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Abstract
Environment matting is a powerful technique for modeling the complex light-transport properties of real-world
optically active elements: transparent, refractive and reflective objects. Recent research has shown how environ-
ment mattes can be computed for real objects under carefully controlled laboratory conditions. However, many
objects for which environment mattes are necessary for accurate rendering cannot be placed into a calibrated
lighting environment. We show in this paper that analysis of the way in which optical elements distort the appear-
ance of their backgrounds allows the construction of environment mattesin situ without the need for specialized
calibration.
Specifically, given multiple images of the same element over the same background, where the element and back-
ground have relative motion, it is shown that both the background and the optical element’s light-transport path
can be computed.
We demonstrate the technique on two different examples. In the first case, the optical element’s geometry is simple,
and evaluation of the realism of the output is easy. In the second, previous techniques would be difficult to apply.
We show that image-based environment matting yields a realistic solution. We discuss how the stability of the
solution depends on the number of images used, and how to regularize the solution where only a small number of
images are available.

Categories and Subject Descriptors(according to ACM CCS): I.2.10 [Artificial Intelligence]: Vision and
Scene Understanding—modeling and recovery of physical attributes. I.3.3 [Computer Graphics]: Picture/Image
Generation—algorithms. I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism—color, shading,
shadowing, and texture.

1. Introduction

We wish to render images of scenes in whichoptically active
elementswith complex light-transport characteristics are ac-
curately incorporated. In particular, our goal is to learn the
light-transport properties ofreal worldobjects from images.

Of course, modeling the object’s light-transport can be
achieved by obtaining an accurate geometric model, and
accurate refractive indices. Then, modern ray tracing tech-
niques allow rendering even at interactive speeds1. However,
obtaining the geometry in itself may be very difficult. In one
of the examples in this paper, the transparent object is an
old window, where imperfections in manufacturing has led
to small deviations in shape inside the glass. No technique is
known to the authors for the measurement of the internal 3D
geometry of transparent objects, even if we were permitted
to physically modify the window or its surround.

Recently however2, 3, methods for obtaining environment
mattes of real-world objects have been introduced. These
systems illuminate the real objects with carefully calibrated
backgrounds, and capture images of the appearance of the
object under these backgrounds. Analysis of the images al-
lows the objects’ light-transport properties to be computed.
These techniques permit the discovery of complex optical
behaviour of real-world objects without explicit measure-
ment of geometry or transmissivity parameters, and have
yielded impressive composite images. However, they remain
limited to situations where the object can be placed in a cali-
brated laboratory setting. In the example of the old window,
the window would need to be removed before measurements
were performed.

This paper shows that such calibration is not necessary
in order to obtain realistic environment mattes. A set of im-
ages of the objectin situ can be used to determine the op-
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(a) (b) (c)

(d) (e) (f)

Figure 1: The goal of this paper. The input is a set of images (a to c) of an optically active element—the magnifying glass—in
front of a moving background. The task is to apply the light-transport properties of the imaged element to a new image (d),
to generate novel composites (e) and (f) which include not just the magnifying glass, but also its light-transport properties,
evidenced by the magnification of the background characters. In each image, the area above the red line shows environment
matting, while the image below the line is traditional alpha matting. Noa priorimodel of the lens or background was used.

tical transport properties. We show that accurate environ-
ment mattes can be computed from natural images, without
the need for specialized calibration of the acquisition. The
method proceeds in two stages: first, the environment map
is learnt from a set of example images containing the opti-
cal element of interest (e.g. the magnifying lens in figure1);
second, the element’s environment matte is applied to a new
background image.

Related work fits into two categories: lightfields and alpha
matting. Lightfield acquisition and rendering4, 5 captures the
set of light rays in a particular environment, allowing new
viewpoints of the same environment to be generated which
retain the light distribution within the environment. In par-
ticular the environment may contain transparent or reflective
objects, new views of which may be generated providing the
background does not change. However, in order to combine
lightfields, or to place lightfield-captured objects in new en-
vironments, a model of light transport is needed, which ex-
isting techniques do not provide.

Recent work on extraction ofα-mattes from image
sequences6, 7, 8 uses similar tools to those in this paper to
compute transparency mattes for moving objects. If these pa-
pers may be considered uncalibrated extensions to the two-
image matte extraction technique of Smith and Blinn9, then

the work reported in this paper is an uncalibrated extension
of the original environment matte acquisition of Zongker et
al2.

Notation

Entire images, i.e. thew×h×3 RGB array are represented
as calligraphic uppercase lettersI. An individual RGB pixel
from I is I(x,y), and the(x,y) is dropped when using a
single pixel as an exemplar for an image formation process
which is the same at all pixel locations. A set of images—
specifically now the set of input images—is denoted by sub-
scripting,{Ii}n

i=1, as are individual pixels from a setIi(x,y).

2. The model

Our goal is to recover the action of optical elements from
images. Therefore, the first desideratum is a mathematical
model for that action. The model chosen is similar to earlier
work2, 3, in that the action of the optical element is mod-
elled entirely as a 2D to 2D mapping. The observed images
are considered to be the composition of (an image of) the
background scene and an environment matte which encodes,
for each output pixel, the set of input pixels from which it
samples. Although the mapping is only from 2D to 2D, the
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background “image” may live on any surface in 3D, which
makes the technique quite general. In previous work2, 3, the
surfaces used were either the plane at infinity (as in environ-
ment mapping10) or a piecewise planar surface (e.g. cubic
environment maps11).

To explain the model, consider the formation of a com-
posite imageC, with RGB tripleC(x,y) ∈ R3 at pixel(x,y).
The composite will be the combination of the environment
matte (whose form will be defined shortly) and the back-
ground imageB(u,v).

Each pixel in the composite collects light from a blend
of pixels inB. The set of pixels which contribute to a given
output pixelp is called thefootprint of p, or p’s receptive
field. Previous researchers have defined the footprint using
rectangular regions2 or mixtures of Gaussians3. In this work,
we must deal with complex multimodal distributions during
acquisition, so we use a discrete map of source pixels, where
each source pixel has an associated weight. The value of the
output pixel is then computed as a weighted sum over the
pixels of B. Thus if we can compute the receptive field for
each pixel, we can compute the composite.

More formally, the receptive field is denoted asr(u,v),
and its effect is modelled as a weighted sum of background
contributions

C = ∑
u,v

r(u,v)B(u,v)

The summation is over all pixels in the background image,
and there is a separate receptive fieldr(u,v) for each fore-
ground pixel(x,y). Figure2 illustrates the process for a sin-
gle pixel. Collecting the separate receptive fields for each
(x,y) location yields the definition of the four-dimensional
environment matte

w(x,y,u,v) = r(u,v) at (x,y)

Recovery ofW is the primary goal of this paper.

The development of the model to this point has ignored
the contribution from reflection off the element itself (e.g.
the handle of the magnifying glass), which is modelled as a
foreground contributionF . This yields the complete descrip-
tion of the formation of the composite imageC as follows:

C(x,y) = (1−α(x,y))F(x,y)+α(x,y)∑
u,v

w(x,y,u,v)B(u,v)

where a transparency termα is included to model partial
pixel coverage. Acquiring environment mattes from images
is a matter of determiningW , F andα given examples ofC
andB.

In the standard formulation without environment
matting9, the background pixelB0 = B(x,y) passes straight
through the optical element, and we have the standard
compositing equation6, 7, 9

C = (1−α)F +αB0

Background image B(u,v)

Receptive field r(u,v)

Composite pixel C = Σ r(u,v) B(u,v)

C

Figure 2: Formation of a single output pixel. The pixel’s
receptive field r(u,v) allows each pixel of the background
to contribute to the output pixel’s colour. The environment
matte w(x,y,u,v) is the set of all receptive fields, one per
pixel (x,y) in the output image.

The receptive fieldr(u,v) may be thought of as the prob-
ability that a background pixel contributes to a particular
composite pixel. We return to this interpretation when com-
putingW in section5.

Several factors contribute to making the task of learning
the environment difficult, and the remainder of the paper dis-
cusses how to address these. Briefly, the difficulties include:

• We may not know in advance the background imageB.
Section3 describes how to compute a “clean plate” back-
ground image given a set of overlapping images. Section4
shows how to precomputeF andα.

• We will almost always have too few images to com-
pletely determineW . Assumptions must be made about
the form ofW in order to obtain a tractable solution.
Previous work2, 3has made these assumptions by choos-
ing distribution models with small numbers of parameters.
In section5 we show how a non-parametric assumption
about the generalbehaviourof W rather than a paramet-
ric model of its form suffices to give excellent estimates of
the light transport properties of non-translucent objects.

• Sometimes the number of images available is extremely
limited. Section7 shows how the incorporation of ana
priori coarse model of the distortion field can regularize
the problem, and we show an example of an environment
matte extracted from the minimum number possible—a
single image pair.

• The environment matteW is a large four-dimensional lin-
ear operator. Its discrete representation would, if imple-
mented na ıvely, occupyO(N2) storage forN-pixel im-
ages, or about 100 gigabytes in our examples. We show
how this storage cost is avoided.

Figure 1 shows an example input sequence, containing a
magnifying glass for which an environment matte is to be
computed. The application of that matte to a novel back-
ground is demonstrated in the figure, and the following sec-
tions describe the computational steps.
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(a) (b) (c)

Figure 4: Two-image example. (a) Base image. (b) A single reference view of the background, taken by moving the camera. (c)
The reference view is warped so that the pixels on the red wall in the background lie approximately under their counterparts in
the foreground. The environment matte will describe the remainder of the transformation.

Figure 5: Computed(C,B) pairs after clean plate extraction. The top row shows the original images, the bottom row the image
background image (the plane) replaced by the computed clean plate. The optically active element (the lens) and foreground
occlusion (the handle of the lens whereα 6= 1) have been removed.

3. Getting a clean plate

Computing the background image may be achieved by
mosaicing the moving-background sequence12 or moving
the camera. The example in Figure1 shows an example
where the background is moving relative to the foreground,
and figure4 illustrates the effect of moving the camera,
with a planar background. In both of these cases, the mo-
tion of the background is modelled by a plane projective
transformation—a planar homography.

In the first instance, where the background exhibits mo-
tion relative to the optical element, no single background im-
age is available, but we can automatically compute a “clean

plate” by assembling unoccluded pixels from several im-
ages. By tracking points on the background (see section8),
a set of homographies are computed which register all im-
ages to a canonical reference image, say image 1. Call these
homographiesHt , and define the functionπ([x,y,z]>) =
(x/z,y/z) and operationH∗ (x,y) = π(H[x,y,1]>). Then, the
registering homographies mean that for(x,y) a background
pixel in both image 1 andt,

I1(x,y)≈ It(Ht ∗ (x,y))

Then we warp all the images to frame 1, compute the median
colour at each location and assume that will be a reasonable
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Figure 3: Computing a clean background for each image.
(Top) Automatically computed feature tracks on the input se-
quence. (Bottom) Three representative frames from the se-
quence assembled into a mosaic in which the background
remains stationary, and the magnifying glass moves.

estimate of the background image for image 1:

B1(x,y) = mediant It(Ht ∗ (x,y))

Because the background is the same for each image, we in-
verse warp the background to generate a registered(It ,Bt)
pair at each timet:

Bt(x,y) = B1(H
−1
t ∗ (x,y))

Figure3 illustrates the process and figure5 shows an exam-
ple set of computed (composite, background) pairs.

Figure4 shows an example where the camera is moved
to obtain a clean view of the background. In the first image,
which is the image into which we will place the final com-
posite, the camera looks out through the window. The area
over which the composited object (an image of a hot air bal-
loon) will be positioned is planar, so a clean plate may be
obtained by moving the camera to one side, in order to look
through the open half of the window.

Figure 6: Approximate alpha mattecomputed for fore-
ground element.

An approximate initial homography is obtained using four
manually indicated point correspondences. Then dense point
correspondences are obtained (see section8), and a least-
squares best fit homography is computed over the entire
scene. Although the optical action of the window means that
each correspondence includes some error due to the refrac-
tion of the light rays, the errors tend to be uniformly dis-
tributed, so the aggregate homography is sufficient for the
matte computation. If the homography is wrong, the matte
computation will model the error by shifting objects as they
move behind the glass, but computation will not be other-
wise hindered. Therefore, providing the homography is rea-
sonably accurate, no distortion will be evident in the final
composite.

4. Computing the foreground elements

Computation ofW is significantly simplified if the param-
eters of the foreground elementsF and α are computed
first. This is possible if the background is reasonably het-
erogeneous, and moving relative to the foreground element.
For the magnifying glass, we wish to recover the colour of
the magnifying glass frameF , and transmissivity valuesα.
For example, the metal handle will haveα = 0, lens interior
α = 1− ε and partial pixels where the lens joins the handle
will have intermediate values 0< α < 1. For this work, an
accurate alpha matte is not necessary, so a number of prag-
matic schemes are applied in order to obtain the matte, as
follows.

A coarse initial estimate of alpha is obtained by su-
perimposing all imagesIi=1..n and computing the per-
pixel meanm(x,y) = 1

n ∑i Ii(x,y) and varianceσ2(x,y) =
1

n−1 ∑i(Ii(x,y) − m(x,y))2. Because the background is
changing, we expect foreground pixels to have low variance,
and the background pixels to have high variance. We could
then impose a hard thresholdτ on the variance to separate
changing (i.e. background) and constant (i.e. foreground)
pixels. However, partially covered pixels will haveα be-
tween 0 and 1. Roughly modelling this by passing the vari-
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ance through a sigmoid

α =
1

1+e−k(σ2−τ)

yields an approximate alpha matte. The tuning parameters
(k,τ) were set manually in this example to give a satisfac-
tory matte near the element boundary, where it is difficult
to manually compute alpha values. However, it also includes
isolated areas where the background exhibited sufficiently
little change that it was marked as foreground, and these ar-
eas are manually removed using a paint package. This allows
a clean matteα, as shown in figure6, to be obtained with a
few minutes of effort.

Givenα, the foreground colour can be measured from the
registered background images (the output of section3) and
the foreground. This estimate may be further refined after
the environment matte is measured (next section).

5. Estimating the environment matte

Having reasonable estimates ofα andF , we may transform
any given imageIt to a purely environment-matted compos-
ite Ct for which, given registered background imageBt

Ct(x,y) = ∑
u,v

w(x,y,u,v)Bt(u,v)

Thus, we ask how, given a set of(Ct ,Bt) pairs, we may ob-
tain an estimate ofW .

In order to compute the receptive field of a given pixel
p, we need at least two images: one containing the optically
active element (e.g. the lens in figure1), and one contain-
ing only the background. If the component of diffusion is
small, then pixels in the background which have contributed
to p’s colour will have similar colour top. In fact, for each
background pixel, the similarity between its colour and the
query colour is a function of the amount that background
pixel contributes.

Assume we are given a composite-background pair
(Ct ,Bt). The compositeCt contains the optical element, and
is therefore assumed to be the result of compositingBt as
above. We may obtain a (poor†) estimate ofW for this pair
alone—call itŴ t—using

wt(x,y,u,v) = exp
(
−λ |Ct(x,y)−Bt(u,v)|2

)
(1)

and then normalizing so that∑u,v ŵt(x,y,u,v) = 1:

ŵt(x,y,u,v) =
wt(x,y,u,v)

∑u,v wt(x,y,u,v)
(2)

† It is at this point that we are making a nonparametric assump-
tion about the probability densityr(u,v), essentially saying that the
probability distribution is dominated by its modes. Wide flat areas of
the distribution will be suppressed by the subsequent normalization
and will thus not be allowed to contribute toW .

Here,λ is a tuning parameter, set to 10−2 in our experiments.
Then background pixels which are similar in colour to the
composite pixelCt(x,y) will be considered to be part of the
receptive field of(x,y). Of course there will be many acci-
dental similarities, so the estimated receptive field will be
larger than its true extent. This is mitigated by comparing
3× 3 windows rather than individual pixels, but this pro-
duces only a small improvement in signal-to-noise ratio. It
is undesirable to use a larger window as this will reduce the
spatial accuracy of the environment matte. Happily, how-
ever, the receptive field is constant over time, so the true
receptive field must have high values for each of theN com-
puted functionsŴ t .

Think of the estimatêW t for each image as measurements
from a “sensor” which returns the probability that the pixel at
(u,v) contributes to(x,y). Then if the sensors are considered
as independent, the estimate ofW given all images may be
computed by multiplying the per-image estimatesŴ t and
renormalizing:

w(x,y,u,v) = ∏
t

ŵt(x,y,u,v).

This procedure combines the relatively poor single-pair esti-
matesŴ t in a way which best uses the available information.
Because the false similarities will in general not occur at the
same place in the matte, but the true similarities will tend to
be consistent, the procedure generates more and more accu-
rate mattes as more images are added.

Figures7 and8 show the process in operation for two dif-
ferent choices of(x,y). The receptive fields in figure9 show
that after two images, the matte still collects from many lo-
cations in the source image, but after eight images, the re-
ceptive field for the indicated pixel has converged to a tight,
accurate estimate.

At this stage, one could approximate the recovered matte
using any number of schemes analogous to those used by
Chuang et al3. Note that for the non-diffuse objects consid-
ered here, the final matte is often unimodal, however the gen-
erality of our representation is necessary in order that the in-
termediate stages may carry multiple hypotheses for the final
mode. In fact, we do not approximate at this stage, because
the matte can be directly used for composition without ever
storing the full 4D array.

6. Using the environment matte

The purpose of this section is to illustrate how a general,
multimodal environment matte can be computed and used
to generate new composites. For concreteness, consider Fig-
ure 1. The outputs (e) and (f) are two of several hundred
frames from an output movie which is to be generated by
compositing the original environment matte with the novel
background (d). In order to avoid storing all ofW , the output
movie is generated as the environment matte is constructed.
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Figure 7: Integrating receptive fields for a single output pixel. The query pixel is marked with a white cross. Each column
corresponds to a new image pair. The first two rows show measured foreground It and registered background Bt . The white
smudge on the background images is an area where no background colour could be computed, as it was always occluded by the
magnifying glass.
The third row shows the receptive field r(u,v) of the output pixel, computed from just that view pair. The fourth row shows a
cross-section through the receptive field. It can be seen that a single image does not constrain r(u,v) very tightly – the curves
are far from unimodal. The red curves in the fifth row, on the other hand, show the normalized cumulative products of the per-
view curves. These represent the integrated receptive fields, and show that the erroneous peaks in the distribution are quickly
eroded as more images are added. Furthermore, the finally accepted peak does not necessarily correspond to a maximum in
any individual image.
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Figure 8: Integrating receptive fields for (another) single output pixel. In this example, the final image moves the unimodal
receptive field significantly, showing that accuracy is not simply guaranteed by unimodality.
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1 2 4 8 16 32

1 2 4 8 16 32

Figure 9: Refining receptive fields for a single output pixel. The receptive field r(u,v) for a single(x,y) pixel as more views
are added. After the first pair, the receptive field is far from accurate, with many false maxima (dark regions). As more views
are integrated, the estimate is progressively refined. (Top row): intensity map—dark pixels have higher weights. (Bottom row):
surface plot.

Figure 10: Two image compositeusing the learnt environment map from figure4. Left: added background layer in the shape
of a hot air balloon. Note the deformation of the checkerboard. Right: the texture mapped balloon.

For each pixel within the lens, the receptive field is com-
puted, and the novel composite is computed at that pixel for
all frames of the output movie. The receptive field for this
location may then be discarded, and the next pixel is pro-
cessed. This procedure is fast as long as the output movie
and input images occupy less memory than the entire envi-
ronment matte. In these examples, each image is of the or-
der of a megabyte in size, so the total storage requirement
is of the order of 400MB rather than the 100GB required to
store the environment matte. Total time to render the output
movies is of the order of hours, but may be further sped up
as discussed in the next section.

7. Adding priors

As we use fewer and fewer views, more prior constraints
must be added to ensure a matte of sufficient quality. In

figure 4 we have only one foreground/background pair, so
the form of w is tightly constrained to ensure a reason-
able matte. Fortunately in this case some obvious constraints
present themselves. As the distortions produced by the glass
are small, we may assume that each output pixel obtains
a contribution only from nearby pixels. Formally, this is
w(x,y,u,v) = 0 for (u− x)2 + (v− y)2 < τ2 whereτ is a
distance threshold in pixels, set to 5 in example 2. Second
we computew only at locations whereIt(x,y) has peaks in
the local autocorrelation function (identified by a Harris cor-
ner detector), thus yielding sharp estimates of the receptive
field, even with only one image. Assuming spatial coherence
in the less textured areas then allows the estimates from re-
liable regions to be propagated into the smooth areas. These
are the same sort of assumptions which are used to regularize
optical flow algorithms13, and hence are suitable only when
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Pixel with
incorrect
receptive
field 

Figure 11: Zoomed view of lens compositefrom figure1.
(Above red line) Environment matting. (Below red line) Al-
pha matting. A pixel for which the receptive field has been
poorly estimated is indicated. No attempt has been made at
manual cleanup.

the environment matte behaves as a small-displacement map
over the image.

Approximate models of the environment matte may also
be used to reduce the computational effort when building
the matte. In building the environment matte for the mag-
nifying glass example, the receptive fields were computed
over 200×200 regions for each of the 26000 pixels within
the lens. For each of these pixels, the cost of building the re-
ceptive field was approximately 200 milliseconds (inMAT-
LAB on a 1GHz Pentium III). Thus, the time to compute the
entire environment matte is of the order of hours. This time
can be reduced if an approximate bounding box of the recep-
tive field is available for each pixel. For example, manually
indicating corresponding pixels in the composite and back-
ground images allows a coarse flow field to be constructed
which is then interpolated using Gaussian radial basis func-
tions to give an approximation to the mode of the recep-
tive field for each pixel. Applying a generous bounding box
to this region allows the receptive field to be computed in
40× 40 regions—yielding a 25-fold speed improvement—
with indistinguishable results. In this case, human effort is
traded for machine time.

8. Further implementation details

There are two approaches commonly used to automatically
compute homographies in the computer vision literature.

Stretching of background pattern 

Warp due to
internal changes
in glass 

Figure 12: Zoomed view of checkerboard compositefrom
figure10. Key features of the extracted matte are highlighted.

The two methods are discussed in the articles by Irani and
Anandan15 and Torr and Zisserman16.

In the firstdirect method a cost function is defined on the
raw intensities, or on the intensities after filtering, for exam-
ple a gradient filter. The cost function measures the corre-
lation under the homography between the intensities in one
image and the other. This cost is optimized over the 8 pa-
rameters of the transformation, and the optimization is im-
plemented efficiently using a coarse to fine scale pyramid
search.

In the secondfeature basedmethod, interest points are
computed in each image independently and the cost func-
tion is based on the distance between the points mapped un-
der the homography. The correspondence of four or more
points defines the transformation. The correspondences are
determined and the cost function optimized using a robust
statistical estimator based on the RANSAC principle14.

In order to obtain the background homographies, we used
interest-point matching17 to get an initial dense set of fea-
ture tracks. Some examples are shown in figure3. This gives
initial homographies which are used to approximately align
the images. The background plane homography is further re-
fined using a direct minimization over image intensities8, 18

with a robust kernel19 on the intensity comparison. In this
case the direct method produces a very good alignment of
the background portion of the various images.
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9. Examples

Examples of the performance of image-based environment
matting are shown in high resolution in figures11 and12.
In the first example the qualitative evaluation criterion is the
spatial coherence of the final composite. In this case the re-
sult is good for the majority of pixels, but at a small number
of pixels (one cluster is indicated with an arrow) the recep-
tive fields are poorly estimated. A stage where such errors
were manually indicated would allow the environment matte
at such pixels to be interpolated, thereby improving the com-
posite at the cost of a small amount of operator interaction.

The second example illustrates the composite of a
checkerboard pattern between the ancient window and the
original background. It demonstrates that even in difficult
cases, image-based environment matting allows the convinc-
ing replication of physically complex light-transport sys-
tems, and that these systems can be measured directly from
natural images even when calibration is unavailable or im-
possible.

10. Conclusions

The examples show that, although its performance is scene-
dependent, the technique can work well given sufficiently
rich backgrounds, or sufficiently many images. They demon-
strate that environment mattes can be captured under less
stringent assumptions than have previously been described.

The issue that has not been addressed here, as with the
two-image calibrated techniques of Chuang et al3, is dif-
fuse scattering. In the proposed technique, this weakens the
approximation used to estimate the per-image probability
densities, and could lead to many more erroneous receptive
fields. However, a number of strategies including multi-scale
analysis and improved prior models may offer a solution to
the problem.

The situation where the camera moves but the background
is non-planar is also difficult with current technology. In the
case of the planar background, the homography provides a
strong constraint on the background motion and allows a
clean plate to be extracted with relative ease. For a more
general background, the technique must be robust to errors
in the necessary dense stereo matching.

An interesting future application is the recovery of envi-
ronment mattes from archive footage, for example scenes
with fairground mirrors and moving cameras, or film of
destroyed glass artefacts. This would allow reflections in
curved mirrors—for example sunglasses—to be replaced in
footage where calibration is no longer possible.
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