Thirteenth Eurographics Workshop on Rendering (2002)
P. Debevec and S. Gibson (Editors)

Video Flashlights— Real Time Rendering of M ultiple Videos

for Immersive Modd Visualization

H. S. Sawhney, A. Arpa, R. Kumar, S. Samarasekera, M. Aggarwal, S. Hsu, D. Nister, K. Hanna

Vision Technologies Laboratory
Sarnoff Corp., Princeton, NJ, USA
Email:hsawhney@sarnoff.com

Abstract

Videos and 3D models have traditionally existed in separate worlds and as distinct representations. Although
texture maps for 3D models have been traditionally derived from multiple still images, real-time mapping of live
videos as textures on 3D models has not been attempted. This paper presents a system for rendering multiple
live videos in real-time over a 3D model as a novel and demonstrative application of the power of commodity
graphics hardware. The system, metaphorically called the Video Flashlight system, "illuminates' a static 3D
model with live video textures from static and moving cameras in the same way as a flashlight (torch) illuminates
an environment. The Video Flashlight system is also an augmented reality solution for security and monitoring
systemsthat deploy numerous cameras to monitor a large scale campus or an urban site. Current video monitoring
systems are highly limited in providing global awareness since they typically display numerous camera videos on
a grid of 2D displays. In contrast, the Video Flashlight system exploits the real-time rendering capabilities of
current graphics hardware and renders live videos from various parts of an environment co-registered with the
model. The user gets a global view of the model and is also able to visualize the dynamic videos simultaneously in
the context of the model. In particular, the location of pixels and objects seen in the videos are precisely overlaid
on the model while the user navigates through the model. The paper presents an overview of the system, details of

the real-time rendering and demonstrates the efficacy of the augmented reality application.

1. Introduction

In this paper, we present an immersive model-based video
visualization system, called the Video Flashlight system, that
provides an augmented reality solution for video surveil-
lance and monitoring applications. The system enables ac-
tive browsing and visualization of a 3D model of a large-
scale site by rendering multiple videos from a blanket of
ground and aerial video cameras over the model. By seam-
lessly rendering dynamic video data from multiple cameras
on top of a 3D model of a site, the system allows the users to
view the dynamic action in the context of a global 3D model
while actively viewing the integrated model and videos from
the viewpoint of a virtual camera. Thus, the system supports
seamless viewpoint change for a sky-to-street level browsing
mode with integrated views of the model and the videos.

Since any single video camera provides only a "soda-
straw" view of the world, traditional video surveillance and
monitoring systems attempt to create a global picture by sim-

(© The Eurographics Association 2002.

ply stringing together multiple camera videos on a grid of
2D displays as shown in Fig. 1. Clearly, such a display does
not allow a user to interpret the video images and actions in
the context of a global 3D model. In addition, the relative
locations of activities across multiple cameras is not made
explicit in the display and is not easily derivable from the
videos directly. In contrast, the proposed Video Flashlight
system uses a 3D model of a site to provide global context
for objects and activities seen in multiple videos. The Video
Flashlight browser renders multiple video streams in real-
time overlaid on the 3D model and allows the user to nav-
igate through the model while the videos are continuously
rendered. A snapshot of the system’s display showing ren-
dering of multiple videos on top of a 3D model is shown in
Fig. 5. It is obvious from the figure that any object seen in
any video can be easily referenced to the model.

A key component of the Video Flashlight system is the
real-time rendering of multiple live videos overlaid precisely
on a 3D model. Videos and 3D models have traditionally ex-

delivered by

www.eg.org

- = EUROGRAPHICS
: DIGITAL LIBRARY

http://www.eg.org
http://diglib.eg.org

/ Video Flashlights

Figure 1: Traditional multi-video "visualization" showing a
grid of 2 x 3 displays. The context of the videos with respect
to the environment and with respect to each other is not at
all clear in thisvisualization.

isted in separate worlds and as distinct representations. Al-
though texture maps for 3D models have been traditionally
derived from multiple still images, real-time mapping of live
videos as textures on 3D models has not been attempted. The
Video Flashlight system’s rendering of multiple live videos
in real-time over a 3D model is a novel and demonstra-
tive application of the power of commodity graphics hard-
ware. The rendering algorithms exploit known shadow map-
ping and projective texturing techniques from the graphics
literature. These algorithms are implemented using multi-
texturing modes available in the current PC graphics hard-
ware like nVidia’s boards. Our system is able to render up to
sixteen half (SIF) resolution (360 x 240) videos at a time on
a model of moderate complexity at 30Hz on a 1GHz PC with
nVidia’s GeForce4 Ti4600 board, while allowing the user to
change the viewpoint of a virtual camera interactively. By
switching between multiple sixteen camera videos, the sys-
tem can provide live rendering from numerous cameras at
interactive rates.

This paper presents an overview of the Flashlight system
architecture and describes the online rendering algorithm. In
order to enable seamless rendering of the videos, the sys-
tem also allows solving for the 3D location and orientation
(3D pose) of a camera either interactively or automatically.
The real-time rendering can deal with both static and mov-
ing video cameras. However, for moving cameras, the pose
estimation is not implemented in real-time. So with off-line
camera pose estimation, moving camera videos also can be
rendered in real-time. Since moving objects in videos are
not part of the 3D site model, video textures correspond-
ing to such objects are simply pasted on the 3D model as
a part of rendering. The system is able to detect, track and
reconstruct in 3D the moving objects using computer vision
techniques. However, a full description of the aspects of the
system dealing with moving objects is outside the scope of
this workshop. For completeness sake, a brief description of
how moving objects are handled is included in the paper.

2. Overview of the Video Flashlight System

Fig. 2 shows a functional diagram of the Video Flashlight
System. In order to situate dynamic video data in the context
of a model, first, a 3D model needs to be built for the static
environment. The 3D-site model can be rapidly built using
nadir and oblique aerial imagery, and interactive and auto-
matic image processing tools13 14.9. A network of cameras is
situated to provide dynamic coverage of the site. Each cam-
era is located with respect to the model using a camera-to-
model pose estimation module. For fixed cameras, the pose
is estimated once, as a calibration step. For moving cameras
(e.g. Pan/Tilt/Zoom and aerial cameras), pose needs to be
estimated every frame.

The base level Video Flashlight Browser uses the 3D
site model, and renders multiple videos from the cameras
overlaid on the model in real time while the user navigates
around the model. The rendering algorithms used in this
browser are described in detail in the next section.

The base level system can be enhanced to render and vi-
sualize unmodeled moving objects that are not modeled as
a part of the 3D site model. There are two ways in which
the system handles moving objects. The first method uses
2D processing only to detect moving objects in videos. The
detected and tracked moving objects can be overlaid as col-
ored blobs on the rendered video flashlight textures. The 2D
motion detection and rendering can be done in real-time too.
The "Motion Detector Flashlight Browser" shows the mov-
ing object blobs. However, in the 2D processing mode, mov-
ing objects, such as people and vehicles, can appear distorted
especially when viewed from a virtual viewpoint that is very
different from the viewpoint of a flashlight camera. This is
because un-modeled objects are simply rendered as textures
on surfaces that are behind the objects in the flashlight cam-
era viewpoint. In the second method for moving object pro-
cessing, stereo cameras are required as flashlight cameras.
Using stereo processing, moving objects are accurately de-
lineated from the background. The delineated objects are ei-
ther represented as 3D icons or stereo depth information is
used to create simplified models. These 3D icons or models
can then be rendered along with the site model.

3. Related Work

The focus of this paper is on model-centric live video vi-
sualization and the associated real-time hardware assisted
rendering techniques. To the best of our knowledge, real-
time rendering of multiple live video streams overlaid on a
3D model rendered from arbitrary virtual viewpoints has not
been attempted in the past. The closest work that we came
across is that of the MIT Al Lab. and Brigham and Women’s
Surgical Planning Lab. 8 on Image Guided Surgery. A live
video of a patient undergoing surgery is manually registered
using fiducials to an MRI and 3D model and the composite
images are displayed.

(© The Eurographics Association 2002.

/ Video Flashlights

' 20 Dyr=mic !
| Depth !

“ Estimaian

Oatectar

Camer =to-kMadel
FPose Estimation

C M
2
2t
=mw 20 Motion
&
o
r
o '
k

Static
Site
hode

Motion Detector

Ob ject
Flza=hlight Browessr

Tracker

“ideo Flashlight
Displ=y =nd
Browser

Figure 2: Afunctional diagram of the Video Flashlight System.

Shadow mapping techniques with hardware acceleration
have been well known in the graphics rendering commu-
nity 124, We have adapted the shadow mapping techniques
to perform real-time rendering of live videos. In addition,
the system captures multiple live videos and interfaces these
with rendering and navigation to enable interactive browsing
by users.

Image-based modeling and texture mapping have been
used in the past few years to create realistic geometry and
appearances of complex scenes. For buildings and site mod-
els, a number of systems have been developed 13-14.9. De-
bevec et al. 2 use multiple images of a scene to perform view-
dependent texture mapping with hardware acceleration and
projective textures. However, the texture mapping is for off-
line, static texturing purposes.

Moving object detection and 3D reconstruction from
video and imagery is an active area of research in computer
vision 19, Matusik et al. 7 present a technique for real-time
image based rendering of dynamic objects using visual hulls
for implicit reconstruction. Our work employs known meth-
ods of object detection and reconstruction based on stereo
cameras to enable model based moving object localization
and visualization.

4. Video Flashlight Rendering Algorithm & Imple-
mentation

The Video Flashlight rendering algorithm generates an
image at each time instant from a viewpoint, the virtual cam-
era viewpoint, specified by the user through the browser in-

(© The Eurographics Association 2002.

terface. The image consists of pixels that show real video
textures in regions that are illuminated by any of the real
cameras, and pixels that contain background model textures
for regions that are not illuminated by any camera. The
background model textures are static and are represented as
standard 3D graphics model representations along with the
3D vertices of the model triangles and their texture coordi-
nates. The textures from the live video frames change at the
video frame rate. The composite image created for any vir-
tual viewpoint combines the two in the rendering implemen-
tation. A functional diagram of rendering using one video
flashlight camera and the model is shown in Fig. 3. Multiple
video streams are handled in an identical manner.

The projection of the video flashlight textures onto a vir-
tual view cannot be achieved simply by projective texturing
coupled with automatic texture coordinate generation be-
cause of two problems. First, regions that are hidden from
the flashlight camera but are visible in the virtual view need
to be detected so that flashlight texture projections in those
regions can be eliminated. Second, since automatic texture
coordinate generation provides two solutions for each pro-
jection ray (one each for the front and back of the camera),
the projected textures behind a flashlight camera should be
ignored for the virtual view. Our approach addresses the first
problem using shadow mapping, and the second using clip-
ping planes or special texture culling operations depending
on the hardware support and performance.

Shadow mapping requires texturing, depth buffering, and
arithmetic/logical operations at the texture and fragment lev-

/ Video Flashlights

e

Virtual Camera f

Pose

Videos

\ Flashlight Camera
Occlusion Handling

Video pixels from flashlight camera

Figure 3: Afunctional diagram of the flashlight rendering algorithm with one video camera.

els. Current hardware enables shadow mapping in multiple
ways. A generic approach, supported in most common plat-
forms, employs projective textures, texture compositing and
fragment testing without the need to rely on any restrictive
hardware extension. Alternatively, dedicated extensions like
SGI extensions, that are supported by various platforms, can
be used. We have implemented the system using both the
approaches.

Segal et al. 12 and Heidrich 4 describe a hardware as-
sisted shadow mapping and rendering technique. We have
adapted the shadow mapping technique for the purposes of
Video Flashlight rendering. The light source used in the
shadow map algorithm is replaced by a real video flash-
light camera. The video texture for every frame is considered
the "illuminant”. Our generic approach implements shadow
mapping by taking advantage of projective texturing, depth
buffering, automatic texture generation, texture compositing
and alpha testing. On platforms that support multi-texturing,
like nVidia GeForce2-4 or ATI Radeon graphics cards, this
method only takes one rendering pass for shadow map gen-
eration. It is equivalent to a dedicated extension of OpenGL.

The key idea behind the algorithm is shown schematically
in Fig. 4. The algorithm can be subdivided into three stages:

1. Create the z-buffer for each camera by rendering the
scene with color masking.

2. Render the scene from the virtual camera coordinate sys-
tem.

3. In the virtual camera view, determine the pixels that are
illuminated by the flashlight camera and replace them
with the image data from the flashlight camera.

The third step outlined above resolves visibility of objects

between the flashlight cameras and the virtual view. Fig. 4
schematically shows the typical relationship of scene objects
with respect to the positions of one real flashlight camera and
the viewpoint of the user-specified virtual camera. For illus-
tration, two scene objects/surfaces, Ol and O2, are shown in
the figure. The virtual camera sees both objects O1 and O2.
However, the flashlight camera, sees object O1 only; O2 is
occluded by O1 from the viewpoint of the flashlight camera.
Only Ol is illuminated by textures from the flashlight cam-
era whereas O2 has the static model textures only. Hence,
when rendering the virtual camera view, only the pixels cor-
responding to object O1 that are illuminated by the flashlight
camera and seen by the virtual camera need to be projected
with the dynamic video textures. The occlusion handling be-
tween the flashlight cameras and the virtual viewpoint, and
the rendering of the static model need to be done at video
frame rate.

The key idea behind handling occlusions for video flash-
lights is to associate two depth values for each point in the
scene. The first depth value corresponds to the z-buffer depth
for the flashlight camera. Each scene point along a view ray
from the flashlight camera is assigned a depth value corre-
sponding to that ray’s z-buffer value, like a projective tex-
ture. The second depth value is the true depth value for each
scene point with respect to the flashlight camera. By com-
paring these two values for every point in the virtual view,
it can be established whether the point is seen by the flash-
light camera or is occluded. Points with the two depth values
identical are seen by the flashlight camera and should be ren-
dered with the flashlight video texture. Fig. 4 schematically
depicts this technique.

(© The Eurographics Association 2002.

/ Video Flashlights

4 1\
Comparison of alpha valuesfor

the pixel in screen space:

1. Z-buffer valueisa.

2. Truedepth valueisa.

()
Comparison of alpha valuesfor

the pixel in screen space:

1. Z-buffer valueisa.

2. Truedepth valueisa+b.

Sincea=a ==> No Occlusion!

Use flashlight image.
&

Distance

Sincea+b > a ==> Pixel isoccluded!

Discard flashlight image.
-

Figure 4: A schematic depicting occlusion handling for rendering a video flashlight camera and the model from a virtual

viewpoint.

The occlusion handling technique in our generic approach
is implemented as a multi-pass rendering algorithm. The
scene is first rendered in the flashlight camera coordinate
system to obtain the z-buffer. The z-buffer is stored in the
alpha channel of the texture used for flashlight video pro-
jection. This is the first alpha value. In other words, the first
alpha value for each scene point represents the depth of the
first hit for a view ray from that point to the flashlight cam-
era center (the depth ain Fig. 4). The second rendering uses
automatic texture coordinate generation to set the texture co-
ordinate for each vertex to the true depth value for the ver-
tex with respect to the flashlight camera. A 1-dimensional
ramp-texture is used to define a mapping of this depth to al-
pha values. This is the second alpha value. In other words,
the second alpha value represents the true depth for each
scene vertex in the flashlight camera coordinates. Therefore,
for all points visible from the virtual camera, we have two
alpha values that need to be compared in order to do deter-
mine which points are illuminated by the flashlight camera.
Pixels that satisfy the equality test for the alpha values are
illuminated by the flashlight camera and are rendered with
the flashlight camera texture while the rest are rendered with
the model texture.

A pseudo-code for the rendering algorithm follows:

Display {
for all visible flashlight cameras {

if (play)

(© The Eurographics Association 2002.

UpdateVideoContent(Mdeo Source, Frame Number);
if (moving)
UpdateDepthMap();
else
UpdateDepthMapOnce();
}
SetupViewport(ScreenResol ution);
Clear ScreenCol or Buffer();
Clear ScreenDepthBuffer ();
MultMatrix(Inverse(VMirtual Camera Pose));
Render Scene(Geometry+ Textures);
for all visible flashlight cameras
ExtractVisiblePixels();
}

UpdateDepthMap {
SetupViewport(DepthMapResol ution);
Clear DepthBuffer();
MultMatrix(Inverse(Camera Pose));
/I Decrease precision error by offseting the geometry
SetPolygonOffset;
MaskColors; // Only need z-buffer
Render Scene(Geometry);
ReadDepthBuffer ();
Transfer DepthToAl phaChannel (VideoTextureRGBA);

}

ExtractVisiblePixels{
SetupTexturel();

/ Video Flashlights

BindTexture(RampTexture);

/I ZToTextureCoordinateMatrix extracts

/I Z-component

SetupEyeL.inear TextureCoordinateGeneration(
ZToTextureCoordinateMatrix* Inverse(Camera Pose));

SetupTextureEnvironment(UseTextureAl phay;

SetupTexture2();

BindTexture(VideoTextureRGBA);

SetupEyeL.inear TextureCoordinateGeneration(
Inverse(Camera Pose));

SetupTextureEnvironment(
SubtractPreviousTextureAl pha,UseTextureRGB);

Enabl eAl phaTesting();

SetAlphaFunc();

/I Avoid back projection

SetupCullingPlane(Cameral magePlane);

Render Scene(Geometry);

In the algorithm, first the video content and depth maps
are updated on an as—needed basis. Depth map textures are
obtained by rendering the geometry in either the frame-
buffer or in the p—buffer. During this process, polygon offset-
ting is required in order to avoid re-sampling and precision
errors. Once all the textures are updated, the scene is ren-
dered with all the static model (background) textures. Then
for all the visible flashlight cameras, two textures are pro-
jected using the corresponding camera pose matrices. The
first texture uses an extra matrix operation (ZToTextureCo-
ordinateMatrix) to map the Z values of all the scene points
in the frustum of a flashlight camera in the camera coordi-
nates to the s coordinate in the texture coordinates. Since we
do the occlusion calculation in the texture domain, this value
is mapped to texture values using a 1-D ramp texture. The
Z-values corresponding to the scene points behind the cam-
era (hence not visible in the video) are culled by specifying
the camera image plane as the culling plane. The second tex-
ture has the z-buffer depth map in the alpha channel and the
video content in the RGB channel. The texture environment
is set such that the alpha values are subtracted from the pre-
vious texture’s alpha, which effectively implements the oc-
clusion test depicted in Fig. 4. This test is actually done on a
per-pixel basis by alpha testing while rendering.

Shadow map extensions can be thought of as special tex-
ture filters that enable some of the calculations mentioned
above in the generic approach. In order to use these exten-
sions, the z-buffer created in the first step is transferred to
a shadow map texture. The output values, usually 0 or 1,
generated by this texture, flag the pixels as shadowed or il-
luminated, and can be used for rendering the final pixels.
When the automatic texture generation in the flashlight cam-
era coordinates is turned on, for a computed texture coordi-
nate, (s,t,r,q), (s/q,t/q) points to the z-buffer value, and
r/q represents the true depth. Implicit comparison of the z-
buffer value with the true depth enables occlusion handling
in the shadow map extensions. Recall that r /q corresponds

to the 1-D ramp texture, and the comparison operation cor-
responds to the alpha test in the generic approach presented
above.

4.1. Flashlight Rendering Results

Fig. 5 shows virtual views with flashlight camera render-
ing. The top panel in the figure shows a rendering of the tex-
tured model of a site from a virtual viewpoint. The location
and orientation of seven video cameras located at the site
is shown using red camera icons. The bottom panel shows
a virtual view with the rendered textures from the seven
flashlight cameras overlaid on the textured model rendering.
Figs. 6 and 7 show close-up views of the rendering from
two flashlight cameras overlaid on the model, the former
with no blending between the rendered video frames and
the latter with blending. Note that the background texture
is not blended with the video frames since one purpose of
the flashlight display is to distinguish regions of the scene
illuminated by the cameras from the rest of the scene. Fur-
thermore, the display of blended versus non-blended video
frames may also be provided as a user selectable option since
a user might want to visualize the boundaries between the
projected video frames. The blending is currently done us-
ing a pyramid based technique - 11. We are investigating how
mip-mapping can be combined with selection and fusion op-
erations to enable the pyramid based blending in hardware.

4.2. Camera Pose Estimation

Rendering the video flashlight cameras over the model re-
quires the knowledge of the location, orientation and intrin-
sic parameters of the video cameras. We have developed an
interactive tool in which a user specifies point and line cor-
respondences between a video frame and a 3D rendering of
the model. The system automatically uses photogrammetry3
to solve for all the camera parameters.

The video flashlight system can also handle moving cam-
eras. In the case of moving cameras, the pose estimation
needs to be done continuously over the video to obtain the
camera pose at every frame instant. We employ the algorithm
developed by Hsu et al. > to compute moving camera poses.
The system is initialized manually in one frame of the video.
Subsequently, the pose estimation continuously tracks the
cameras using the previous frame’s pose as initialization and
by refining the pose estimate for every new frame. The re-
finement is done by iteratively aligning strong linear features
in a video frame to lines defined by intersection of planes
in the model. The existing site model is considered to be a
collection of untextured polygonal faces. Face edges in the
given model imply discontinuities in surface normal and/or
material properties in the actual 3D scene, which generally
induce brightness edges in the image. The alignment method
selects 3D line segments from the model and projects them
onto the video frame using the current pose estimate. The
local edge strength in the image itself is represented as an

(© The Eurographics Association 2002.

/ Video Flashlights

PV - [Observi]

Figure 5: Video Flashlight Rendering: Top: A rendering of a textured model of a site with the location and orientation of
video flashlight cameras shown in red. Bottom: Rendered view of the textured model and flashlight camera textures for 7
cameras rendered froma virtual viewpoint. The rendered view shows the effect of "illuminating" the scene with live cameras by
"switching" on the cameras. The switched on cameras are shown in blue.

(© The Eurographics Association 2002.

/ Video Flashlights

Frame0afo N

Figure 6: A close-up virtual view from ground level in which two flashlight cameras are rendered without blending.

oriented energy field. Model lines are projected to the orien-
tation image which is nearest their orientation. Fig. 8 shows
the video to model alignment inputs and outputs.

Fig. 9 shows flashlight rendering of two frames from a
video captured using a camera mounted on an autonomous
helicopter. The pose estimation of the video frames was done
off-line. Using the estimated poses, the flashlight render-
ing algorithm was used to render the video frames over the
model. The figure also shows a moving object (running per-
son) circled in orange color. This illustrates the idea that even
from a moving camera, using flashlight pose estimation and
rendering, a moving object can be localized and visualized
in the context of a 3D model.

5. Moving Object Processing & Visualization

Moving object detection and tracking is used to enhance
the visualization of moving objects in the flashlight browser.
The flashlight rendering algorithm described above will ren-
der unmodeled moving objects as textures on background
surfaces. By detecting the moving objects, the user can be
alerted to their presence and they can be visualized as col-
ored moving blobs or icons.

Fig. 10 shows a method of detecting foreground objects
using 2D and 3D Moving Object Detection. The first step

is to create a reference background image for each of the
videos. One method of performing this is presented in Irani
et.al. where a background reference image is constructed
by taking the median of a stack of images. The result is a ref-
erence image that does not contain any foreground objects.
This is shown at the bottom left of Fig. 10. The reference
image can then be subtracted from the current video image.
The absolute value at each point can then be computed, and
the result can be thresholded in order to highlight intensity
or feature differences between the current video image and
the reference image. The final result is shown in the image in
the middle and to the top of Fig. 10. Differences are shown
in yellow. Note that differences due to the vehicle and peo-
ple have been correctly detected. These positions in the im-
age can be reported to the browser and rendering module
and displayed on the screen. The reference background im-
age needs to be constantly updated during the day to reflect
changing ambient illumination. Alternatively only moving
objects may be detected by comparing current image with
an image taken a few seconds before. The 2D moving object
detection can be done in real time.

The advantage of 2D moving object detection is that only
one camera is required. The disadvantage is that objects such
as shadows are incorrectly detected as being foreground ob-
jects. These errors are corrected using 3D moving object

(© The Eurographics Association 2002.

/ Video Flashlights

Figure7: A close-up virtual view fromground level in which two flashlight cameras are rendered with blending.

detection as shown in the right of Fig. 10. 3D moving ob-
ject detection begins by recovering a depth or shape map
of the background scene where there are no foreground ob-
jects. This can be recovered either directly from the static
site model, or it can be recovered from a range-finder de-
vice, or it can be recovered by performing depth estimation
using two or more cameras when it is known that there are
no foreground objects in the scene. The result is a back-
ground depth or shape map, shown at the bottom right of
Fig. 10. The image is coded such that brighter intensities rep-
resent closer objects, and darker intensities represent further
objects. Depth or shape recovery is then performed on the
current video imagery using stereo cameras . The depth or
shape of the current scene is then subtracted from the depth
or shape of the background scene. The absolute value of the
difference at each point can then be computed, and the result
can be thresholded in order to localize areas in the scene that
have a different shape from the background. Since shadows
are projected onto the background scene, they are identified
as belonging to the background shape or depth, and are not
identified as foreground objects. A further advantage of 3D
over 2D is that the depth or shape of the object is recovered.
This can be used in 3D modeling of dynamic objects.

Once the foreground objects have been segmented, either
in 2D or 3D, blobs or icons can be used to render the objects

(© The Eurographics Association 2002.

with the 3D model. Fig. 11 shows multiple moving objects
detected in multiple videos rendered as blobs from a vir-
tual viewpoint along with the video textures and the model.
Fig. 12 shows a similar rendering but with 3D icons and ob-
ject tracks representing people and vehicles.

6. Conclusions

We have presented the concept of Video Flashlights and
described a system that integrates live video images with 3D
models for augmented reality applications. Seamless inte-
gration and visualization of 3D models and live videos is
achieved by adapting shadow mapping algorithms to video
flashlight rendering using commaodity PC graphics hardware.
Current performance enables up to 16 half resolution videos
to be rendered in real-time. Furthermore, we also presented
methods that will allow detection, representation and visu-
alization of moving objects along with the video and model
textures. We are currently designing a scaleable system ar-
chitecture that will extend the current system to handle nu-
merous video inputs by a combination of multiple rendering
systems like the one presented here, and view-dependent se-
lection of flashlight cameras.

/ Video Flashlights

(b)

15
Figure 8: Alignment of video to site models: (a) Original video frame, (b) 3D site model, (c) Oriented energy image with 4

major orientations: 0, 45, 90 & 135 degrees; Model lines used for alignment are overlaid on top in red. (d) Model lines are
projected on to the image using estimated pose.

Figure 9: Flashlight rendering of two frames of a video captured from a moving aerial autonoumous helicopter.

(© The Eurographics Association 2002.

/ Video Flashlights

Moving ohjects represented as 2D masks. Note shadows are detecied too

Depth Sequence

Background Depth

L. Moving ohjects

rep resented as 3D masks
2 Only moving peop ke or
3D Change Image [cars are detected.

Figure 11: Detected moving objects in two cameras represented as 2D blobs rendered with the flashlight browser. Color of each
blob represents the camera in which it was detected.

(© The Eurographics Association 2002.

/ Video Flashlights

Figure 12: Moving objects detected in 3D and rendered as icons representing people and vehicles, rendered with the flashlight
browser. Each object is color-coded with a unique color and its track over timeis also shown.

Acknowledgments

We are grateful to the anonymous reviewers whose comments
helped us greatly improve this presentation. This work has been sup-
ported in part by the Air Force Research Laboratory under Contract
number F30602-00-C-0143.

References

[1]

[2]

31
[4]

[5]

(6]

P.J. Burtand E. H. Adelson. A multiresolution spline with ap-
plications to image mosaics. ACM transactions on Graphics,
2(4):217-236, 1983,

Paul E. Debevec, Yizhou Yu, and George D. Borshukov. Ef-
ficient view-dependent image-based rendering with projective
texture-mapping. In Eurographics Rendering Workshop 1998,
Vienna, Austria, Edited by George Drettakis and Nelson Max,
pages 105-116, 1998.

O. D. Faugeras. Three-dimensional computer vision: A geo-
metric viewpoint. 1993.

Wolfgang Heidrich. High-quality Shading and Lighting for
Hardware-accelerated Rendering. PhD thesis, University of
Erlangen, 1999.

S. Hsu, S. Samarasekera, R. Kumar, and H.S. Sawhney. Pose
estimation, model refinement, and enhanced visualization us-
ing video. In CVPROO, pages 1:488-495, 2000.

M. Irani, B. Rousso, and S. Peleg. Computing occluding and
transparent motions. International Journal of Computer M-
sion, 12:5-16, 1994.

[71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

Wojciech Matusik, Chris Buehler, and Leonard McMillan.
Polyhedral visual hulls for real-time rendering. In Proc. 12th
Eurographics Workshop on Rendering, pages 115-125, 2001.
Project on Image Guided Surgery.
http://www.ai.mit.edu/projects/medical-
vision/surgery/surgical_navigation.html.

PhotoModeler. http://www.photomodeler.com.

Keith Price. Computer vision online bibliography.
http://iris.usc.edu/Vision-Notes/bibliography/contents.html.
H.S. Sawhney, R. Kumar, G. Gendel, J. Bergen, D. Dixon, and
V. Paragano. Videobrush: Experiences with consumer video
mosaicing. In WACV98, 1998.

Marc Segal, Carl Korobkin, et al. Fast shadow and lighting
effects using texture mapping. SIGGRAPH, pages 249-252,
July 1992.

General Dynamic Information Systems GLMX System, 1993.
See also Rapid Generation and Use of 3D Site Models to
Aid Imagery Analysts/Systems Performing Image Exploita-
tion. Proc. of the SPIE, Vol. 1944, Conference on Integrating
Photogrammetric Techniques with Scene Analysis and Ma-
chine Vision, April 1993.

C.J. Taylor, P.E. Debevec, and J. Malik. Modeling and render-
ing architecture from photographs: A hybrid geometry- and
image-based approach. SSGGGRAPH, pages 11-20, August
1996.

(© The Eurographics Association 2002.

