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Abstract
This paper describes a new acceleration technique for rendering algorithms like path tracing, that use so called
gathering random walks. Usually in path tracing, each traced path is used in order to compute a contribution to
only a single point on the virtual screen. We propose to combine paths traced through nearby screen points in such
a way that each path contributes to multiple screen points in a provably good way. Our approach is unbiased and
is not restricted to diffuse light scattering. It complements previous image noise reduction techniques for Monte
Carlo ray tracing. We observe speed-ups in the computation of indirect illumination of one order of magnitude.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Three-Dimensional Graphics and Realism]:
Color, shading, shadowing, and texture; Ray tracing

1. Introduction

The generation of photo-realistic images has been one of the
main goals of computer graphics for over 25 years. The al-
gorithms that produce the most convincing images today,
are based on a simulation of light transport according to
the laws of physics. Such illumination simulation requires
to solve the rendering equation 10, a Fredholm integral equa-
tion of the second kind. Both deterministic and Monte Carlo
methods have been proposed to tackle this problem. To date,
Monte Carlo algorithms appear to deal significantly more
easily with complex scenes, containing for instance procedu-
rally defined geometry exhibiting non-diffuse light emission
and scattering.

One can distinguish basically three kinds of Monte Carlo
global illumination algorithms: 1) algorithms in which the
trajectory of light particles originating at light sources is
simulated according to the laws of physics (shooting algo-
rithms), 2) algorithms simulating the path of similar imagi-
nary particles originating at the observer position rather than
the light sources (gathering algorithms), and 3) hybrid algo-

rithms in which paths are traced both from the light sources
and from the observer position. The prototype example of
a gathering algorithm is stochastic ray or path tracing 5; 10.
Bidirectional path tracing 15; 24 and two-pass algorithms such
as photon mapping 9 are examples of a state-of-the-art hy-
brid algorithms.

This paper focuses on gathering algorithms such as (but
not restricted to) path tracing. The computational cost of
such algorithms can be very high: usually, hundreds of ran-
dom walks need to be traced per screen pixel in order to
obtain a smooth image, in which statistical noise is not ob-
jectionable to the human eye anymore. Each random walk
requires numerous visibility tests to be performed by ray
shooting, as well as light emission and scattering distribution
evaluations and sampling operations. With a simple shad-
ing model, such as the Phong model, visibility testing easily
takes over 85% of the total computation time. State-of-the-
art PC’s allow to shoot hundreds of thousands of rays per
second. Still, computing a medium resolution image (e.g.
640�480 pixels) can take hours this way.
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Figure 1: The basic idea of the paper: (left) in path tracing, the illumination received in each image pixel is computed by
tracing a path through each pixel; (center) noise is reduced by tracing multiple independent paths through each pixel; (right)
we propose to re-use paths shot through nearby pixels in order to reduce noise. We do so by tracing a single shadow ray per
pair of paths in a group, connecting points xi with y j, i; j = 1;2;3; i 6= j as indicated by the dashed lines. Stated roughly, this
results in additional paths at the cost of single rays. With appropriately chosen combination weights, no bias is introduced.

The cost of such algorithms can be reduced by either re-
ducing the number of paths to be traced in order to obtain
an acceptable image, or by reducing the cost per traced path.
Techniques such as adaptive pixel super-sampling 17; 14, path
differentials 8; 22, low discrepancy and interleaved sampling
11; 13, hybrid algorithms such as bi-directional path tracing
and two-pass methods such as photon mapping, aim at a re-
duction of the number of paths to be traced. The latter ob-
tain this effect in part by re-using paths traced from light
sources for multiple measurements to one or more screen
pixels. Metropolis light transport25 is an extreme example:
subsequently traced paths often do not differ in more than
one path vertex, which has been changed according to some
mutation strategy.

Russian roulette and splitting 1; 3 aim at a reduction of the
cost per path by tuning the path depth and branching fac-
tor. Interpolation and smoothing techniques such as irradi-
ance caching 27, anisotropic diffusion 16 and the discontinu-
ity buffer 12 reduce the cost per path by amortizing the cost
over different screen pixels. Also the adaptive image filtering
techniques in 19; 23 can be interpreted in this way.

In this paper, we present a new technique to amortize the
cost of path tracing over several screen pixels. Rather than
smoothing or interpolating the energy in nearby screen lo-
cations, we propose to combine paths traced through nearby
screen locations so that each path yields a contribution to
multiple screen points (see figure 1). We will show that this
can be done for non-diffuse light scattering, and without in-
troducing bias. The principle was proposed before by the
third author in the context of sequential Monte Carlo meth-
ods for solving of linear systems7. Note that unlike hybrid
and two-pass algorithms, in which gathering paths are com-
bined with shooting paths, only gathering paths are involved
here.

In §2, we present the basic idea in general. Next, we will
work out its application to stochastic ray tracing in §3.

2. The principle of re-using gathering random walks

We first discuss the principle of gathering path re-use in the
context of the solution of a system of linear equations, such
as the radiosity system of equations. In §2.4, we generalize
the principle to the solution of integral equations like the ren-
dering equation. The re-use of random walks, as presented
here, can be applied wherever gathering random walks are
used. It is certainly not restricted to radiosity or ray tracing.

2.1. Gathering Random Walk Estimators

First, we will explain how a system of linear equations can
be solved using gathering random walks. Consider a system
of linear equations

xi =

N

∑
j=1

Hi jx j +ai i = 1; : : :N: (1)

Consider now a sequence of indices γr 2 1; : : : ;N, con-
structed as follows: the first index γ1 is chosen from the set
1; : : :;N with birth probability Rγ1 . The second index γ2 is
chosen conditional on γ1 with transition probability pγ1;γ2 .
Subsequent indices γr are selected similarly, conditional
w.r.t. γr�1 with probability pγr�1;γr . A sequence of indices
like this is an example of a random walk. The indices corre-
spond to the states of the random walk. The birth probabil-
ities Ri need to be normalized (∑i Ri = 1), but the transition
probabilities can be sub-critical: in case ∑ j pi j < 1 for a cer-
tain index i, the construction of the sequence is terminated at
i with absorption probability αi = 1�∑ j pi j > 0. The proba-
bility associated with the whole sequence γ̄ = [γ1;γ2; : : :;γl],
is p(γ̄) = Rγ1 pγ1;γ2 : : : pγl�1;γl αγl .

One can also associate a value, or score, with a random
walk γ̄. For instance:

gG
r (γ̄) =

δr;γ1Hγ1;γ2 : : :Hγl�1;γl aγl

p(γ̄)
:
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δr;γ1 denotes Kroneckers delta (1 if r = γ1 and 0 other-
wise). It can be shown that the expected value E[gG

r ] =

∑γ̄ gG
r (γ̄)p(γ̄) of the scores above, for arbitrary random walks

γ̄ constructed as outlined, equals xr if certain conditions 6; 18

are fulfilled. One important condition is that pi j shall not be
zero if Hi j isn’t. In short: by generating random walks γ̄ and
averaging their scores gG

r (γ̄), one can solve the system of
linear equations (1).

The procedure outlined here is called gathering, and gG
r is

called a gathering estimator, because it uses random walks
starting from a state r where one wants to “measure” the so-
lution of the system. The scores shown above are non-zero
only when the source term aγl of the system is non-zero at
the state γl where the walk is terminated. Because it esti-
mates only at absorption, it is called an absorption estimator.
gG

r is also called an unbiased estimator, because its expected
value equals xr exactly. It is but one example of a random
walk estimator for linear systems. Many more such estima-
tors are described in literature 6; 18.

2.2. Re-using gathering random walks

Let us now define a new estimator gi for xi in (1) in the fol-
lowing way. We select a term γ1 in the sum in (1) with prob-
ability Rγ1 , and a path γ̄ = [γ1;γ2; : : :;γr; : : :] with probability
p(γ̄), and define:

gi =
Hiγ1

Rγ1
gG

γ1 +ai (2)

where gG
γ1 is an arbitrary gathering random walk estimator

for xγ1 using path γ̄. The new estimator gi will be unbiased if
i) R j > 0 whenever Hi j 6= 0 and ii) gG is unbiased.

Proof: (sketch of —) The proof follows directly from
the premises and the definition and general properties of
expected values: E[gi] = ∑γ1 [(Hiγ1=Rγ1)E[gG

γ1 ]+ai]Rγ1 =

∑γ1 Hiγ1 xγ1 +ai = xi.

The benefit of the new estimator can be understood as
follows: consider another index k, so that Rj > 0 whenever
Hk j 6= 0. Then, gk can be sampled simultaneously with gi.
In general, if SR is the set of states that fulfill this condition,
then all states in SR can be estimated simultaneously. This is
the same as saying that one path γ̄ can be reused for all states
in SR, and one state in SR can reuse all paths generated from
states γ1 with Rγ1 > 0.

Particular cases:

If we take R j > 0 for all j = 1 : : :N, then SR covers all in-
dexes (states). An example of this is the uniform distribution,
R j =

1
N where N is the number of indexes (states).

Another possibility is to fix a particular state h and to take
R j = ph j. In this case, the set SR contains the states k that
fulfill the following condition: all states j, for which Hk j 6= 0,
can be reached by sampling a random walk transition from
h: ph j > 0.

2.3. Application to Radiosity

In principle, it is possible to apply the new estimator to the
radiosity problem. In the radiosity method 4; 21, the following
system of linear equations needs to be solved:

Bi = ∑
j

ρiFi jB j +Ei: (3)

Bi denotes the radiosity of a patch i, Ei the emissivity, ρi
the reflectivity and Fi j the (unknown) form factor between
patches i and j.

During the last 12 years, numerous Monte Carlo algo-
rithms have been proposed for the radiosity problem. Many
of these solve the linear system above by means of random
walks 2. The use of gathering random walks in this context
is discussed in 20. Monte Carlo radiosity algorithms are all
based on the observation that the form factors can be inter-
preted as probabilities, which, although unknown and costly
to compute, are easy to sample and to use as transition prob-
abilities for sampling random walks. In this way, one can
avoid having to compute the numerical value of form factors
and to store form factors or links between patches.

Estimator (2) becomes in this context

gi =
ρiFiγ1

Rγ1
gG

γ1 +Ei (4)

Using this estimator in a naive way however, implies com-
puting form factors explicitly, which is what one wants to
avoid by using a random walk algorithm.

2.4. Integral equations

Fredholm integral equations of the second kind

f (X) =

Z
D

H(X ;Y ) f (Y )dY +a(X): (5)

can be solved in a similar way. The states of the random
walks now correspond with points X and Y in the domain D
of the integral, rather than with indices i or j before. The dis-
crete probabilities of before now become continuous proba-
bility densities. The estimator corresponding to (2) is

g(X) =
H(X ;γ1)

R(γ1)
gG

(γ1)+a(X): (6)

Again, gG
(γ1) can be any random walk gathering estimator

for f (γ1) using paths γ̄ = [γ1;γ2; : : :;γr; : : :]. As before, g is
unbiased if R(Y )> 0 whenever H(X ;Y ) 6= 0 and gG is unbi-
ased. Similar to the latter particular case in section 2.2, one
can fix a point X? and take R(Y ) = p(X?

;Y) (p(X ;Y) is the
transition pdf used to generate paths γ̄). In order to ensure
unbiasedness of first gG, and then g, the pdf p must fulfill
the condition p(X ;Y )> 0 whenever H(X ;Y) 6= 0.

3. Application to Path Tracing

Path tracing 10 corresponds to the solution of the rendering
equation, an integral equation similar to (5), by means of
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gathering random walks. In this section, we work out the
application of path re-use, explained above, to path tracing.

3.1. Path tracing

In order to obtain a one-to-one correspondence with equa-
tion (5) and (6), we consider the following somewhat un-
usual form of the rendering equation, relating the radiance
L (x;ωx) at a scene surface location x coming in from the
direction ωx with the incident radiance L (y;ωy) at a dif-
ferent location and direction (y;ωy):

L (x;ωx) = L e (x;ωx) (7)

+

Z
S

Z
Ω

H(x;ωx;y;ωy)L
 

(y;ωy)dydωy

H(x;ωx;y;ωy) = δ(y;h(x;ωx)) fr(y;�ωx;ωy)jωy �Nyj: (8)

The source term L e (x;ωx) = L!e (h(x;ωx);�ωx) is the
self-emitted radiance towards x emitted from the first point
h(x;ωx) seen from x in the direction ωx. The right hand
side of the equation contains a double integral: over pairs
of surface points and directions in the scene. δ(y;h(x;ωx))

is a Dirac delta function, which is zero for all points y
that differ from h(x;ωx), and which has the property thatR

S δ(y; z)F(y)dy = F(z) where F is some function of surface
points. Ny denotes the surface normal at y. fr(y;�ωx;ωy) is
the bsdf at y. In the sequel, we will omit the “ ” and let
L(x;ωx) denote incident radiance.

Image synthesis requires that solid angle integrals like the
following are solved for every screen pixel i:

Li
=

Z
Ω

Mi
(o;ωo)L(o;ωo)dωo: (9)

o denotes the observer position, and Mi is a “measurement”
or “detector response” function associated with the pixel i.
In the easiest case, the measurement function is a box func-
tion corresponding to the pixel i. With proper normalization,
Li then is the average radiance towards the observer position
o coming through the pixel. A pinhole camera model is as-
sumed. Finite aperture camera models (depth of field), give
rise to a double integral: also over for instance the camera
film surface.

In path tracing, these equations are solved by simulating
random walks originating at the observer position (see fig-
ure 2). The states of the random walks are pairs (x;ωx) of a
surface point x and a direction ωx from where illumination
is received at x.

More precisely, the random walks are traced with birth
probabilities βi

(o;ωo) which usually are equal to the pixel
measurement function Mi

(o;ωo) (for instance: uniform
pixel sampling). The transition probabilities p(x;ωx;y;ωy)

do not depend on the pixel i. A common choice is:

p(x;ωx;y;ωy) = δ(y;h(x;ωx)) pr(y;�ωx;ωy): (10)

They are the product of two factors:

ωo

ωx

ωz

yω

o

x

z

y

Figure 2: The random walks in path tracing are sequences
of position/direction pairs (o;ωo), (x;ωx), (y;ωy), (z;ωz),
. . . as shown in this figure. o corresponds to the viewing po-
sition. x is the surface point visible from o along direction
ωo, etc. Light is transported in the reverse directions. In ad-
dition, shadow rays (dashed lines) are traced from each path
vertex to light source locations (next event estimation).

1. the factor δ(y;h(x;ωx)) indicates that the point y is
uniquely determined by the pair (x;ωx). (Visibility, sur-
face orientation and distance are accounted for implicitly,
by the directional parametrization);

2. a sub-critical probability density function pr(y;�ωx;ωy)

for 1) sampling whether a random walk arriving at y from
direction �ωx shall be terminated or continued, 2) sam-
pling a scattered direction ωy if survival is sampled. Ide-
ally, it is equal to the product of the bsdf fr(y;�ωx;ωy)

times the cosine jωy �Nyj.

Since the probability that such a path lands on a light source
is small, one traces from each surface point hit by the path,
so called shadow rays to the light sources in order to estimate
the direct illumination at the hit point (see figure 2). This is
called next event estimation in Monte Carlo literature.

3.2. Re-using paths in path tracing

Equation (6) now immediately suggests that incident radi-
ance estimates L̃γ̄

(y;ωy) � L(y;ωy) at a location y, using a
random walk γ̄ visiting (y;ωy), can be re-used for simulta-
neously estimating the radiance incident from y at a set of
different locations xi:

H(xi
;ωxiy;y;ωy)

R(y;ωy)
L̃γ̄
(y;ωy)+Le

(xi
;ωxiy)� L(xi

;ωxiy):

Note that the direction of incidence ωxiy at xi is fixed: it

needs to be the direction from xi to y. As direct illumina-
tion is estimated by explicit light sampling, we will omit the
source term Le in the sequel here.

We will apply this idea in the following way: consider, to
start with, a contiguous set of nv� nh pixels, which we call
a nv� nh image tile τ. Through each pixel k in the tile, we
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will trace a path (o;ωk
o); (x

k
;ωk

x); (y
k
;ωk

y); : : :, exactly in the
same way as in standard path tracing. o denotes the observer
position, xk is the surface point directly visible in pixel k,
along the direction ωk

o, ωk
x is a scattered ray direction at xk ,

yk is the nearest surface location hit by this scattered ray,
and ωk

y is the scattered ray direction at yk. The theory thus
prescribes that it might be possible to re-use a random walk
traced through a first pixel i in order to compute the pixel
intensity in each other pixel j in the tile. Vice versa, the pixel
intensity in each pixel i might possibly be computed using all
paths traced through each of the pixels j in the tile:

L̃(xi
;ωxiy j ) =

H(xi
;ωxiy j ;y j

;ω j
y)

R j(y j
;ω j

y)
L̃γ̄
(y j

;ω j
y):

In order to estimate the indirect radiance emitted from xi to-
wards the observer position o (needed in (9)), the above esti-
mates for incident radiance to xi from each y j are combined
as follows:

L̃ind
(o;ωi

o) = ∑
j2τ

wi j � fr(x
i
;�ωi

o;ωxiy j )jωxiy j �Nxi j

�
H(xi

;ωxiy j ;y j
;ω j

y)

R j(y j
;ω j

y)
L̃γ̄
(y j

;ω j
y): (11)

Unbiased estimation follows if i) the weights wi j sum up
to 1, ii) L̃γ̄

(y;ωy) is an unbiased estimator for the incident
radiance L(y;ωy), and iii) the probabilities R j

(y;ωy) are non-
zero whenever H(xi

;ωxiy;y;ωy) is non-zero.

3.3. The probabilities R j
(y;ωy) and weights wi j

The probabilities R j
(y;ωy) are dictated by the application

of path tracing from the points xj . They are R j
(y;ωy) =

pr(x j
;�ω j

o;ωx jy)p(x j
;ωx jy;y;ωy). Note that it does not mat-

ter how the points xj and directions ω j
o are obtained. They

are obtained by pixel sampling in our case, but could also be
obtained in different ways in other applications. Note also
that these expressions give rise to ratios of Dirac pulse func-
tions. They are an artifact of the parametrization and shall be
taken equal to 1.

Unfortunately, these probabilities do not in general allow
unbiased estimation of L(xi

;ωxiy) at pixels i 6= j, since they

may vanish when H(xi
;ωxiy;y;ωy) 6= 0. This can happen be-

cause of occlusion (point xj does not “see” all points y visi-
ble from xi), due to surface orientation (some surfaces facing
xi are facing away from xj), or due to the bsdf/pdf’s at the
involved surfaces. Taking equal weights wi j = 1=(nv� nh),
or using classical techniques for combining Monte Carlo es-
timators with fixed weights wi j based on the co-variance ma-
trix 18, will therefore not work.

Fortunately, it is possible to obtain unbiased estimation
using averages (11) with non-constant weights wi j(y;ωy), as
long as for every (y;ωy) that can contribute illumination to
xi, there is at least one j with non-zero associated Rj

(y;ωy).

z 11 z 12
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14z

z 21

z 22
z 24

z 23

z 32

z 31

z 33

z 34
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y
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y
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Figure 3: Shadow rays at the secondary hit points yj of the
paths can be re-used easily as well for computing first or-
der indirect illumination at the points xi. If 4 shadow rays
are traced from every yj (as shown in this illustration), each
connection between two paths (dashed lines) yields 4 new
samples for first order indirect illumination at the xi. Note
that the required visibility tests are already done for re-using
the scattered path at the yj points (see figure 1-right).

This is, of course, always the case: by tracing paths from xi

itself, no non-zero illumination contributions to xi are over-
looked. Note that combination with (11) reduces to stan-
dard path tracing when the weights are chosen wi j = δi j.
Veach 24 has proposed provably good and practical heuristics
for chosing weights in such situations. His balance heuristic,
for instance, in our case translates to

wi j(y;ωy) =
R j

(y;ωy)

∑k2τ Rk(y;ωy)
: (12)

Besides a visibility test, each connection thus requires to
evaluate the distance, cosines, and the bsdf and scattering
pdf at both connected path vertices xi and y j. The weights
(12) are evaluated for (yj

;ω j
y). For fixed j, they turn out to

be equal for all i.

In the appendix, we outline a more technical derivation of
this result, from an alternative point of view.

3.4. Explicit light sampling

As explained before, the efficiency of path tracing can be
very low unless explicit light sampling (next event estima-
tion) is carried out at each path vertex, including all yj . The
light samples z jl at y j can be used for the perturbed direc-
tions to all xi in the tile, in addition to the direction to xj ,
where the path came (see figure 3). No additional visibil-
ity tests are required. It is sufficient to re-evaluate the bsdf
fr at y j for each pair of light source sample point zjl and
ancestor point xi. The combination weights are identical to
the weights (12), except that they now contain the probabil-
ities pl(y

j; z jl
) by which light source points zjl are sampled,

rather than the probabilities pr(y j
; :; :) of BSDF-based sam-

pling at y j (see appendix).

c
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3.5. Choosing an appropriate tile size

The choice of the tile size is subject to two contradicting re-
quirements: on the one hand side, one will obtain a more
prominent variance reduction by chosing a large tile size,
thus re-using many paths. On the other hand, a smaller tile
size yields a lower additional cost as fewer BSDF evalua-
tions and visibility tests need to be done per path, and leads
to more effective combinations due to higher coherence at
different levels:

� First, the smaller the distance between the points xi, the
higher the chance that the pairs of points (xi, y j) will be
unoccluded;
� Second, shadow rays to be traced for performing the vis-

ibility tests originating at each point y are aimed into
highly similar directions and will take less computation
time since parts of the scene to be traversed will already
be present in high speed memory caches. These shadow
rays could for instance be traced efficiently in bundles 26;
� Third, the directions ωxiy j will be close to the directions

ωx jy j obtained by BSDF-based sampling;
� Fourth, the correlation between the radiance estimates at

different pixels in a tile manifests itself in the form of re-
duced noise compared to independent estimation (positive
co-variance).

The next section describes a heuristic that can help to choose
an appropriate tile size.

3.6. Efficiency improvement

The efficiency gain that can be obtained by re-using paths
depends on the average path length l, the number k of ex-
plicit light samples at each path vertex and the number N of
paths that are combined in a group. Let’s measure the cost
as the number of visibility tests to be performed. The cost
of tracing a single path is then on the average l + lk. For N
paths, the cost is Nl(k+1). Re-using the paths in groups of N
takes an additional N(N�1) visibility tests, leading to a total
cost of Nl(k+1)+N(N�1). Now suppose that path re-use
would yield the same accuracy as tracing Nm independent
paths, with 1� m� N. The cost of tracing Nm independent
paths is Nml(k+1). The gain can then be estimated as

ν =
l(k+1) �m

l(k+1)+ (N�1)
:

Example: suppose the average path length l � 4. With N =

16;k = 16 and a number of effective combinations m = 12,
the gain would be ν� 9:8. The ratio m=N of course depends
on the scene, view and image resolution.

In addition, there is a positive covariance of the estima-
tors, which exhibits itself in a reduced difference between
the pixels pierced by the connected paths.

On the other hand, the gain is not equally large every-
where. In particular, re-using paths when H(x;ωx;y;ωy) is
small, yields little benefit. This is the case when the bsdf

Figure 4: In order to make noisy artifacts in the images less
noticeable, we recommend to combine pixels in N-rooks like
patterns (middle) rather than in solid rectangles (left). When
the tiles are also shifted in subsequent passes through the
image (right), their boundaries quickly become invisible.

Figure 5: These images have both been obtained with 2
paths per pixel, combining paths in groups of 16. The only
difference is in the arrangement of the paths that are com-
bined: 4�4 pixel blocks (left) and in N-rooks configurations
(right). The images have similar average numerical error
(the left one should even have slightly lower error), but per-
ceptually, the right image is clearly better.

is small, or when surfaces are viewed at grazing angles,
for instance near certain edges. The efficiency can be im-
proved in such situations by reducing the number of visibil-
ity tests. This could be done by using Russian roulette like
techniques 1 based on the combination weights (12).

3.7. Making noise less visible

A fixed subdivision of the screen in rectangular tiles, results
in disturbing discontinuities at the tiles edges. These discon-
tinuities only disappear for a large number of paths per pixel.
It seems that the noise patterns that result from naive appli-
cation of our method are of a frequency for which the human
eye is more sensitive. Although numerically, the error may
have decreased significantly, perceptually, the error remains
large.

We implemented two simple measures in order to trans-
late the resulting low-frequency noise to less noticeable
noise patterns of a higher frequency (see figure 4 and 5):

� we combine pixels in N-rooks like configurations rather
than in solid rectangles;

c
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� the image tiles are shifted in subsequent passes through
the image, so that their boundaries are in different places.
For instance, by shifting 8x8 tiles 1 pixel horizontally and
vertically in each pass, the boundaries totally disappear
after 8 passes.

These measures hardly affect the numerical error of the re-
sulting images. Instead, they shift noisy patterns to a fre-
quency band for which the human visual system is less sen-
sitive (see figure 5).

4. Results

Figures 6 and 7 show some results obtained with the algo-
rithm described above. The simple scene in figure 6 allows
to compute a highly accurate solution within reasonable time
(one night). This reference solution has been used for de-
tailed studies of the error reduction rate obtained with the
algorithm. The figure clearly shows the improvement in dif-
fuse and glossy indirect illumination when re-using paths.
The reduction of the mean square difference w.r.t. the con-
verged solution was about a factor of 9, largely independent
of the sampling rate, but of course depending on the number
of paths that is combined (16 in this case). Image 6f shows
that the error reduction is, as predicted, not uniform: near
object edges, re-using paths can become slightly less effec-
tive because paths shot through neighboring pixels do not
provide useful information about the illumination above the
surface hit by the first path. Still, there is a significant im-
provement even near edges, as can be judged from figures
6c and 6d. The additional cost of path re-using in this sim-
ple scene is however quite large: about 83% when combin-
ing paths in groups of 16, due to the number of additional
BSDF and PDF evaluations (32 per pixel). Timings were 54
seconds without path re-use and 99 seconds with path re-
use for the shown 256�256 pixel images 6c and 6d, on a
850MHz Pentium-III based laptop computer. The shown ex-
ample is a worst-case example: both ray shooting and light
source sampling (only a single light sample per path vertex;
only one light source) are extremely cheap in this case. Even
in this worst case however, there still is a considerable nett
gain: factor 9 variance reduction, divided by 99/54 = 4.9 nett
speed-up.

Figure 7 shows a more complex example: a building
floor model with 315,000 polygons of which 2450 are light
sources. The high number of light sources necessitates im-
portance sampling of direct illumination at path vertices.
At every path vertex, such importance sampling requires
10 floating point additions and 10 multiplications per light
source in order to calculate the light selection probabilities.
This cost was amortized over 16 explicit light samples at
each path vertex. Because of the high cost of explicit light
sampling, the overhead of re-using paths is much less signif-
icant than in the previous, simple, example: only about 15%.
The overhead is mainly due to the additional BSDF evalu-
ations for re-using the light samples. The computation time

(b)(a)

(c) (d)

(e) (f)

Figure 6: Results obtained by re-using paths: (a) converged
image showing all direct illumination as well as glossy and
diffuse indirect illumination; (b) converged image showing
only glossy and diffuse indirect illumination; (c) image ob-
tained with 15 paths per pixel without re-using paths; (d)
image obtained with 15 paths per pixel with re-use of paths
in groups of 16, configured as 16 rooks on 16�16 tile grids;
(e) difference of (c) with (b), 5 times exaggerated; (f) differ-
ence of (d) with (b), 5 times exaggerated. Re-using paths in
this example, and as indicated here, results in a reduction
of the mean square error by a factor of 9. The reduction of
noisy artefacts is clearly visible in the images.

for the shown images (512�384 pixels, 100 paths per pixel)
was about 8 hours. The desks and desk lamps have been as-
signed non-diffuse reflection properties.

The images show that re-using paths remains highly ef-
fective at reducing noisy artefacts in complex scenes too. It
was not possible to measure the speed-up in this scene, like
for the simple cube scene above, because obtaining a suf-
ficiently converged reference image for such measurements
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Figure 7: Left: image without re-using paths; Right: image with path re-use. 100 paths per pixel were traced, with 16 explicit
light samples at each path vertex. The paths were combined in groups of 16 in the right image. The images show a view in a
building floor model consisting of about 315,000 polygons of which 2450 are light sources. The high number of light sources
necessitates importance sampling strategies for light source selection at every path node. The CPU time overhead of path re-use
in this example is about 15%. The desks and desk lamps are non-diffuse reflecting surfaces. These images show that re-using
paths remains very effective at reducing noisy artefacts in complex environments.

Figure 8: Left: image obtained with 160 paths per pixel, not re-using paths. Middle: 12 paths per pixel, with path re-use. The
parameters are the same as in figure 7. The computation time was about 12 times lower than for the left image. Right: 12 paths
per pixel, not re-using paths. We estimate that the speed-up caused by re-using paths is about one order of magnitude.

would take too much time. By making visual comparisons
of images obtained for different number of samples, we es-
timate the improvement is of about one order of magnitude
(see image 8).

Figure 7-Right however still exhibits some disturbing
spike noise. Indeed: path re-using does not remedy the fact
that stochastic ray tracing tends to under-sample certain
light transport paths involving multiple non-diffuse scatter-
ing events. Path re-use even tends to make such spike noise
more visible to the human eye, as the noise is distributed over
several pixels in an easily spotted pattern. Such spike noise
is highly reduced in more advanced, hybrid, algorithms like
bi-directional path tracing. Also, image smoothing in addi-
tion to our technique, will be highly effective at eliminating
such spike noise.

5. Conclusion

In this paper, we brought to the attention a variance reduc-
tion technique for Monte Carlo solution of linear systems
and integral equations, that was previously proposed by the
third author 7. We demonstrated its application to stochastic
ray tracing: by using traced paths, not only for computing an
image contribution at the pixel through which the path was
shot, but also for neighboring pixels, the cost of path trac-
ing is amortized over several pixels. We showed that this can
be done for non-diffuse light scattering, and without intro-
ducing bias. We observed speed-ups of about one order of
magnitude.

The principle of path re-use as explained in this paper
is not restricted to path tracing. It can be integrated in hy-
brid algorithms too, like bi-directional path tracing or photon
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mapping. In such algorithms, it will allow to re-use gath-
ering random walks in addition to shooting random walks.
In the context of photon mapping, the proposed technique
may speed up final gathering by allowing expensive nearest
neighbor photon queries to be re-used. In bi-directional path
tracing, bi-directional paths through different pixels can be
combined.

The main problem of the proposed technique is that it
tends to make spike noise in the images more visible, since
such noise is distributed over several neighboring pixels in
an easily spotted pattern. This noise can however be removed
by applying previously proposed image filtering techniques
for Monte Carlo path tracing in addition to our new tech-
nique. We expect that smoothing an image obtained with
path re-use will work just as well as it does for images com-
puted using plain Monte Carlo ray tracing because the noise
patterns still are sufficiently random. We also expect that
our technique will combine very well with interleaved sam-
pling 13.
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Appendix: alternative derivation

In this appendix, we sketch an alternative derivation of the technique
presented in this paper. We start from the following, more familiar,
form of the rendering equation:

L(x! o) = Le(x! o)+
Z

S
fr(x;o$ y)G(x;y)L(y ! x)dy:

L(x ! o) denotes the radiance emitted at x in the direction to o.
Le is the self-emitted radiance. The integral is over the surfaces in
the scene. We use a spatial parametrization to make all geometric
factors (implicit in the main text) visible. fr(x;o $ y) is the BSDF
at x for directions from x to o and y. G(x;y) = jωxy �Nxjg(x;y) with
g(x;y) = j�ωxy �Nyjvis(x;y)=r2

xy is the usual differential throughput
factor between x and y (vis(x;y) is the visibility predicate and r2xy is
the square distance).

The indirect radiance observed in a pixel i can now be written as
a triple integral over the surfaces S:

Lind
i =

Z
S

Z
S

Z
S

Mi(x)G(o;x) fr(x;o $ y)G(x;y)

fr(y;x $ z)G(y; z)L(z! y)dzdydx

o denotes the observer position. Mi(x) is a pixel measurement func-
tion for pixel i, expressed in terms of surface points rather than di-
rections. For ease, we assume the observer corresponds to an in-
finitesimal surface with normal equal to the viewing direction, so
we can use the same throughput factor G(o;x) for the observer posi-
tion as for all other points (with appropriate changes, the derivation
remains valid if this would not be the case).

By separating L(z ! y) in two terms: self-emitted radiance
Le(z! y) and non-selfemitted radiance Lne(z! y), Lind

i can be ex-
pressed as the sum of two integrals L1

i and L2
i . The first integral, L1

i

contains Le(z ! y) instead of L(z ! y) and corresponds with first
order indirect pixel radiance. The second integral L2

i contains the
non-selfemitted radiance Lne(z ! y) and corresponds to higher or-
der indirect pixel radiance. These integrals are sampled in different
ways. For the first one, points z are obtained by light source sam-
pling, with pdf pl(y; z), which in the most common case does not
depend on y, and is just proportional with the self-emitted radiosity
at z. For the second one, points z are obtained by BSDF sampling
at y, and scattered rays are sampled at z and subsequently visited
points in order to obtain an estimate for Lne(z! y).

The path re-use weights for first order indirect pixel radiance
(section 3.4) can now be derived as follows. Consider

L1
i =

Z
S

Z
S

Z
S

Mi(x)G(o;x) fr(x;o$ y)G(x;y)

fr(y;x $ z)G(y; z)Le(z! y)dzdydx:

In path tracing, this integral is estimated as

L1
i �

Mi(x)

βi(x)

fr(x;o $ y)G(x;y)

pr(o;x;y)g(x;y)

fr(y;x $ z)G(y; z)Le(z! y)

pl(y; z)
:

(13)
βi(x) (pixel sampling) and pr(o;x;y) (sampling a direction for scat-
tering) are the same pdf’s as in the main text, but expressed in terms
of surface locations instead of directions. Because the pixel mea-
surement function integrates to 1 for all pixels, the triple integral
above is also equivalent to the following quadruple integral:

L1
i =

Z
S

Z
S

Z
S

Z
S

M j(x0)Mi(x)G(o;x) fr(x;o $ y)G(x;y)

fr(y;x $ z)G(y; z)Le(z! y)dzdydxdx0 :

M j(x0) can be the measurement function for a different pixel j. The
point x0 can be sampled using pixel- j sampling (pdf βj(x0), usually
identical to Mj(x0)). y can be sampled by tracing a random walk
from x0 rather than x. Doing so yields to following estimates:

L1
i �

M j(x0)

β j(x0)

Mi(x)

βi(x)

fr(x;o $ y)G(x;y)

pr(o;x0;y)g(x0 ;y)

fr(y;x $ z)G(y; z)Le(z! y)

pl(y; z)
:

(14)
These estimates are in general not unbiased, because of the reasons
discussed in section 3.3. We combine them with the unbiased esti-
mates (13) by means of multiple importance sampling24: we make
weighted sums of the estimates (13) with (14) for a number of pix-
els j. We choose the weights wi j in the combination proportional to
pr(o;x0 ;y)g(x0;y)pl(y; z). The factors βj(x0) and βi(x) cancel with
M j(x0) and Mi(x) in (14).

The results of sections 3.2 and 3.3 can be derived in a similar
way from integral L2

i , which is identical to L1
i except that Le(z! y)

is substituted with Lne(z! y). As the points z are now obtained by
BSDF sampling at y (pdf pr(x0;y; z)), the combination weights can
be taken proportional to pr(o;x0;y)g(x0 ;y)pr(x0;y; z).
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