
Eurographics Symposium on Rendering 2003
Per Christensen and Daniel Cohen-Or (Editors)

Computer Generated Celtic Design

Matthew Kaplan and Elaine Cohen

University of Utah

Abstract
We present a technique for automating the construction of Celtic knotwork and decorations similar to those in
illuminated manuscripts such as the Lindisfarne Gospels. Our method eliminates restrictions imposed by previ-
ous methods which limited the class of knots that could be produced correctly by introducing new methods for
smoothing and orienting threads. Additionally, we present techniques for interweaving and attaching images to
the knotwork and techniques to encapsulate knot patterns to simplify the design process. Finally we show how
to use such knotwork in 3D and demonstrate a variety of applications including artwork and transforming the
designs into 3D models for fabrication.

Categories and Subject Descriptors (according to ACM CCS): I.3.0 [Computer Graphics]: General I.3.3 [Computer
Graphics]: Picture/Image Generation I.3.6 [Computer Graphics]: Methodology and Techniques

1. Introduction

Celtic decoration refers to abstract non-imitative artwork
originating with Celtic tribes dating from about 500 B.C.
One of the hallmarks of Celtic art is elaborate knotwork,
consisting of entangled threads which maintain a strict over-
under alternating pattern between every crossing of the
threads. This knotwork is analogous to closed loops of rope
that cross over and under one another, becoming entangled.
The loops of rope are called threads that, when entangled,
form the knot.

Although similar artwork has been found in many cul-
tures, the specific period of artwork whose style we wish to
reproduce is contained in the illuminated manuscripts of the
British Isles, such as the Lindisfarne Gospels, the Book of
Kells, the Book of Durrow and others, created between the
7th-9th centuries. It is in these works that Celtic art reached
its zenith, as shown in Figure 16 inset.

At present, Celtic artwork is enjoying a renaissance; its
popularity has manifested itself in design, fine arts, jew-
elry, body art, decoration of sculpture, and architecture. As
pointed out by Wong et al. 17 there has been little work in
the area of computer generated ornamentation despite the
fact that ornamentation has historically played a critical role
in architecture, decoration and art.

Because of the complexity of Celtic art, creating hand

drawn designs is tedious and time consuming and often re-
quires a significant amount of training to do well. Large de-
signs are difficult to change and experiment with since local
changes affect the entire knot. Our technique is presented as
a tool to design such artwork intuitively, quickly and eas-
ily. It augments human talents for design with a computers
skill at repetition and drudgery. It offers considerable time
savings over designing such decoration by hand and allows
users to experiment with global and local changes of both
style and form quickly. Automating the fabrication of such
knots for jewelry or decorative use also offers significant
time savings over crafting comparable objects by hand.

Our method offers the following contributions:

• We improve over prior automated methods by allowing
the creation of all possible Celtic knots based on planar
graphs (rather than just a limited subset based on grids).
Our method demonstrates how to construct such knots au-
tomatically, cleanly and without errors.

• We introduce techniques to automatically orient the
threads around any configuration of user defined break-
points or graph angles. This is one of the major improve-
ments over prior research which severely limited the class
of knots which could be correctly produced.

• We present the first method for computers that allows im-
ages to be interwoven and connected to the knot.

• We introduce several smoothing techniques to help draw

c© The Eurographics Association 2003.

http://www.eg.org
http://diglib.eg.org


M. Kaplan and E. Cohen / Computer Generated Celtic Design

the threads more “artistically” and “naturally” and show
how to stylize the threads.

• We show a new method of encapsulation and a back-
ground template builder to facilitate the design process.

• We show how to use Celtic knots in 3D by applying our
algorithms to 2D manifold meshes.

• Finally, we generalize the algorithms to support manufac-
turing physical models of the knots created with this pro-
gram.

2. Related Work

At some point after the 9th century the techniques used to
create Celtic art were lost. George Bain 1 reinvented many
of the artistic techniques necessary to create Celtic designs.
His son, Iain Bain 2, simplified his father’s methods to be
surprisingly algorithmic. His method was based on a tri-grid
system, which, while constrained by its inability to create
knots outside the basic grid pattern, produced beautiful re-
sults quickly and easily. Meehan has published a series of
books 11, 12, 13, 14 extending I. Bain’s work. Mercat 16 gave
rules for manually producing arbitrary knots by interpreting
a planar graph as the basis for the construction of the threads.

Mercat 15 and Sloss 19 created programs that allowed users
to create knots by connecting images of thread crossings.
Complexity was added to the knots by connecting more im-
ages to the knot set. The use of predefined images means that
these programs are restricted to a limited set of angles and
patterns with which to define threads. This does not repro-
duce the general knot algorithm presented by Mercat 16 but
rather a simple form of grid knot.

Glassner 5, 6, 7 showed how to compute threads, using
I.Bain’s method (as do 3, 8), that are useful as a guide for cre-
ating hand drawn artwork. He concluded that the computer
is not useful in automatically creating the knotwork because
a human is able to interpret the thread pattern much more
artistically, though he does show computer generated results
for grid patterns. Glassner’s technique required manual ad-
justment of curve drawing parameters in complex regions
to produce reasonable results. Recognizing the limitations
of the grid pattern, Glassner allowed the user to deform the
grid shapes in order to output a larger class of knots. Us-
ing the deformable grids, Glassner proposed using the output
only as a guide for hand drawn art. Glassner also showed 3D
knotwork by unfolding the sides of simple objects into 2D
objects and then refolding after the knot had been computed.
This created 3D knots in the shape of the original object, but
the results were not smooth. Moreover, his method seems
difficult to use for all but the simplest of objects. Several
knot programs such as those by Abbott 0 and Guionnet 9 use
the Mercat technique.

These programs all suffer from a concern raised by Glass-
ner: the inability of the computer to choose and draw a thread
smoothly and “artistically”. Previous work on graph based
systems were all able to correctly determine how to connect

the graph to form threads but were not able to contruct valid
or smooth threads in any but simple grid cases. The usage
of breakpoints (see section 3.6) changes the basic ordering
on the graph and is vital to creating visual interest in the
knot. In any but the simplest cases, previous programs failed
to correctly handle most configurations of breakpoints and
were not able to draw threads correctly around graph config-
urations whose angles weren’t explicitly hard coded into the
system. This is why Glassner proposes using the deformable
grids as only rough guides for hand drawn art. We have de-
veloped a general solution to this problem which works for
any graph configuration.

Many Celtic knot programs use the basic B-Spline curve
method to draw the threads, using the crossing locations
as control points for the thread curves. This is unsuitable
because splines are not able to direct threads correctly us-
ing only position information (see section 3.3). Interpolatory
spline methods may also introduce undulation artifacts into
the curve. To account for these problems, an elaborate series
of extra points are inserted for several predefined graph con-
figurations to straighten out the lines and to direct thethreads
around corners and breakpoints. They fail to correctly ori-
ent threads in any situation that does not fall into one of the
predefined cases. This results in an inability either to draw
straight, smooth lines with well formed graphs or to guide
threads correctly around angles or breakpoints that are not
predefined. Furthermore, threads may overlap other threads
in an incorrect manner and exhibit strange discontinuities
around sets of breakpoints and irregular graph structures. We
show solutions to these problems by using a variety of curve
smoothing and directing techniques that work for arbitrary
graphs.

Knot theory is an area of mathematics that deals with the
definition, structure, equivalence and minimization of knots.
Scharein 18 implemented a program for display and manipu-
lation of such knots. These results are not directly applicable
to Celtic knotwork because the minimization, optimal dis-
play and balancing of knots transform the basic visual struc-
ture of the knot and the position of its constituent elements,
a result that is unacceptable for our purposes.

3. Knotwork

The basic algorithm for artists as presented by Mercat 16 for
creating a Celtic knot is conceptually very simple and we
generalize it for our purposes:

Following algorithm 1 produces a complete three dimen-
sional Celtic knot. When viewed from above, the result can
be displayed in two dimensions. Figure 1 shows an example
of this process.

3.1. Defining a Graph

The power of the method presented by Mercat is that ev-
ery planar graph defines a knot. While methods based on

c© The Eurographics Association 2003.



M. Kaplan and E. Cohen / Computer Generated Celtic Design

The Mercat algorithm (Alg.1):
1. Define a planar graph.
2. Find the midpoint of each edge. Put crossings at each

midpoint.
3. Compute the threads that compose the knot by connect-

ing the crossings.
4. Inflate the threads.
5. Calculate the overlap order of the threads and offset their

height values based on the overlap order.

(a) Define Graph (b) Crossings (c) Define
Threads

(d) Inflate (e) Overlap

Figure 1: The knot algorithm

grid systems can be used to define a large number of knots,
they are constrained by the basic topology of grids. A graph-
based system can produce all possible knots. While it may
seem counterintuitive to use graphs to define knotwork, sim-
ple geometric patterns often produce knots of striking com-
plexity. Also, the underlying graph structure provides an
easy, intuitive method for altering thread order via break-
points, which we discuss in section 3.6

In our system, graph edges are represented by strokes that
are drawn by the user and vertices are represented by junc-
tions. Users are allowed to draw strokes with the mouse us-
ing either free-form or straight line styles. The system sep-
arates strokes where they intersect and culls tiny overlaps
that occur due to the hand drawn nature of the strokes. Next,
a set of junctions is automatically created at the endpoints
of every stroke. A junction records a location, the strokes
that have endpoints near that location and the counterclock-
wise ordering in which the strokes connect to that junction.
Junctions that are close to one another are combined. This
ensures that a user doesn’t have to draw a graph “perfectly”;
stroke endpoints just need to be close. We have defined func-
tions that automatically produce several types of graphs such
as rectangular grids, hexagonal grids and circular patterns.

3.2. Midpoint Information

The threads will cross each other at the midpoint of each
stroke. We identify four vectors that lie at 45 degree angles
to the stroke, based on the stroke and the stroke normal and

�����������������������������������������������������������������������������������������������������������������������������������������������������������������
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	


�
�
�
�
�
�
�
�
�
�


�
�
�
�
�
�
�
�
�
�


�
�
�
�
�
�
�
�
�
�


�
�
�
�
�
�
�
�
�
�


�
�
�
�
�
�
�
�
�
�


�
�
�
�
�
�
�
�
�
�


�
�
�
�
�
�
�
�
�
�


�
�
�
�
�
�
�
�
�
�


�
�
�
�
�
�
�
�
�
�


�
�
�
�
�
�
�
�
�
�


�
�
�
�
�
�
�
�
�
�


�
�
�
�
�
�
�
�
�
�


�
�
�
�
�
�
�
�
�
�


�
�
�
�
�
�
�
�
�
�


�
�
�
�
�
�
�
�
�
�


�
�
�
�
�
�
�
�
�
�


�
�
�
�
�
�
�
�
�
�


�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

Normal

Right

LeftRight

Left

(a)

AdjS

J CurS

AdjN − Right

CurN − Left

(b)

Figure 2: a) Stroke geometry. b) Thread construction exam-
ple.

label them as left or right as shown in Figure 2. The utility
of this format is that from either endpoint, looking down the
length of the stroke, both left and right directions are consis-
tent. This property proves useful in calculating the threads.
A node is defined to exist in conjuction with each of the four
midpoint direction vectors. A node consists of a midpoint
position and direction vector and has either a left or right
orientation.

3.3. Thread Construction

At this stage, we can think of each thread as a curve in space
that we will build based on the graph. First, a control set is
constructed that defines each thread, linking the stroke mid-
points. Second, the thread curve is calculated based on the
control set.

Our thread construction algorithm proceeds as follows:
Each control set consists of a circular linked list of nodes.
The system selects a node from the set of unused nodes and
marks it as used. Then it creates a new control set with this
node as the first element. Nodes are added to the control set
and marked as used until the starting node is reached. Since
only one thread can pass through both nodes of either left
or right orientation, both left or right nodes are marked as
used in pairs. This creates an individual thread. The algo-
rithm continues selecting unused nodes and creating threads
until no nodes are left unused. A result of this can be seen in
Figure 1c.

Now we discuss the algorithm that selects the next node
to add to the control set, using a current node, CurN, a mem-
ber of stroke CurS, as a starting position. First, the system
finds the junction, J, that connects to CurS, in the direc-
tion that CurN is pointing. It selects a stroke adjacent to the
CurS around J called Ad jS. If the orientation of CurN is left,
Ad jS is the next clockwise stroke around J. Otherwise, it is
the next counterclockwise stroke around J. The node to add,
Ad jN, is the node of left-right orientation opposite CurN (i.e
right if CurN is left, and vice versa) that is pointing away
from J on Ad jS. An example of this is shown in Figure 2 b.

Based on the control set, the system computes the curve
which defines the thread path. A curve is calculated for ev-
ery thread segment in the linked list. A segment is a curve
that runs between two adjacent nodes in the linked list. Note

c© The Eurographics Association 2003.



M. Kaplan and E. Cohen / Computer Generated Celtic Design

(a) (b) (c)

Figure 3: Threads calculated with a)Cubic hermite curves,
b)B-spline curves, c)Interpolating B-splines.

that the last node in the linked list connects to the first node.
Since each node in the thread list contains a position and
direction vector, it is natural to use the cubic hermite repre-
sentation to calculate the curves. Figure 3a shows threads
obtained in this way. Because the B-spline curve method
uses positional data, but not tangent direction and magni-
tude, methods that have attempted to generate thread paths
using the basic B-spline curve approach have created auxil-
liary “meta” control points to guide the threads into correct
paths around known corner situations and breakpoints. This
results in undulations, unintended overlaps and irregularly
shaped threads. Another problem with this is that it only al-
lows the user to create corners and breakpoints without arti-
facts around a few predefined cases, thus limiting the benefit
of the Mercat technique. A comparison of threads obtained
using the cubic Hermite, the B-spline and the interpolating
B-spline representations is shown in Figure 3. In both spline
curves, the entire control polygon is used to calculate each
thread rather than individual thread segments. It reveals the
problem with using splines without modification; B-splines
maintain the convex hull property and do not correctly ori-
ent the threads. While interpolating splines do slightly better
at directing threads than B-splines, they introduce undula-
tions into the curve. An automatic thread creation technique
should remove undulations due to curve drawing errors. On
the other hand, it is necessary to observe that some undula-
tions occur because of the underlying graph and should not
be removed. See Cohen et al. [2001] for a reference on how
to implement the basic curve representations.

3.4. Inflating the Threads

The thread curves must be inflated so they have width.
Therefore, we define a left and right curve for each thread.
For every position in the thread curve, an offset in the direc-
tion of the curve normal is created. The offset is added to the
curve position to obtain the right curve and subtracted to ob-
tain the left. While this process can lead to overlaps on sharp
curves, as shown in Figure 4a, our system searches for such
sections and culls them as seen in Figure 4b.

The style of the threads can be changed by modifying the
pattern with which the sides are inflated. An example of this
is shown in Figure 4b where corners have been sharpened
around breakpoints(discussed in section 3.6). Sharpening is

(a) (b) (c)

Figure 4: The interior overlap in a) has been culled in b)
and the outer edge has been sharpened. c)This figure shows
how we sharpen corners. The thread path is altered to fol-
low the blue lines towards a position at some user defined
distance along the vector that lies between the junction and
the median of the outside curve.

done by altering the outer inflated curve of any thread seg-
ment with sufficiently large curvature and is also applied
when two breakpoints are adjacent to one another at a junc-
tion. In this case, the median position of the outer curve is
repositioned at a user-defined distance between it’s original
position and the junction it is closest to. The other curve po-
sitions are defined as a blend of the new median position and
the original inflated curve positions based on parameter dis-
tance from the median. Figure 4c shows how the sharpening
is accomplished.

3.5. Overlap

To display the proper over-under characteristic pattern, we
must apply an alternating z-offset value between consective
nodes in the thread linked list. Our system uses 1 and 0 as the
over and under z-offsets. Due to our use of images, a slightly
more complex algorithm is required than that presented by
Mercat. Our algorithm traverses each threads linked list and
computes the overlap values for every node, switching over-
lap value between each thread segment. To enforce a con-
sistent ordering, this algorithm recurses to any thread that
intersects the current thread, starting with the opposite over-
lap value. For each image encountered, the overlap order
may need to be reversed (as described in section 4.2) after
curve calculation, which is why we don’t simply add the off-
set values as inputs to the thread construction algorithm. We
linearly interpolate the overlap values between nodes as our
z offset. The result is shown in Figure 1e.

3.6. Breakpoints

In section 3.3 the threads are calculated by a constant or-
dering on the graph. Changing the thread connection or-
der around the midpoints leads to different thread patterns.
Breakpoints can be used to change the regularity of the knot
and add visual interest. The user can define a breakpoint at a
stroke. This creates one of two new crossing patterns at the
stroke midpoint, both illustrated in Figure 5 b-c. The Break-
point Connection Rules shown below define how the system
calculates thread lists using each breakpoint type, illustrated
in Figure 5g.

Because the natural connection location for a given thread

c© The Eurographics Association 2003.



M. Kaplan and E. Cohen / Computer Generated Celtic Design

Breakpoint Connection Rules:
Type 1 - Thread linked lists may not add nodes from this
stroke. When the recursive algorithm finds a node at a type 1
breakpoint, it applies itself again using the same orientation
it started with.
Type 2 - This stroke is ignored as a graph element. The
thread construction algorithm crosses the stroke edge and
uses the next adjacent stroke to find the node to add to the
control set.

(a) Regular (b) Type 1 (c) Type 2

(d) (e) (f)

(g) (h)

Figure 5: a) A standard crossing pattern at a midpoint of the
stroke, b) A type 1 breakpoint, c) A type 2 breakpoint, d) A
knot illustrating the use of both types of breakpoints, e) An
example of overlap and thread path errors that may occur
when breakpoints are used (in this case due to the multiple
adjacent breakpoints around the border), f) The corrected
version, using meta points, g) The default handling of both
types of breakpoints, h) The handling of both types of break-
points using meta points.

segment is skipped when a breakpoint is used, their use may
introduce errors in several ways. First, the distance of the
thread segment is roughly doubled and second, the direction
of the curve is changed halfway through the thread which
may introduce thread path and overlap errors as shown in
Figure 5e. All previous graph-based systems would have
produced something like the knot shown in Figure 5e for the
given graph, when what is desired is shown in Figure 5f. We
introduce meta points to guide the path of the thread around
the breakpoint. Meta points allow us to use any set of break-
points and do not require advanced knowledge about what
type of graph structures will be used. This removes a limi-
tation of previous work and allows us to create any possible
Celtic knot without thread path errors.

A meta point will be a new node in the thread control

set that is automatically inserted by the system whenever a
breakpoint is reached. This essentially functions to tie the
curve path to the breakpoint position. Therefore meta points
are placed relative to the midpoint of the breakpoint stroke.
For type 1 breakpoints, the position of the meta points are de-
fined as the midpoint plus or minus the stroke normal while
the direction is the strokes tangent vector. For type 2 break-
points, the position is the stroke midpoint plus or minus the
stroke tangent vector and the direction is the stroke’s nor-
mal vector. These meta point configurations are depicted in
Figure 5h. The user is allowed to alter the meta point offset
distance from the midpoint. This is an important variable in
maintaining smooth knots. Reasonable values for this meta
point distance seem to scale linearly with stroke size making
it easy for the program to estimate starting values. The meta
points are inserted into the thread list and the thread set is
computed in the standard way. This allows coherent compu-
tation of curves with long sets of breakpoints as in Figure 5f.

3.7. Smoothing

An exact implementation of step 3 in Algorithm 1 may cause
undulations in the threads of non-grid graphs. We would like
to be able to smooth the threads to get a more natural “artis-
tic” feel.

One extension that we have created supports automatic
alteration of the set of directional derivatives. The method
alters both the direction and the magnitude (speed) of the
derivative. Too large a magnitude leads to internal overlaps
of thread segments and unintended kinks and twists. Too
small a magnitude degenerates to linear interpolation. We
have created a heuristic to alter the magnitude that the sys-
tem may use at the users discretion. A general equation for
this heuristic is:

Magnitude = 1∗UserScale∗Dist ∗Angle (1)

where Magnitude is the value which is multiplied with the
normalized derivative vector, UserScale is determined by
the user, Dist is based on the distance between nodes and
Angle is based on the angle between strokes over which a
given thread segment is defined. The variables in this equa-
tion are taken from the factors that most influence the shape
of the curve. While we have implemented several functions
that define each of these scale factors, we find that setting
Dist equal to distance between nodes / 12.5, Angle equal to
angle between strokes / 4.0 and UserScale between 5 and 15
works well in practice.

To alter the direction of the derivative at a node, a dif-
ference vector is created by subtracting the position of the
next thread node from the position of the previous node.
The final direction vector is a convex blend of the orig-
inal direction vector and this new difference vector. Cur-
rently the blend value is set by the user. Because this
method doesn’t deal well with corners, we dampen this ef-
fect around sharp angles by multiplying the blend value

c© The Eurographics Association 2003.



M. Kaplan and E. Cohen / Computer Generated Celtic Design

(a) (b)

Figure 6: The circular graph for this knot is ill formed which
leads to the kinks evident in a). In b) the knot has been
smoothed by altering the cubic hermite derivatives.

(a) (b) (c) (d)

Figure 7: Alternate knot display styles.

by (NextDir.DotProduct(CurDir)+1)/2, where NextDir is
the value of the directional derivative at the next node and
CurDir is the value of the directional derivative at the cur-
rent node. The results of this process are shown in Figure 6.

Though we discussed the reasons why B-Splines were not
appropriate for thread construction, B-Splines have several
properties we covet, especially smoothness. Smoothness can
be derived from B-Splines, yet thread path correctness is re-
liant on cubic hermites as shown in section 3.3. Therefore,
we use Schoenberg variation diminishing splines to vary be-
tween how smooth versus how correct we would like the
final knot to be. First, the cubic hermite curve is calculated.
Then, the cubic hermite curve is sampled at regular inter-
vals to form a control polygon. Finally, a B-Spline is con-
structed from the control polygon for our final thread curve.
The interval size of the sample determines how smooth ver-
sus how correct the final thread curve will be. We find values
of .125, .25 and .5 to be useful sample intervals to use with
this method, with .125 producing very correct, and .5 pro-
ducing very smooth curves. Though full smoothing can be
enabled by selecting a single check box, an example of each
step in the smoothing process is shown in Figure 16.

3.8. Displaying the Knot

We allow the user to control the stylistic options of the thread
nodes individually. Style information, such as width and
color and stylizations are stored with the individual nodes
in the graph so thread segments that contain the node can in-
herit style information. It is useful to store this information
with the graph rather than the threads since thread patterns
invariably change and any style changes would be wiped out
each time the knot is recomputed.

A thread is displayed as a triangle strip in OpenGL that
connects both left and right inflated thread lines. The border
outline is displayed as a line strip in OpenGL of the left and
right inflated thread lines. The border is offset by some small
z value to avoid z-fighting with the interior.

Our method computes the intersections of thread lines
which allows the display of several other styles frequently
found in Celtic art. One of the styles stops drawing an un-
der section before it reaches an over section, as shown in
Figure 7a. Another is the use of border elements as threads
themselves. We have discovered that this “border as thread”
style has the property that each thread has a constant over-
lap pattern as shown in the template in Figure 7b. Therefore
we can draw the left and right inflated thread lines with the
template pattern for each thread segment without worrying
about overlap information. The results of this are shown in
Figure 7c. A combination of these two methods yields a style
as seen in Figure7d.

4. Using Images With the Knotwork

One of the essential elements of Celtic Design in illuminated
manuscripts is the use of images as part of the knotwork.
Images are used in two ways: as terminus locations for the
threads and as separate elements interwoven into the threads.
By terminus, we mean that the thread connects to an image
and ends. We present a completely new method for the use of
images, differing from that described by Mercat 16. The rules
we describe are simpler, local, and tailored to our technique,
making them more easily implemented and incorporated into
the program. Mercat showed one way to use images as ter-
minus objects, but his method constrained the type of knots
that could use images. Our method is more general and can
incorporate images into arbitrary knots. Moreover, we add
the ability to entangle images with the threads.

We have implemented an image markup program that al-
lows users to edit images and add data, saving the extra in-
formation in a separate file. This allows the user to add an
alpha channel, to define joints and spines and forces as de-
scribed below, and perform many standard image editing op-
erations. The image is displayed as a texture mapped quadri-
lateral. The quadrilateral is given a z-value between the over
and under values so that threads will pass cleanly above or
below it.

4.1. Terminus

For each image, the data file contains a set of valid nodes. A
node on an image is referred to as an image joint. We allow
the user to set connections between graph nodes and joints
by manually connecting joints and nodes with the mouse,
as shown in Figure 8. A connection is a user specified link
between nodes that forces the thread construction algorithm
to follow a path between the linked nodes.

Because there is no such thing as a thread with only one

c© The Eurographics Association 2003.



M. Kaplan and E. Cohen / Computer Generated Celtic Design

(a) (b) Joints (c) Spines

(d) (e) (f)

(g) (h) (i)

Figure 8: a) An example of the image data structure. The
green area represents the section of the image whose al-
pha value is one. Joints are orange, spines are light green
and forces are blue b-c)Green dragon image with joints and
spines. d) Thread set and images, e) Connections defined by
the user, f) The threads have been recomputed and now con-
nect to the images. g) Here, the thread curve intersects the
image. Intersections are shown in yellow. h) Interweaving
result; note that the spots where the overlap values switch
don’t appear to line up with the image features. i) Here, we
have modified the inflate function to force inflation near im-
age features to follow the force. Now the thread appears to
switch overlap value in relation to the image features.

end, terminus connections must be added to a thread in pairs.
The second terminus object can occur as part of the same
thread segment or an even number of segments away from
the first terminus. Other configurations will not preserve the
overlap order and will introduce a discontinuity into the
knot.

After defining two terminus connections, we have asso-
ciated two joints with two nodes. The thread control set is
calculated as normal and as a post process, the joint nodes
are inserted into the control set. The thread curve is then
computed as usual. However, thread segments that occur be-
tween the joints are no longer displayed. Examples of im-
ages as terminus objects are shown in Figure 9.

4.2. Interweaving

Images also appear as elements that are interwoven into the
knot, i.e. threads cross over and under them at appropriate
locations. The user is allowed to define a set of spines that
is associated with each image. Spines are line segments that
roughly correspond to images features with which a thread
may intersect. The intersection of a spine and thread is com-

(a) (b) (c)

Figure 9: Images as a-c) terminus and c) interwoven.

puted after the thread curve has been calculated, but before
the overlap order has been derived. Any intersection between
a spine and thread causes a change in overlap value at that
location. We do not add a node to the thread list at the spine
location because spines offer no additional directional data.
This has the effect of leaving the curve alone while chang-
ing the overlap order. To maintain a well ordered knot, two
image crossings or one image crossing and two terminus ob-
jects are required.

In order to ensure that the threads overlap the image cor-
rectly, the user is optionally allowed to define a set of forces.
A force is a line segment with which the thread may in-
tersect. Forces roughly correspond with the edges of fea-
tures that contain spines. A force causes the current thread
to immediately switch overlap value at the intersection loca-
tion. Use of forces is optional and is usually only required
for complex interweaving situations. Because forces tend to
align with image features, we would like the offset of the in-
flate function to match those features. Since the thread nor-
mal may not match the force direction at the intersection
location the inflated thread may overlap the image features
improperly, as in Figure 8h. We have added an option that
modifies the inflate function and blends the thread normal
to match the force direction at the crossing location. This
makes the thread appear to cross more naturally where forces
have been aligned to image features, as in Figure 8i.

5. Illumination

5.1. Escapes

Often, it is useful to connect separate graphs without phys-
ically joining the graphs with a stroke. Escapes are user-
defined connections between graph nodes. An escape is an
arbitrary connection between any two nodes, A and B. When
the thread construction algorithm encounters a node A, it im-
mediately adds node B as the next node in the control set and
continues from node B. Escapes must also come in pairs.
Often, we use escape connections to direct the thread set to
cross an image as shown in Figure 11 and the corners of Fig-
ure 15.

5.2. Encapsulation

Encapsulation is the concept of creating small knots and us-
ing them as pieces with which to make larger knots. This

c© The Eurographics Association 2003.



M. Kaplan and E. Cohen / Computer Generated Celtic Design

(a) (b) (c)

(d) (e) (f)

Figure 10: The encapsulation process. a) A triangle capsule
with bounding volume. b) A larger capsule constructed by
connecting 4 triangle capsules. c) The knot resulting from
the graph of the capsule in b). d) 6 capsules from b) joined
in a high cross pattern. e) The knot resulting from the graph
in d). f) The high cross from e) has been fabricated.

is similar to methods described by Bain 1, Meehan 14 and
Mercat 16 for artists. Mercat uses the dual of the graph as
the capsule. This is not possible in cases where images are
present, undesireable since we want to store style data as
well and unecessary since the dual is simply a bounded ver-
sion of the same knot. In our system, all graph, style, image
and connection information is saved to a file. This file de-
fines a capsule object. We can read in capsules and perform
operations on them such as rotations, transformations, scal-
ing and reflection and change styles en masse. This capsule
system is more intuitive than that of Mercat or Meehan be-
cause we maintain the original representation of the system
and no transformations are required to reconstruct the origi-
nal graph.

There are two methods of connecting capsules. First,
strokes connecting capsule graphs can be drawn in manually
by the user, as shown in Figure 10b. Second we can align
edge strokes of capsules to create a single border, as shown
in Figure 10d. Strokes that overlap one another are merged,
resulting in a unified graph. We have created a mouse func-
tion which snaps capsules whose edges are close to each
other together automatically.

5.3. Template

For creating backgrounds patterns, we have created a tem-
plate builder that mimics the background styles used in il-
luminated manuscripts. The guiding principle is the use of
thick bands of color to separate sections of knotwork. Our
program allows users to define bands of color and their bor-
ders with offset Bézier curves whose control points can be

(a) Escape example (b) Template builder

Figure 11:

snapped to a predefined grid. A flood fill tool can be used to
fill areas between the borders with a selected color. These
background designs function as templates whose interior
spaces can be filled with knotwork by drawing strokes or
using capsules to fill the space. A fully realized template is
shown in Figure 15 (bottom).

6. 3D Knots

We can apply the algorithms presented above to arbitrary
2D-manifold meshes resulting in 3D knots. This works be-
cuse a 2D-manifold mesh can be viewed as locally pla-
nar. The original inflation and display algorithms now make
no sense since we inflated in 2D. In 3D inflation and dis-
play, inflated threads are tubular neighborhoods around the
thread displayed using cylinders between points in the thread
curves. When we offset the threads based on the overlap or-
der, we use the normal to the mesh at the node position as
the offset direction. Node derivative values are in the tan-
gent plane at the midpoint. Examples of knotwork produced
using meshes are seen in Figure 15.

7. Results

Graph creation is done in realtime. Users draw strokes and
select a Create Knot button when finished. Most knots com-
pute at interactive rates, but depending on the complexity of
the graph (the combination of effects applied and the density
of the samples for each thread curve) a knot can take up to
15 seconds to compute. One of the most important features
is the ease of use of our system. User intervention is only re-
ally required for graph creation. However, the facility exists
for controlling almost every aspect of the system enabling
the artist to have as much control over the appearance of the
knots as desired. With smoothing enabled, reasonable results
are automatically produced 99% of the time though, rarely,
a user may need to adjust a smoothing parameter that may
be inappropriate for a given graph.

In sets as follows : Figures 13a, c, e, g, Figures 13b, d, f,
h, Figures 14a, d, e, and Figures 14 c, g and h, we see varia-
tions on themes. This is accomplished by the using capsules
to vary repeatable patterns in new and interesting ways, and
by changing stylistic options and breakpoints. Because of the

c© The Eurographics Association 2003.



M. Kaplan and E. Cohen / Computer Generated Celtic Design

utility and ease of use of encapsulation most of these designs
took between 1 and 2 minutes to produce. Figure 13i shows
a teapot shape embedded in a knot as a thread, demonstrat-
ing how logos and other symbols may be incorporated into
Celtic knots produced with our system.

The reproductions of art from the Book of Kells (Fig-
ures 16 top, inset, 13j, 14j ) and the Lindisfarne Gospels
(Figure 15) using our system validate the utility of our tech-
niques for reproducing the artwork of the masters of Celtic
illumination. These examples mark the first time a com-
puter has accurately reproduced the knotwork from full car-
pet pages and illuminated letters from the great works of
the Celtic illuminated manuscripts. All of the techniques
presented were required to create these images and no
prior knotwork creation program could have produced them.
These results are important because it shows that not only
can our system reproduce the complexity of the original
works, but we can create new works with the same style and
beauty of the originals. Moreover, we can do it much more
quickly and can experiment with alternate designs, styles
and patterns with almost no additional effort. The only clas-
sical patterns we have not been able to reproduce are those
that contain images which interweave with each other which
is a problem we have not addressed here. The upper bor-
der in Figure 16 took about a half hour to make. The im-
ages took about 5-10 minutes to mark with an alpha channel
and relevant information. Design of such a work proceeds as
follows: filling the empty spaces in the images with graphs,
making connections from the graphs to the images and fi-
nally replicating the two capsules (one for each dog image)
and arranging the capsules in a border pattern. The central
T pattern in the illuminated letter in Figure 16 was drawn
freehand in about 5-10 minutes. Style changes to these de-
signs are quick as regions can be selected with the mouse
and changes applied en masse.

The zoomorphic borders shown in Figure 16 are after the
style of Meehan 14 which in turn take their inspiration and
figures from the Book of Kells. Inset (at bottom) is an exam-
ple of the smoothing process which is vital to achieving vi-
sually pleasing results. The smoothest knot is automatically
produced when full smoothing is enabled yet we show the
steps for instructional purposes. The lower border demon-
strates thread width variation to full advantage.

In Figure 12a, a user has designed body art using our pro-
gram and a temporary tattoo has been applied with henna.
In Figure 12b, our system has created a 3 dimensional knot
model for a CAD program. The CAD program has defined
circular tubes of revolution around the piecewise cubic her-
mite thread curves. Using the CAD model as an input, a
physical 3D model was fabricated using a Stratasys rapid
prototyping system, as shown in Figure 12c and Figure 10f.
A user can quickly test many designs on the computer, then
create physical results for jewelry or ornamentation automat-
ically, a process that used to be extremely time consuming.

(a) (b) (c)

Figure 12: Uniform design: a) A tattoo design, b) CAD
model and c) jewelry created by fabricating the CAD model

8. Conclusion and Future Work

We have presented techniques for automating the construc-
tion of Celtic knotwork and for creating large complex de-
signs with such knotwork. We have introduced novel orien-
tation and smoothing techniques which allow us to compute
and display knots in both 2D and 3D, eliminating restrictions
of prior work in this area. We have shown how to incorporate
images into Celtic knots both as terminus objects and inter-
woven elements. We have introduced a new method of en-
capsulation to facilitate the design process and have shown
how to construct background templates in the style of the
ancient manuscripts. Further, we have shown how to auto-
matically fabricate physical models from such knots.

In the future, automatic knot generation using au-
tonomous capsule placement might be a useful feature to
explore. Because of the connection to woven materials (the
bunny knot in Figure 15 appears crotcheted), cloth simula-
tion and rendering seem a natural extension. Ultimately, we
view this system as an artistic playground, where artists, de-
signers and novices alike may quickly and easily explore the
creation of advanced Celtic knotwork designs.

9. Acknowledgements
This work was supported in part by ARO (DAAD19-01-1-0013) and NSF (EIA0121533).
All opinions, findings, conclusions or recommendations expressed in this document are
those of the author and do not necessarily reflect the views of the sponsoring agencies.

References
0. ABBOTT, S. Knots3d. Computer Program, www.abbott.demon.co.uk/knots.html. 2
1. BAIN, G. 1951. Celtic Art, The Methods of Construction. William MacLellan and Co.,

Glasgow,Scotland. 2, 8
2. BAIN, I. 1966. Celtic Knotwork. Sterling Publishing Co. 2
3. BROWNE, C. 1998 Font Decoration by Automatic Mesh Fitting. Proceedings of EP-

RIDT ’98, 23-43 2
4. E. COHEN, R.F. RIESENFELD, G. E. 2001. Geometric Modeling With Splines. AK

Peters.
5. GLASSNER, A. 2002. Andrew Glassner’s Other Notebook. AK Peters. 2
6. GLASSNER, A. November/December 1999. Andrew glassner’s notebook : Celtic knot-

work, part 2. IEEE Computer Graphics and Applications, 78–84. 2
7. GLASSNER, A. September/October 1999. Andrew glassner’s notebook : Celtic knot-

work, part 1. IEEE Computer Graphics and Applications, 78–84. 2
8. GODFREY, R. Celtic knots designer. Computer Program, www.celticdesigner.com. 2
9. GUIONNET, T. Les noeuds celtiques. Computer Program. 2
11. MEEHAN, A. 1991. Celtic Design: A Beginners Manual. Thames and Hudson. 2
12. MEEHAN, A. 1991. Celtic Design: Knotwork, The Secret Method of the Scribes.

Thames and Hudson. 2
13. MEEHAN, A. 1992. Celtic Design: Illuminated Letters. Thames and Hudson. 2
14. MEEHAN, A. 1999. Celtic Borders. Thames and Hudson. 2, 8, 9
15. MERCAT, C. Celtic knots. Computer program. 2
16. MERCAT, C. 1997. Les entrelacs des enluminures celtes. Dossier Pour La Science,

No.15. 2, 6, 8
17. MICHAEL T. WONG, DOUGLAS E.ZONGKER, D. S. 1998. Computer generated floral

ornament. Proceedings of SIGGRAPH 98 (August), 423–432. 1
18. SCHAREIN, R. 1998. Interactive Topological Drawing. PhD thesis, University of

British Columbia. 2
19. SLOSS, A. 1995. How to Draw Celtic Knotwork: A Practical Handbook. Brockhampton

Press. 2

c© The Eurographics Association 2003.



M. Kaplan and E. Cohen / Computer Generated Celtic Design

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) Teapot knot (j) Dragon pattern from the Book
of Kells reproduced with our sys-
tem.

Figure 13: Examples of Celtic knotwork created with our
system.

(a) (b) (c)

(d) (e) (f)

(g) (h)

(i) (j) physical model of i

(k) Reproduction of a knot from the Book of Kells
using our system.

Figure 14: Further results from our system.

c© The Eurographics Association 2003.



M. Kaplan and E. Cohen / Computer Generated Celtic Design

Figure 15: Top: The knot construction algorithm applied to 3D geometric meshes including a bunny mesh. Also, a physical
model of a knot derived from a star shaped mesh. Bottom: Exact reproduction of the great carpet page thread pattern topology
introducing the Book of Mark from the Lindisfarne Gospels (ca. 6-7th century AD) produced with our system.

c© The Eurographics Association 2003.



M. Kaplan and E. Cohen / Computer Generated Celtic Design

Figure 16: Top border: A reproduction of a hunting dogs kissing border patterned after Meehan. Top inset: Reproduction of
a great illuminated letter design from the Book of Kells: A four legged dragon letter T. Bottom border: The dog eating its own
tail border. Our variation on a standard theme that is seen repeatedly in Celtic Art, especially in Meehan. Inset is shown the
process of smoothing the threads. From left to right: 1) The default configuration of the threads. Obviously not satisfactory. 2)
The threads after appropriate distance values for the meta points have been set. 3) After hermite derivative smoothing has been
applied. 4) After Schoenberg smoothing has been applied. 4) is produced automatically when full smoothing is enabled.

c© The Eurographics Association 2003.



M. Kaplan and E. Cohen / Computer Generated Celtic Design

Figure 16: Top border: A reproduction of a hunting dogs kissing border patterned after Meehan. Top inset: Reproduction of a
great illuminated letter design from the Book of Kells: A four legged dragon letter T. Bottom border: The dog eating its own
tail border. Our variation on a standard theme that is seen repeatedly in Celtic Art, especially in Meehan. Inset is shown the
process of smoothing the threads. From left to right: 1) The default configuration of the threads. Obviously not satisfactory. 2)
The threads after appropriate distance values for the meta points have been set. 3) After hermite derivative smoothing has been
applied. 4) After Schoenberg smoothing has been applied. 4) is produced automatically when full smoothing is enabled.

c© The Eurographics Association 2003.

293


