shadows cast onto the syn-
thetic objects can also be generated by approximating the in-
tensity transfer Si j from a source patch to the vertices of the
object, and then rendering the object with shadow-mapping
and blending enabled.

8. Controlling Frame-Rate

In the previous section we described how a shadow from
each source patch could be generated and composited into
a background photograph using commonly available graph-
ics hardware. In interactive settings, the time required to do
this for all source patches will often exceed the time a user
is willing to spend generating a single frame. In these situa-
tions, what is required is a trade-off between overall shadow
quality and rendering cost, and this can be achieved by gen-
erating shadow-maps from non-leaf nodes in the source hi-
erarchy that was described in Section 6.

Figure 5(a) shows a typical source hierarchy, with a root
node at the top and 6 source patches at the leaves. Assume,
for example, that during construction of the source set, N = 5
out of the 6 source patches (shown in blue) have been iden-
tified as being potentially occluded by a synthetic object.
Assuming that we are unable to generate shadows from all
5 sources due to frame-rate constraints, we need to find a
representative source set that encapsulates the effect of all
source patches and yet can be processed in the available
time. We can do this very quickly before each frame is ren-
dered using the algorithm described in this section.

Building the representative source set starts by pushing

(d)

2 2

C D

C D

C

C

A

(b)(a)

2 BA

(c)

C D

11

3 4

2

365

2

4

11 2

3 4

2

3 465 5 6

5 6

5 6

BB

Figure 6: A set of n = 4 source clusters are identified that represent
the combined effect of all 6 potentially occluded source patches.
Starting at the root node (a), the affected portion of the hierarchy
is traversed (b), (c), and (d) until the required number of source
clusters are identified (yellow).

the current frame number from each potentially occluded
source patch up towards the root of the hierarchy. This al-
lows the branches of the hierarchy containing these patches
to be identified and marked (shown in green in Figure 5(b)).
Starting with the root, we wish to build a list of n < N nodes,
where each node can be either a leaf of the source hierarchy
or an intermediate node representing the combined effect of
several leaves.

Figure 6(a) shows the start of the construction process for
n = 4 nodes. While the target number of nodes has not been
reached, the node in the list which transfers the largest av-
erage amount of radiance to patches in the receiver set is
removed from the list. This is done very quickly by stor-
ing the list using a binary tree, sorted by the average ra-
diance transfer. Initially, as it is the only node in the list,
the root node is removed. The hierarchy is then traversed by
one level and the node’s immediate children in the marked
portions of the hierarchy are identified and added to the list
(source patch “2” and node “B”). This process is repeated
until the required number of patches or nodes is found. Fig-
ures 6(b) and (c) show further traversals, until finally, in (d)
we reach the target of n = 4 nodes. Note that although we
have chosen fewer than 5 nodes, the energy from all poten-
tially occluded source patches is still accounted for, because
the radiance transfer from node “C” represents the combined

c© The Eurographics Association 2003.
226



Gibson et al. / Rapid Shadow Generation

Figure 7: Examples of interaction between a synthetic object and
real environment, generated at around 15 frames-per-second using
our system. The left-hand column illustrates the reduction in shadow
intensity that occurs as the synthetic object is raised off the ground.
The sequence in the right-hand column shows how real and virtual
shadows can interact as the synthetic object is moved underneath
the real desk.

effect of source patches “3” and “4”. When rendering a sin-
gle shadow-map from a cluster of sources, such as node “C”,
the origin of the source is chosen to coincide with the centre
of the patch that contributes the most energy to the receivers.

9. Results

The algorithm described in this paper has been implemented
using OpenGL on a 2.5 GHz Pentium 4 PC running Mi-
crosoft Windows XP and equipped with a NVIDIA GeForce
4 Ti4600 graphics card. For all examples shown, synthetic
objects have been shaded using a combination of an irradi-
ance volume14 and dynamic environment-maps for specular
reflections. The irradiance-volume uses spherical harmonics
to represent irradiance25, greatly reducing the computation
and storage requirements.

Examples showing interactive object movement are given
in Figure 7. All images are snapshots from an interactive ses-
sion rendered at approximately 15 frames-per-second, using

50 blending passes. Of this, the majority of the time was
spent generating and blending shadows into the background
image, and the time required to shade each object was neg-
ligible. The left-hand column shows an example where the
user is lifting a box off the floor of the scene. Because the
intensity of the shadows blended into the background im-
age are based on the actual amount of light transferred from
source to receiver, the reduction in intensity of the synthetic
shadow is correctly modelled as the object is raised off the
floor. The right-hand column shows a different kind of in-
teraction between a synthetic object and the environment,
where the sphere moves under a real table. Notice the dark-
ening of the object and merging of the synthetic shadow with
the real shadow due to the fact that the desk has been in-
cluded in the geometric scene model. Further examples are
given in the accompanying video material.

Figure 8 compares rendering quality against ray-traced
and photographic references for different lighting environ-
ments. In each row, an image produced using our interactive
system is shown on the left, a ray-traced image generated
using a HDR differential rendering algorithm5 is shown in
the middle, and a photograph of a real object in the scene
is shown on the right. The left-hand images were all gener-
ated using 50 blending passes, and were rendered at 14, 12
and 16 frames-per-second respectively. For comparison, the
ray-traced images in the middle column each took several
hours to generate using an un-optimized Monte-Carlo ray-
tracer. Overall, the shadows generated using our algorithm
are subjectively very similar to both the ray-traced and pho-
tographic references.

Note that the differences in shading of the synthetic ob-
jects in these examples are due to the fact that we did not ac-
curately measure or model the reflectance properties of the
real object. As such, the shading is only an approximation
and these images are only intended to indicate the quality of
the shadows that our rendering algorithm can generate.

The time spent constructing the patch and shaft hier-
archies for these examples was relatively small. The first
example in Figure 8 required around 30 seconds of pre-
processing time, and produced a shaft hierarchy with 47,000
leaf nodes occupying just over 9 Mb of memory. The sec-
ond and third examples only required 15 seconds of pre-
processing, generating 102,000 and 64,000 leaf shafts re-
spectively. Typically, each scene contained between 1000
and 2000 patches, and between 10 and 40 milliseconds was
required to traverse the shaft hierarchy and generate a repre-
sentative source set for each frame.

The trade-off that can be made between frame rendering
time and shadow accuracy is illustrated under two different
lighting environments in Figure 9. On the top row, a 500 tri-
angle sphere was rendered into a background environment
using different numbers of blending passes. For each num-
ber of passes, the algorithm described in Section 8 was used
to determine a representative set of source nodes, and a sin-

c© The Eurographics Association 2003.
227



Gibson et al. / Rapid Shadow Generation

gle shadow-map was generated for each node. From left to
right, the Figure shows frames generated with 10, 20 and 50
passes. These were rendered at rates of 35, 25 and 14 frames-
per-second. For comparison, a ray-traced image was also
produced in approximately 1 hour and is shown on the right.
Note that because the image on the far-left was generated
with a smaller number of blending passes, the hard-edged
shadows are clearly visible. Our algorithm is, however, able
to maintain the same overall intensity of the shadow as in
the ray-traced image (see Section 7.1). As the number of
blending passes increases, the hard edges of the individual
shadow-maps are less visible and the overall result becomes
an increasingly better approximation to the ray-traced ref-
erence image on the far-right. Similar images for a second
lighting environment are given on the bottom row. Frame
rendering rates for this example were 27, 18 and 9 frames-
per-second respectively, with the ray-traced image requiring
over 1.5 hours to render.

10. Conclusions and Future Work

In this paper we have presented a new shadow render-
ing algorithm suitable for photorealistic Augmented Reality,
where shadows cast by synthetic objects are composited into
a background image fast enough to allow interactive object
manipulation. Our algorithm combines a shaft-based hierar-
chical data structure that allows the rapid identification of the
sources of light that are occluded by a synthetic object, with
a technique that allows soft shadows to be approximated us-
ing multiple shadow-maps and blended into the background
image using commonly available computer graphics hard-
ware.

We have shown that we can generate subjectively realistic
augmented images at interactive rates for a variety of differ-
ent real-world lighting environments including both interior
and natural illumination. Our algorithm is also capable of
trading image accuracy against frame-rate by approximating
shadows using different numbers of shadow-maps. As the
number of shadow blending passes (and hence frame gener-
ation time) increases, the result rapidly approaches the qual-
ity obtained using a non-real-time differential rendering al-
gorithm. Future work includes a more formal evaluation of
the perceptual fidelity of the images, when compared to both
photographs and real environments.

There are currently limitations in our system on the types
of light sources that can be modelled. For example, we are
unable to render shadows cast by direct sunlight, or other
types of directional illumination. There is nothing inherent
in the rendering algorithm preventing this, but our current
methods of data capture (Section 3) are not able to distin-
guish between directional and diffuse sources of light in the
scene. We also assume that all surfaces onto which shad-
ows are cast are diffuse, although this is not a fundamen-
tal limitation of the algorithm. Because we pre-compute the
radiance reduction caused by the occlusion of each source

of light (Section 5), a view-dependent evaluation of this
could account for non-diffuse reflectance properties. How-
ever, such extensions are left as future work, mainly be-
cause of the complexity of recovering non-diffuse surface
reflectance data for real-world environments35, 1.

Although we have presented examples showing augmen-
tation of static images, our shadow generation algorithm is
not view-dependent in any way, and the techniques presented
in this paper could also be applied to moving cameras. Fi-
nally, the overall rendering quality will be enhanced by the
appearance of floating-point graphics pipelines in the next
generation of computer graphics hardware. This will reduce
rounding errors that can sometimes occur when blending
large numbers of very faint shadows into the background im-
age.

Acknowledgements

We would like to acknowledge the European Union for fund-
ing this work, as part of the ARIS project (IST-2000-28707),
which is examining the application of Augmented Reality
to interior design. We are also grateful to the other ARIS
project partners for their support and assistance (Fraun-
hofer IGD, Intracom, INRIA-Loria, University of Bristol,
and Athens Technology Center). The bunny model used in
Figure 7 is available from the Stanford 3D Scanning Reposi-
tory. Finally, we would like to thank the anonymous review-
ers of a previous version of this paper for their helpful com-
ments and suggestions.

References

1. Samuel Boivin and André Gagalowicz. Image-based render-
ing of diffuse, specular and glossy surfaces from a single im-
age. In Proceedings of ACM SIGGRAPH 2001, Computer
Graphics Proceedings, Annual Conference Series, pages 107–
116, August 2001.

2. Stefan Brabec and Hans-Peter Seidel. Single sample soft shad-
ows using depth maps. In Proc. Graphics Interface, pages
219–228, May 2002.

3. Lynne S. Brotman and Norman I. Badler. Generating soft
shadows with a depth buffer algorithm. IEEE Computer
Graphics & Applications, 4(10):71–81, October 1984.

4. Michael F. Cohen and John R. Wallace. Radiosity and Real-
istic Image Synthesis. Academic Press Professional, Boston,
MA, 1993.

5. Paul Debevec. Rendering synthetic objects into real scenes:
Bridging traditional and image-based graphics with global il-
lumination and high dynamic range photography. In Proceed-
ings of SIGGRAPH 98, Computer Graphics Proceedings, An-
nual Conference Series, pages 189–198, Orlando, Florida, July
1998.

6. Paul E. Debevec and Jitendra Malik. Recovering high dy-
namic range radiance maps from photographs. In Proceedings
of SIGGRAPH 97, Computer Graphics Proceedings, Annual

c© The Eurographics Association 2003.
228



Gibson et al. / Rapid Shadow Generation

Conference Series, pages 369–378, Los Angeles, California,
August 1997.

7. George Drettakis, Luc Robert, and Sylvain Bougnoux. Inter-
active common illumination for computer augmented reality.
In Proc. Eurographics Rendering Workshop 1997, pages 45–
56, St. Etienne, France, June 1997.

8. George Drettakis and François X. Sillion. Interactive update
of global illumination using a line-space hierarchy. In Pro-
ceedings of SIGGRAPH 97, Computer Graphics Proceedings,
Annual Conference Series, pages 57–64, Los Angeles, Cali-
fornia, August 1997.

9. Alain Fournier, Atjeng S. Gunawan, and Chris Romanzin.
Common illumination between real and computer generated
scenes. In Graphics Interface ’93, pages 254–262, May 1993.

10. Michael Garland and Paul S. Heckbert. Surface simplification
using quadric error metrics. In Proceedings of SIGGRAPH 97,
Computer Graphics Proceedings, Annual Conference Series,
pages 209–216, August 1997.

11. Simon Gibson, Roger J. Hubbold, Jon Cook, and Toby L. J.
Howard. Interactive reconstruction of virtual environments
from video sequences. Computers & Graphics, 27(3), April
2003.

12. Simon Gibson and Alan Murta. Interactive rendering with real
world illumination. In Rendering Techniques 2000: 11th Euro-
graphics Workshop on Rendering, pages 365–376, June 2000.

13. Xavier Granier and George Drettakis. Incremental updates for
rapid glossy global illumination. Computer Graphics Forum,
20(3):268–277, 2001.

14. Gene Greger, Peter Shirley, Philip M. Hubbard, and Donald P.
Greenberg. The irradiance volume. IEEE Computer Graphics
& Applications, 18(2):32–43, March-April 1998.

15. Eric Haines. A shaft culling tool. Journal of Graphics Tools,
5(1):23–26, 2000.

16. Eric Haines and Tomas Möller. Real-time shadows. In Game
Developers Conference, March 2001.

17. Selig Hecht. The visual discrimination of intensity and the
weber-fechner law. Journal of General Physiology, 7, 1924.

18. Paul S. Heckbert and Michael Herf. Simulating soft shadows
with graphics hardware. Technical Report CMU-CS-97-104,
CS Department, Carnegie Mellon University, January 1997.

19. Helen H. Hu, Amy A. Gooch, William B. Thompson, Brian E.
Smits, John J. Rieser, and Peter Shirley. Visual cues for immi-
nent object contact in realistic virtual environments. In IEEE
Visualization 2000, pages 179–185, October 2000.

20. Alexander Keller. Instant radiosity. In Computer Graphics
(ACM SIGGRAPH ’97 Proceedings), volume 31, pages 49–
56, 1997.

21. Lutz Latta and Andreas Kolb. Homomorphic factorization
of brdf-based lighting computation. ACM Transactions on
Graphics (Proceedings of SIGGRAPH 2002), 21(3):509–516,
July 2002.

22. Céline Loscos, Marie-Claude Frasson, George Drettakis,
Bruce Walter, Xavier Granier, and Pierre Poulin. Interactive

virtual relighting and remodeling of real scenes. In Proc. Eu-
rographics Rendering Workshop 1999, Granada, Spain, June
1999.

23. Steven Parker, Peter Shirley, and Brian Smits. Single sam-
ple soft shadows. Technical Report UUCS-98-019, Computer
Science Department, University of Utah, October 1998.

24. Paul Rademacher, Jed Lengyel, Ed Cutrell, and Turner Whit-
ted. Measuring the perception of visual realism in images. In
Proc. 12th Eurographics Workshop on Rendering, pages 235–
248. Eurographics, June 2001.

25. Ravi Ramamoorthi and Pat Hanrahan. An efficient representa-
tion for irradiance environment maps. In Proceedings of ACM
SIGGRAPH 2001, Computer Graphics Proceedings, Annual
Conference Series, pages 497–500, August 2001.

26. Ravi Ramamoorthi and Pat Hanrahan. Frequency space envi-
ronment map rendering. ACM Transactions on Graphics (Pro-
ceedings of SIGGRAPH 2002), 21(3):517–526, July 2002.

27. Imari Sato, Yoichi Sato, and Katsushi Ikeuchi. Acquiring
a radiance distribution to superimpose virtual objects onto a
real scene. IEEE Transactions on Visualization and Computer
Graphics, 5(1):1–12, January - March 1999.

28. Francois Sillion and Claude Puech. Radiosity and Global Il-
lumination. Morgan Kaufmann, San Francisco, CA, 1994.

29. Peter-Pike Sloan, Jan Kautz, and John Snyder. Precom-
puted radiance transfer for real-time rendering in dynamic,
low-frequency lighting environments. ACM Transactions on
Graphics (Proceedings of SIGGRAPH 2002), 21(3):527–536,
July 2002.

30. Cyril Soler and François X. Sillion. Fast calculation of soft
shadow textures using convolution. In Proceedings of SIG-
GRAPH 98, Computer Graphics Proceedings, Annual Confer-
ence Series, pages 321–332, July 1998.

31. Parag Tole, Fabio Pellacini, Bruce Walter, and Donald P.
Greenberg. Interactive global illumination in dynamic scenes.
ACM Transactions on Graphics (Proceedings of SIGGRAPH
2002), 21(3):537–546, July 2002.

32. Leonard R. Wagner, James A. Ferwerda, and Donald P. Green-
berg. Perceiving spatial relationships in computer generated
images. In IEEE Computer Graphics and Applications, vol-
ume 21, pages 30–50, May 1992.

33. Lance Williams. Casting curved shadows on curved surfaces.
In Computer Graphics (Proceedings of SIGGRAPH 78), vol-
ume 12, pages 270–274, August 1978.

34. Andrew Woo, Pierre Poulin, and Alain Fournier. A survey of
shadow algorithms. IEEE Computer Graphics and Applica-
tions, 10(6):13–32, November 1990.

35. Yizhou Yu, Paul Debevec, Jitendra Malik, and Tim Hawkins.
Inverse global illumination: Recovering reflectance models of
real scenes from photographs. In Proceedings of SIGGRAPH
99, Computer Graphics Proceedings, Annual Conference Se-
ries, pages 215–224, Los Angeles, California, August 1999.

c© The Eurographics Association 2003.
229



Gibson et al. / Rapid Shadow Generation

Interactive Rendering Ray Traced Reference Photographic Reference

Figure 8: A comparison of image quality for three different scenes, containing both soft and harder-edged shadows cast by daylight and
artificial light sources. Snapshots from interactive sessions with our system are shown on the left, generated at (from top to bottom) 14, 12 and
16 frames-per-second respectively. Ray-traced reference images are shown in the middle column, and photographic references containing an
equivalent real object at approximately the same position are shown on the right. Further details are given in the text.

10 Passes 20 Passes 50 Passes Ray Traced Reference

Figure 9: This figure shows the trade-off between rendering speed and accuracy that is available with our system, for two different lighting
environments. From left to right, this figure presents snapshots from our system with shadows generated using 10, 20 and 50 blending passes.
These images were rendered at approximately 35, 25 and 14 frames per second for the top row, and 27, 18 and 9 frames per second for the
bottom row. For comparison, ray-traced reference images are shown on the far-right.

c© The Eurographics Association 2003.
314




