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Abstract
While texture synthesis has been well-studied in recent years, real-time techniques remain elusive. To help facilitate
real-time texture synthesis, we divide the task of texture synthesis into two phases: a relatively slow analysis phase,
and a real-time synthesis phase. Any particular texture need only be analyzed once, and then an unlimited amount
of texture may be synthesized in real-time. Our analysis phase generates a jump map, which stores for each input
pixel a set of matching input pixels (jumps). Texture synthesis proceeds in real-time as a random walk through the
jump map. Each new pixel is synthesized by extending the patch of input texture from which one of its neighbours
was copied. Occasionally, a jump is taken through the jump map to begin a new patch. Despite the method’s
extreme simplicity, its speed and output quality compares favourably with recent patch-based algorithms.

Categories and Subject Descriptors(according to ACM CCS): I.3.7 [Computer Graphics]: Color, shading, shadow-
ing, and texture

1. Introduction

Increasing realism continues to be a primary goal of com-
puter graphics research. Highly accurate 3D scanners allow
the acquisition of extremely detailed geometry, which can
help immensely in the visual fidelity of computer graph-
ics. Texture maps augment geometry by providing high fre-
quency details which may be expensive to represent di-
rectly using geometry. Using texture maps can vastly re-
duce the amount of geometry necessary to realistically ren-

Figure 1: Jump map links. Left: Input texture (faded for clar-
ity). The jump map records links between closely-matched
neighbourhoods, such as those indicated. Right:256×256
image synthesized in scanline order in 0.03 seconds by a
random walk through the jump map.

der a scene. However, creating or acquiring texture maps re-
mains a very labor-intensive affair and the subject of much
research. Procedural methods, which involve complex mod-
elling and approximation of natural phenomena, are widely
used and often generate good results. However, many real-
world textures are difficult or expensive to model procedu-
rally. Image-based rendering, where real-world samples are
captured and re-used to create novel imagery, provides a so-
lution for many of these textures.Texture synthesismethods
allow one to synthesize the requisite amount of texture us-
ing only a small sample of the desired texture. Much recent
work has focussed on the texture synthesis problem4, 11, 1, 3,
and very high quality results have been produced.

Despite this, texture synthesis algorithms remain rela-
tively slow, with running times measured in seconds for even
the fastest high-quality results. Interactive systems require
faster solutions; ideally, new texture could be generated on
demand. This could also provide a form of texture compres-
sion: a large texture need never be stored if it can be regener-
ated from a small sample on the fly. Such compression is es-
pecially important for bandwidth-limited applications, such
as those operating over the Internet.

In this paper, we divide the problem of texture synthesis
into two phases, ananalysis phase, detailed in Section2, and
a synthesis phase, covered in Section3. For any particular
texture, the analysis phase need only be performed once; its
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output may be re-used for any number of synthesis tasks.
Thus, it is possible to build up a library of analyzed textures
and perform real-time synthesis from any of them as desired.

The analysis phase examines the input texture at length,
building a data structure we call ajump map. The jump map
builds upon ideas from Video Textures10, which are end-
less streams of video generated from a finite-length sample
video, that do not perceptibly repeat or cycle. A video tex-
ture is created by linking together pairs of sufficiently simi-
lar frames within the sample video. Endless video is synthe-
sized by playing through the sample video while randomly
following links. The method works very well for repetitive,
unpredictable motion, such as flames or flag-waving.

The jump map generalizes video textures from one tem-
poral dimension to two spatial dimensions. Each pixel in the
jump map corresponds to a pixel of the input sample, and has
an associated set of jumps to other similar pixels of the in-
put sample. At synthesis time, successive pixels are copied
from the input sample, until the decision to take a jump is
made. The particular jump is selected randomly from the
jump map, with the probability of choosing a particular jump
weighted according to the similarity between the input im-
age neighbourhoods on either end of the jump. After a jump,
synthesis continues by copying successive pixels from the
new region of the input texture. Since no neighbourhood
comparisons need be done at run-time, the method is ex-
tremely fast, making it suitable for interactive applications.

2. Texture Analysis

The purpose of the analysis phase is to build a data struc-
ture suitable for performing synthesis in real-time. Previ-
ous texture synthesis methods spend the majority of their
time comparing pixel neighbourhoods, and thus several at-
tempts have been made to reduce the number of compar-
isons required11, 1. In contrast, our approach is to attempt
to precompute the neighbourhood comparisons that will be
required for synthesis during the analysis phase, and avoid
making any neighbourhood comparisons at synthesis time.

Recent work3 indicates relatively large patches of texture
can be copied into the output, so long as the boundaries
of the patches aren’t too regular and match sufficiently, as
the human visual system has a hard time picking out such
boundaries. Thus, an underlying assumption of our method
is that the current output neighbourhood is likely to closely
resemble the input neighbourhood(s) from which surround-
ing pixels were copied. This implies that the set of neigh-
bourhood comparisons performed by typical non-parametric
sampling methods4, 11, 1 may be approximated by compar-
isonsbetween input neighbourhoods.

Thus, given an input sample of sizem×n with c colour
channels, the analysis phase discovers for each pixel of the
input image, a set ofk similar pixels within the input. Thek
similarity valuesdi and pixel locationsj i are stored for each

pixel to form thejump map. Figure1 shows the links stored
in the jump map for a particular sample pixel. Similarity val-
ues are computed using standard image comparison metrics.
For simplicity, we use theL2 norm over a small rectangular
neighbourhood around each pixel.

For each pixel, we assign a probability to each of its jumps
j i based on the similarity:

pi =
t−di

kt
(1)

wheret is a similarity threshold (typicallyt = αD, whereD
is the maximumdi over the jump map). Note that no jump
may be selected with probability:

pnone= 1−
k

∑
i=0

pi (2)

This reflects the fact that only relatively good jumps ought
to be taken during synthesis; if all of a pixel’s jumps are
bad, we should not jump from that pixel. Asα is increased,
greater lenience is allowed. Our results useα = 1.1.

To increase efficiency in jump selection, we typically
transform the jump map into a summed distribution table:

p′i =
i

∑
j=0

p j (3)

A random number 0≤ r ≤ 1 selects the jumpj i , such that
p′i >= r andi is minimal.

2.1. Analysis Optimization

Texture analysis must discover, for each pixel of the input, a
set of pixels whose neighbourhoods closely match the given
pixel’s neighbourhood. Brute-force analysis can take hours
to analyze samples on the order of 256×256 pixels. While
this may be acceptable in some situations, since it need only
be performed once per sample, faster analysis is necessary.

We find similar neighbourhoods for a given pixel by
solving a high-dimensional approximate nearest-neighbours
(ANN) problem11, 7. Eachs×t input neighbourhood is trans-
formed into astc-dimensional vector, eachc-tuple of which
corresponds to a pixel in the input neighbourhood. ANN
search with a kd-tree8 is applied to these vectors to find
matching neighbourhoods. Typically, an ANN epsilon of
10% or more generates adequate matches for the jump map.
The speed of the ANN search critically depends on the
input vector dimension, so we apply principal component
analysis6 to the neighbourhood set to reduce its dimension.
We have typically observed a dimensional reduction of 50-
95%, while retaining over 97% of the original variance.

2.2. Ensuring Diversity

A key failing with theL2 norm is that the matched neigh-
bourhoods for a particular pixelP may be clustered spatially
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Analyze( Input : sampleImage , Output : jumpMap)

inPyramid = GenerateGaussianPyramid( sampleImage );

nbhds = GenerateNeighbourhoodVectors( inPyramid );

annNbhds = PCAReduce( nbhds );

annTree = GenerateANNTree( annNbhds );

foreach pixel in sampleImage

vec = GenerateNeighbourhoodVector( pixel );

matches = FindBestMatches( annTree , vec );

accepted = PoissonDiscFilter( matches , pixel );

SetJumpMapLinks( jumpMap , pixel , accepted );

NormalizeJumpMap( jumpMap);

Figure 2: Analysis phase pseudo-code.

within the image, often close toP itself. Jumps from a par-
ticular portion of the image will then usually lead to another
particular portion of the image. This lack of jump map diver-
sity can lead to overly repetitive synthesis results. However,
this is easily overcome by Poisson disc sampling. We findβk
matching neighbourhoods, and from these iteratively accept
up to k matches which are a minimum distance in image-
space from each already-accepted match andP. We have
found β = 5 sufficient to ensure a good level of diversity
within the jump map.

2.3. Multi-resolution Analysis

Similar to previous efforts2, 11, 7, we have adopted a multi-
resolution approach to analyzing textures. The primary ben-
efit to using multi-resolution neighbourhoods for compari-
son purposes is that a smaller overall neighbourhood is re-
quired to produce good results. For example, a texture re-
quiring a 9×9 single resolution neighbourhood may by ade-
quately served by a 5×5,3×3,1×1 multi-resolution neigh-
bourhood. This reduces the dimension of the vectors (i.e.,
(25+9+1)c versus 81c), resulting in faster ANN searching.
Multi-resolution neighbourhood vectors also tend to allow
greater dimensional reduction from PCA, futher compound-
ing their efficiency. We typically use Gaussian image pyra-
mids, where coarser levels are averaged from finer levels,
having observed little difference using Laplacian pyramids
(where finer levels are delta-encoded from coarser levels).

The complete analysis phase is summarized as pseudo-
code in Figure2.

3. Texture Synthesis

Similar to Video Textures, synthesizing texture amounts to
simply walking randomly through the jump map. The extra
dimension requires some extra care, however. For illustra-
tion, we assume a scanline synthesis order.

Each pixel is synthesized iteratively as follows. First, a
random choice decides from which neighbour to continue
copying: in scanline order, the only choices are from the
above neighbour,ao, or the left neighbour,lo. Suppose we

chooseao, andai is the input pixel from whichao was syn-
thesized. The jump map entry forai is consulted, and a ran-
dom choice determines which jump to take, if any; suppose
bi is the destination of the jump (note thatbi = ai when no
jump is made). The next output pixel is then copied from
below bi , since we earlier chose to continue the patch from
the aboveneighbour. If a different synthesis order is used,
there may be a different set of available neighbour choices
(only already-synthesized neighbours may be chosen), but
the algorithm otherwise remains the same. In any case, it is
essential that the choice between neighbours be random, in
order to improve spatial coherence. For example, if one al-
ways continued from the left, there is no guarantee that the
positions of the jumps on one scanline would be anywhere
near the jumps on the next scanline. Choosing from neigh-
bours in different directions allows patches to form in those
directions.

Small patch sizes allow greater deviation from the sample
image, and thus less obvious repetition, while larger patches
allow greater local coherence, and thus less noisy output.
To control the size of the output patches formed, we scale
the random numbers used to select jumps. Since the jump
probabilities for each pixel are normalized to sum to at most
1, a range of[0,20], for example, has the effect of jumping
an average of every 20 (or more) pixels.

3.1. Patch Boundaries

The synthesis procedure described so far may produce tex-
ture with noticeable discontinuities at patch boundaries. We
use three methods to alleviate patch boundary artifacts.
First, horizontal or vertical patch boundaries are easily no-
ticed by the human visual system, and form naturally when
the sample patch from which pixels are being copied hits
an input image boundary. Following Ashikhmin1, we in-
crease the jump probability as the source patch nears an
input image boundary. Secondly, jumps leading near order-
dependent edges have their probabilities reduced. For exam-
ple, for scanline order, jumps leading near the bottom and
right edges should be avoided, since large patches cannot
form after such jumps, resulting in more artifacts. Finally,
blending may be used to further obscure patch boundaries.
Typically, we copy and blend a small gaussian patch of pix-
els (3×3 or 5×5) every time we synthesize a pixel, rather
than copying a single pixel.

3.2. Synthesis Order

The order in which pixels are synthesized greatly affects the
shape of the texture patches, since it determines the set of
neighbours from which to choose (only already synthesized
neighbours may be chosen). Since scan-line synthesis order
only allows neighbours to the left and above, patches extend
down and right, and thus tend to be diagonal in shape. It
is possible for patches to extend up and right, but unlikely,
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Figure 3: Synthesis order comparison. Texture patch shape
is highly dependent on the order in which pixels are syn-
thesized. Left to right: input, scanline, serpentine, Hilbert.
Bottom images show patch structure (colour corresponds to
position in input from which pixel was copied).

Synthesize( Input : jumpMap , Output : outImage )

ordering = Scanline, Hilbert, etc

while outPixel = Next( ordering )

neighbours = SynthesizedNeighbours( outPixel );

outSource = SelectRandom( neighbours );

inSource = SynthesisSource( outSource );

if ShouldJump( inSource , offset )

jumps = JumpMapPixel( jumpMap , inSource );

range = JumpProbabilityRange( inSource );

inSource = SelectJump( jumps , range );

offset = Location( outPixel ) - Location( outSource );

inSource += offset ;

BlendPatch( outImage , outPixel , inSource );

Figure 4: Synthesis phase pseudo-code.

since early pixels on one scanline would need to jump to the
same area as later pixels on earlier scanlines.

A simple change, reversing horizontal direction on ev-
ery other scanline, allows right neighbours to be chosen oc-
casionally, and forms more regularly-shaped patches. This
“serpentine” order results in patches very similar to those
produced by Ashikhmin1, with no loss in efficiency.

If lower efficiency is tolerable, we have found the high-
est quality results can be produced by synthesizing pixels
in order along a space-filling curve9. The Hilbert curve, in
particular, changes direction frequently, allowing choice of
each of the four immediate neighbours with roughly equal
frequency. This results in particularly well-shaped patches,
as shown in Figure3. The overhead involved in following
such curves slows synthesis by a factor of two to three.

The complete synthesis phase is summarized as pseudo-
code in Figure4.

4. Results

We show texture synthesis results for a variety of samples
in Figures5–8. Sample images are 64×64, 128×128 or
192×192, and results are 256×256. For all images, we use

Figure 5: Texture synthesis results.

a multi-resolution neighbourhood of 9×9,5×5,3×3, and
store at most 3 jumps per pixel. For this neighbourhood size,
analysis typically takes from a few seconds to a minute, de-
pending on sample size, on our 1 Ghz Pentium III test ma-
chine. Given then×n input texture, we typically use a jump
frequency equal to 1n to 1.5n, adjusted near the input im-
age edges (within 0.2n pixels) by linearly decreasing it to 1
at the actual boundary. Synthesis time is independent of the
input image and jump map, and our unoptimized implemen-
tation can synthesize about 2.2 million pixels per second (a
256×256 output image takes about 0.03 seconds) in scanline
synthesis order, or about 800 thousand pixels per second fol-
lowing a Hilbert curve. All images in this paper, unless oth-
erwise noted, were produced following a Hilbert curve.

Our results are best on stochastic textures (Figure5),
while structured textures (Figure6) present the most trou-
ble (a greater variety of results may be seen in Figure8).
This is somewhat to be expected, since our method can be
seen as an approximation to Ashikhmin’s method1 which is
designed for natural textures. However, unlike several recent
algorithms, our method will never “fall off” the end of the
texture and synthesize garbage; at worst, patch boundaries
become noticeable. Theoretically, it is possible for cycling
to occur within a small portion of the jump map (an issue re-
quiring non-trivial effort to overcome with Video Textures).
However, we have never observed this in practice, likely be-
cause our jump maps are much more “dense”, having several
links per pixel, which allows greater flexibility.

A comparison with Image Quilting3 and Ashikhmin’s
method is shown in Figure7. As can be expected, our
method is comparable in quality on stochastic textures, but
not quite as good as Image Quilting on structured textures.
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Figure 6: Low frequency content presents more difficulty for
the jump map, but the results can often be acceptable.

5. Related Work

A great body of research in texture synthesis has been pub-
lished in recent years. For brevity, we shall only review re-
cent methods closely related to ours. The interested reader is
referred to the excellent summary in the paper of Hertzmann
et al.5 for a broader survey of the field.

As discussed above, our method is a generalization of
Video Textures10. Our work also derives inspiration from
Ashikhmin’s method1. His method is an optimization of
neighbourhood-based texture synthesis11, 4 which does not
use a search data structure. Instead, Ashikhmin recognized
that a full neighbourhood search is likely to produce pix-
els close (within the input image) to previous pixels. Thus,
the full search is approximated by checking only those
pixel neighbourhoods which continue the source patch from
which neighbouring pixels were generated, resulting in a
constant number of neighbourhood comparisons per pixel.
We take this reasoning one step further and compare input
neighbourhoodsonly during the analysis phase. This allows
us to avoid neighbourhood comparisons altogether at syn-
thesis time, resulting in orders of magnitude speed-up with
comparable image quality.

Image Quilting3, like our method, is simple to understand
and implement, overlapping regularly-sized patches into the
output texture while trying to find the best set of border pix-
els through each overlap region. We effectively work in re-
verse, discovering which sets of pixels would form good bor-
ders with each other, and then implicitly creating patches
through our fast randomized synthesis procedure. While our
synthesis speed is orders of magnitude faster, Image Quilting
produces higher quality results on structured textures.

The Chaos Mosaic12 performs texture synthesis by past-
ing and blending random blocks of texture on a tiling of the
input. Since the blocks are randomized according to a deter-
ministic chaos transformation, it is possible to sample from
the synthesized texture without actually generating it com-
pletely. While the results are of relatively low quality, the
speed of synthesis is comparable to our method, and the de-
terminism is useful in a variety of contexts.

A recent regular patch-based generalization of Wei and
Levoy’s algorithm compares patch boundaries for the best
match7. Using several acceleration data structures, their
method synthesizes texture in real-time, with performance
comparable to our method (they synthesize 200×200 tex-
tures in 0.02 seconds, with roughly similar quality). How-
ever, these acceleration data structures add significant com-
plexity and memory overhead to the algorithm.

6. Conclusions and Future Work

In summary, we have presented a viable real-time texture
synthesis algorithm, by dividing the problem into that of an-
alyzing the input texture, and that of synthesizing new tex-
ture. We solve the analysis problem offline, generating the
jump map, and use the jump map to solve synthesis problems
in real-time. Our synthesis procedure performs comparably
to the fastest known texture synthesis algorithms, while re-
maining exceedingly simple to understand and implement.

A number of avenues for future work remain under the
jump map architecture. One question we have not yet ex-
plored is the degree to which the jump map may be com-
pressed. It should also be relatively straightforward to extend
the jump map to temporal textures, potentially using some
combination of jump maps and the original Video Textures.

The analysis procedure we have selected, while sufficient,
is neither fast nor extremely accurate. We believe some per-
ceptual metrics may be helpful in rapidly identifying similar
neighbourhoods within the input image with better accuracy
than theL2 norm, which is well-known to be a bad estimate
of perceptual similarity. The analysis phase may be subject
to further acceleration using clustering techniques; we cur-
rently do not exploit the fact that the set of nearest-neighbour
queries we wish to perform is identical to the input point set
for the search data structure. It would also be interesting to
investigate the performance of using a multi-pass procedure
on today’s graphics hardware to assist the analysis phase.

The synthesis procedure we use may also be significantly
improved. First, copying patches rather than single pixels
may yield performance improvements, as less logic need
be performed per pixel. A multi-resolution synthesis proce-
dure would likely enhance the image quality on more struc-
tured textures. A mechanism for “seeding” the output needs
development, to allow a relatively simple hardware imple-
mentation and the possibility of arbitrarily sampling the out-
put without completely generating it, similar to the Chaos
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Figure 7: Quality comparison between our method (left), Ashikhmin’s method (middle), and Image Quilting (right).

Mosaic12. Similarly, mechanisms for controlling the out-
put, similar to Ashikhmin’s extensions1, or the texture-by-
numbers approach of Image Analogies5, would be useful.
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Figure 8: Jump map texture synthesis results.
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