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Abstract 
Adaptive multiresolution hierarchies are highly efficient at representing spatially coherent graphics data.  We 
introduce a framework for compressing such adaptive hierarchies using a compact randomly-accessible tree 
structure.  Prior schemes have explored compressed trees, but nearly all involve entropy coding of a sequen-
tial traversal, thus preventing fine-grain random queries required by rendering algorithms.  Instead, we use 
fixed-rate encoding for both the tree topology and its data.  Key elements include the replacement of pointers 
by local offsets, a forested mipmap structure, vector quantization of inter-level residuals, and efficient coding 
of partially defined data.  Both the offsets and codebook indices are stored as byte records for easy parsing by 
either CPU or GPU shaders.  We show that continuous mipmapping over an adaptive tree is more efficient 
using primal subdivision than traditional dual subdivision.  Finally, we demonstrate efficient compression of 
many data types including light maps, alpha mattes, distance fields, and HDR images. 

 

 

Light map (1.0 bits/pixel) Alpha matte (0.4 bits/pixel) Distance field (0.07 bits/pixel) HDR image (5.0 bits/pixel) 
Figure 1: Coherent data stored in a compact randomly accessible adaptive hierarchy with efficient mipmap filtering.

1. Introduction 
Spatial data in computer graphics is often very coherent.  
For example, distance fields are continuous, light maps are 
smooth except at shadow boundaries, alpha mattes are 
constant except near silhouettes, and high-dynamic-range 
(HDR) images have broad regions of similar luminance.  
Effective data compression permits more image content to 
be stored within a given memory budget. 
There is a large body of work on compressing coherent 
data, particularly in the context of images.  However, most 
compression schemes such as JPEG2000 involve sequential 
traversal of the data for entropy coding, and therefore lack 
efficient fine-grain random access.  A fundamental chal-
lenge in rendering is that, while some input can be 
streamed sequentially (e.g. geometric primitives), the 
remaining data accesses are often random (e.g. projected 
texture maps, parallax occlusion maps, shadow maps). 
Compression techniques that retain random access are 
more rare. A common approach is fixed-rate compression 
of image blocks, such as vector quantization [YFT80; 
NH92;BAC96] and the S3TC/DXT scheme widely availa-
ble in hardware [MB98]. 

For the case of coherent data, traditional block-based 
compression has two drawbacks.  First, blocks encode data 
at a single scale and therefore lack a good prediction model 
for low-frequency variations (e.g. linear ramps) that span 
across many blocks.  Second, most schemes allocate a 
uniform bit-rate across the image, and thus lose informa-
tion in high-detail regions, while over-allocating bits in 
low-detail regions. 
Adaptive hierarchies such as wavelets and quadtrees offer 
both multiresolution prediction and spatial adaptivity [e.g. 
Sha93;Sam06].  Such tree structures have been applied to 
light maps [Hec90], distance fields [FPRJ00], point sets 
[RL01], octree textures [BD02;DGPR02], and irradiance 
[CB04].  Several techniques compress trees as reviewed in 
Section 2, but these techniques generally require sequential 
traversal and therefore give up efficient random access. 
Contributions.  We design a compressed tree representa-
tion that preserves fine-grain random access by using fixed-
rate encoding for both the tree topology and its data. As 
shown in Figure 1, our scheme efficiently compresses 
coherent spatial data that is typically difficult for traditional 
block-based approaches: distance fields, light maps, alpha 
mattes and HDR images.  To our knowledge this is the first 
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scheme to offer random access to a compressed adaptive 
hierarchy.  Novel elements include: 
• Use of a primal-subdivision tree structure for efficient 

mipmap filtering over an adaptive hierarchy. 
• Replacement of node pointers by local offsets, and 

optimization of tree layout for concise offset encoding. 
• A forested mipmap structure formed by replacing the 

coarsest levels by a mipmap and indirection table. 
• Lossy compression of inter-level residuals using vector 

quantization (VQ) over broods in the tree, and extension 
to sparsely defined data. 

The end result is an extremely simple data structure in 
which both topology and data are encoded in 8-bit fields.  
Because the codebook indices refer to data blocks rather 
than individual samples, the tree is one level shallower than 
the finest resolution data. 
Our scheme is not intended for detailed color images, 
which result in dense trees and are thus better handled by 
block-based schemes.  Nonetheless we show that these 
encode reasonably well. 
Evaluation cost.  One concern with tree structures is that 
they may increase memory bandwidth since each query 
involves several memory references.  However, hierarchic-
al access patterns are very coherent in practice [CB04], so 
most memory reads can be intercepted by memory caches.  
In fact, with sufficient query locality, the tree data only 
needs to be read from memory once (per pass), so the 
compactness of the tree is a bandwidth win, as analyzed in 
more detail in Section 8. 
To mitigate the computational cost of traversing the tree, 
we collapse the coarsest levels to form a “forested mip-
map” as described in Section 4.3. 
Our compressed adaptive tree is appropriate for both CPU 
and GPU evaluation.  We demonstrate trilinear mipmap 
evaluation within a pixel shader, and achieve real-time 
performance without specialized hardware. 

2. Related work 
Sequential traversals.  Most schemes for compressing tree 
data consider a linear ordering of the tree nodes and encode 
a sequence of traversal codes and/or data residuals [e.g. 
Kno80;Woo84;Sam85;GW91;TS00].  Using a good predic-
tion model and entropy coding, such pointerless 
representations achieve excellent compression, and have 
been applied to image wavelets [Sha93], isosurfaces 
[SK01], and point-based surfaces [BWK02].  However, 
these linear representations do not allow efficient random 
access to the spatial data, as they require decompression of 
the whole tree. 
Location codes.  An alternative is to store a spatially 
ordered list of the locations of leaf nodes [e.g. Gar82], but 
such a list does not permit hierarchical compression of the 
node data. 
Random-access trees.  Rusinkiewicz and Levoy [RL01] 
introduce a point-cluster hierarchy that supports view-
dependent traversal.  Their structure could be adapted to 
random point queries, but this would require decoding of 
many sibling nodes at each tree level. 

Hierarchical vector quantization.  Several schemes use 
VQ in a hierarchical setting.  Gersho and Shoham [GS84] 
apply VQ to coarse-level amplitudes, and use these quan-
tized values to guide the selection of codebooks at finer 
levels.  Vaisey and Gersho [VG88] adaptively subdivide 
image blocks based on their variance, apply frequency 
transforms to the blocks, and use different VQ codebooks 
for different-sized blocks. The multistage hierarchical 
vector quantization (MSHVQ) of Ho and Gersho [HG88] is 
closest to our approach in that its stages perform down-
sampling, block-based VQ, and subtraction of the linearly 
interpolated reconstructions.  It differs in that the VQ 
blocks do not form a regular tree structure, and adaptivity 
is only considered in the last stage with highest resolution.  
Tree-structured VQ [GG92] uses a decision tree to accele-
rate VQ encoding; another acceleration technique is 
hierarchical table lookup [CCG96]. 
Block-based schemes.  Block-based data compression has 
been a very active area of research [e.g. SW03;SA05].  The 
latest graphics hardware supports several new block-based 
schemes [Bly06].  The most relevant to us is 
DXGI_FORMAT_BC4_UNORM (BC4U), a scheme for 
lossy compression of single-channel (grayscale) images; it
is 4 bits/pixel like the original DXT1 scheme. 
Adaptive random-access schemes.  Other adaptive repre-
sentations include indirection tables [KE02], page tables 
[LKS*06], quadtrees of images [FFBG01], B-trees of 
losslessly compressed blocks [IM06], and spatial hashing 
[LH06]. These schemes are able to adapt the spatial distri-
bution of data samples, but do not focus on hierarchical
compression of the data itself. 
Unlike previous random-access compression schemes, our 
hierarchy exploits data prediction across resolutions, which
is key to concisely encoding smoothly varying data. 

3. Primal subdivision for efficient interpolation 

3.1 Traditional dual subdivision 
In a traditional region quadtree (dimension ݀ ൌ 2), nodes 
correspond to spatial cells that are properly nested across 
resolution levels, forming a dual-subdivision structure
[ZS01]. An important drawback of a dual tree is that 
mipmap filtering becomes expensive when the tree is 
adaptive. Indeed, Benson and Davis [BD02] explain that 
mipmap interpolation requires a total of 3ௗ lookups per 
level. The problem is that pruned tree nodes must be 
interpolated from the next-coarser level (as shown by the 
red arrows in Figure 2a), and this interpolation requires a 
large support (e.g. point ܦ requires values from nodes ܤ ,ܣ, 
and ܥ).  Also, in pruned areas of the tree, the successive 
interpolations of the 3ௗ local nodes is equivalent to a 
multiquadratic B-spline, which is nicely smooth but expen-
sive to evaluate. 

3.2 Our primal subdivision approach 
We instead associate tree nodes with the cell corners (e.g. 
as in [FPRJ00] and [LKS*06]), so that finer nodes have 
locations that are a superset of coarser nodes (though their 
values may differ).  This corresponds to a primal-
subdivision structure, and allows continuous interpolation 
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over an adaptive tree using only 2ௗ lookups per level (e.g. 
nodes ܥ,ܤ in Figure 2b).  Moreover, refinement can termi-
nate with simple multilinear interpolation when all 2ௗ local 
nodes are pruned.  To our knowledge these advantages of 
primal trees have not been explained previously. 
To represent a primal tree, we “slant” the tree structure as 
shown in Figure 2b.  Thus, in 2D, the children of a node at 
location ሺݔ, ,ݔሻ have locations ሺݕ ݔሻ, ሺݕ  2ି, ,ݔሻ, ሺݕ ݕ 2ିሻ, and ሺݔ  2ି, ݕ  2ିሻ in level ݈.  This slanting 
causes some subtrees to fall outside the input domain, as 
illustrated by the dangling links on the right boundary.  
(Dual trees have similar undefined subtrees if the domain 
size is not a power of two.)  Fortunately, our data compres-
sion scheme (Section 5) is able to efficiently ignore such 
undefined data. 
For completeness, we show pseudocode for continuous 
mipmap interpolation over a primal 1D tree, first on a 
complete tree: 

class Tree { 
 Tree L, R; 
 float val; 
} 

float evaluate1D(Tree root, float x, float level) { 
 return evaluate1DRec(x, level, root.L, root.R); 
} 

float evaluate1DRec(float x, float level, Tree l, Tree r) { 
 float vC = interp(l.val, r.val, x); // value at current level 
 if (level<=0.0) return vC; 
 float vF;   // value at finer level 
 if (x<0.5) { // select left / right subtree 
  vF = evaluate1DRec((x-0.0)*2, level-1.0, l.L, l.R); 
 } else { 
  vF = evaluate1DRec((x-0.5)*2, level-1.0, l.R, r.L); 
 } 
 if (level>=1.0) return vF; 
 return interp(vC, vF, level); // blend two levels 
} 

Next, we eliminate the recursion and generalize the evalua-
tion to an adaptive tree: 
float evaluate1D(Tree root, float x, float level) { 
 Tree l = root.l, r = root.r; 
 float vl = l.val, vr = r.val; 
 float vC = interp(vl, vr, x); // value at current level 
 for (;;) { 
  if (!l && !r) return vC; // early exit if pruned 
  vm = interp(vl, vr, 0.5); // default midpoint value  
  if (x<0.5) {                              // select left / right subtree 
   x = (x-0.0)*2; l = (l ? l.L : 0); r = (l ? l.R : 0); vr = vm; 
  } else { 
   x = (x-0.5)*2; l = (l ? l.R : 0); r = (r ? r.L : 0); vl = vm; 
  }  
  if (l) vl=l.val; // set values if not pruned 
  if (r) vr=r.val; 
  float vF = interp(vl, vr, x); // value at current level 
  if (level<=1.0)  return interp(vC, vF, level); 
  vC = vF;  level = level-1.0; 
 } 
} 

The generalization of the evaluation procedure to higher 
dimensions is straightforward. 
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Figure 2: Dual-subdivision and primal-subd. trees in 1D.  
In an adaptive tree, pruned nodes (hollow circles) must be 
interpolated from coarser values, and this is more compli-
cated in dual subdivision. 

4. Compressed tree topology 
We now describe our scheme for compressing the topology
of the tree; Section 5 will address the compression of its 
associated data. 
Terminology.  A tree node with at least one child is an 
internal node; otherwise it is a leaf.  The depth of a node is 
the length of the path to the root, so the root node has depth 
zero.  Level ݈ of the tree refers to all nodes at depth ݈.  The 
tree height ܮ is the maximum level.  A complete tree has all 
its leaves at the same depth, and hence a total of 2ௗ 
leaves.  In an arbitrary tree, each node may have any 
number (0 to 2ௗ) of children.  We focus on full trees, in 
which all internal nodes have a full set of (2ௗ) children.  
Note that a complete tree is always full, but not conversely.

4.1 Traditional tree data structures 
We begin by reviewing structures for tree topology.  In the 
simplest case, each node contains a data record and 2ௗ 
pointers to child nodes, any of which can be NULL: 
struct Node { 
 Data data; 
 Node* children[2d];   // NULL if the child is pruned 
}; 

Assuming 32-bit pointers, the tree topology requires 4 ڄ 2ௗ 
bytes per node, with much wasted space at the leaf nodes. 
Sibling tree.  An improvement for full trees is to allocate 
sibling nodes contiguously (forming a brood), and to store 
a single pointer from the parent to the brood [HW91], thus 
reducing topology encoding to 4 bytes/node: 
struct Node { 
 Data data; 
 Brood* brood;      // pointer to first child, or NULL  
}; 

struct Brood {        // children nodes allocated consecutively 
 Node nodes[2d]; 
}; 

Autumnal tree.  If pointers and data records have the same 
size, an even better scheme is to raise the data from leaf 
nodes into their parents, to form an autumnal tree [FM86].  
Hence the Node structures are only allocated for internal 
nodes.  A single bit identifies if a child is a leaf, and is 
often hidden within the pointer/data field.  Tree topology is 
reduced to 4 ڄ 2ିௗ  ଵ ଼ൗ  bytes/node.  For a quadtree, this is 
1.125 bytes/node, much less than the sibling tree. 
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Figure 3: Example of a primal autumnal tree and its 
memory packing.  Dashes denote undefined data values. 

struct PointerOrData { 
 bit leafchild; 
 union { 
  Node* pointer; // if not leafchild 
  Data data; // if leafchild 
 }; 
}; 

struct Node { // only for internal nodes 
 Data data; 
 PointerOrData children[2d];  
}; 

4.2 Encoded local offsets 
Even in an autumnal tree, the pointers remain the limiting 
factor for memory size.  Our contribution is to replace such 
pointers by local offsets.  Hunter and Willis [HW91] 
consider replacing absolute pointers by offsets, but define 
offsets from the start of the tree data structure.  Instead, we 
define offsets locally, such that an offset of zero refers to 
memory just after the current node. 
Starting with an autumnal tree, we replace each absolute 
32-bit pointer by a local scaled offset encoded into 7 bits. 
The tree data values will also be encoded into 7 bits, so that 
the PointerOrData structure fits nicely in one byte. 
We pack the nodes in memory in preorder as shown in 
Figure 3.  At fine levels, parent nodes are close to all of 
their children.  At coarser levels, the children become 
separated by their own subtrees, so the offset from the 
parent to its last child grows.  Our idea is to encode each 
offset ݕ into a 7-bit code ݔ א ሾ0,127ሿ as ݕ ൌ ݏ ԝݔ where ݏ 
is a per-level scaling parameter.  At finer levels where 
offsets are small, this encoding is wasteless with ݏ ൌ 1.  
At coarser levels where ݏ  1, if the desired offsets cannot 
be encoded exactly (i.e. are not a multiple of ݏ), we leave 
some padding space between the subtrees. 
We perform the packing in a fine-to-coarse order.  For each 
level, having already packed the finer subtrees into memo-
ry blocks, we iteratively concatenate these subtree blocks 
after their respective parents such that they are addressable 
as encoded offsets from the parents — leaving padding 
space as needed.  We exhaustively search for the integer 
scaling factor ݏ א ሼݕڿmax 127⁄ ۀ …  maxሽ that gives the bestݕ
packing (where ݕmax is the largest offset).  Table 1 shows 
some example results. 
Another strategy would be to pack nodes in level-order 
(equivalent to breadth-first search).  However, such order-
ing would give offsets that are larger and less predictable. 

Level ݈ Num. nodes Scaling ݏ Padding (bytes)
0 1 500 58
1 4 316 354
2 9 135 897
3 25 61 960
4 76 26 1016
5 202 10 555
6 486 5 0
7 1228 1 0
8 3218 1 0
9 8322 1 0

Table 1: Result of offset encoding for the data in Figure 5. 
A forested mipmap replaces tree levels 0-4 (Section 4.3). 

4.3 Forested mipmap 
Maintaining the coarsest levels as a tree structure has a 
number of drawbacks: (1) These levels are usually dense, 
so adaptivity is unnecessary; (2) The traversal of these 
coarse levels adds runtime cost; (3) Much of the padding 
space introduced by our offset encoding occurs there; (4) 
VQ compression is ineffective due to the small number of 
data nodes.  For these reasons, we collapse the coarsest tree 
levels 0..4 to form a (non-adaptive) mipmap pyramid.  At 
the finest of these pyramid levels, we also store a 172 
indirection table with pointers to the resulting clipped 
subtrees.  We call this overall structure a forested mipmap. 
For the same example in Table 1, the forested mipmap 
results in a decrease of 1847 bytes. Overall the tree topolo-
gy requires 0.36 bytes/node for this quadtree. 

5. Compressed tree data 
A benefit of a tree structure ܶ is that data at finer levels can 
be predicted from coarser levels [e.g. BA83], in our case by 
simple multilinear interpolation.  In the case of spatially 
coherent data, the residual differences tend to be small.  
Indeed, pruning of subtrees with near-zero residuals al-
ready offers significant data compression.  In this section, 
we examine how to further compress the data residuals 
themselves. 

5.1 Brood-based vector quantization 
To support efficient random access, we compress the inter-
level residuals using vector quantization.  VQ is an ap-
proach that approximates a set of vectors by a small 
codebook, replacing each vector by an index into the 
codebook [GG92]. 
Specifically, we apply VQ to the blocks of data residuals 
associated with the broods of the tree.  Recall that a brood 
is the set of 2ௗ children of a parent node.  Each codebook 
index encodes the data residuals for these 2ௗ data samples.  
We use a codebook of 128 elements: Each codebook index 
is 7 bits.  For a complete quadtree, these indices correspond 
to storage of 1.75 bits per data at the finest level, or a total 
of 2.33 bits per data when accounting for all levels. 
Thus, we create a new tree ܶᇱ (which we call a VQ tree) in 
which each node data is a 7-bit codebook index.  Because 
each index encodes a block of residual data, the VQ tree ܶᇱ 
is one level shorter than the original data tree ܶ.  That is, 
each leaf node in ܶᇱ stores data for 2ௗ samples in leaves of 
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ܶ.  Our association of a data block per tree node is similar 
to brick maps [CB04], although we store residuals and 
encode the blocks. 
For a single-channel image, each residual vector contains 4 
pixel residuals, and is therefore 4-dimensional.  The 128 
codevectors are a sparse sampling of this 4D space.  (For a 
color image, the codevectors are an even sparser sampling 
of a 12D space.)  Fortunately, there is significant cluster-
ing.  In addition, the VQ tree is able to correct coarse-level 
errors in the finer levels.  Because the tree encodes a 
cascade of small residuals, tree-based VQ yields signifi-
cantly less error than VQ applied to a uniform grid of 
blocks [BAC96], as seen in Figure 13. 
In 2D, we visualize the adaptive primal tree ܶᇱ by outlining 
each node’s Voronoi region, and showing its VQ data as 4 
sub-squares.  This nicely reveals both the tree structure and 
the data resolution. 
Implementation.  We compute a separate codebook at 
each tree level, using ݇-means clustering [Llo82], which 
converges to a local minimum of the summed intra-cluster 
variance.  To help jump out of local minima, we use cluster 
teleportation as in [CAD04]. 
To reduce codebook sizes, we further quantize the codevec-
tor themselves to 8 bits per coordinate, and this is achieved 
as an easy extension to the ݇-means clustering algorithm. 
Lastly, at the finest level ܮ of the tree, we know that all 
nodes must be leaves.  Therefore we omit the leafchild bit 
and instead use an 8-bit codebook index, together with a 
256-entry codebook.  This helps to improve compression 
accuracy at the finest level. 

5.2 Extension of VQ to undefined data 
As discussed in Section 3.2, subtrees sometimes extend 
beyond the defined domain, so there exist residual blocks 
for which some data values are undefined.  We exploit the 
fact that we don’t care about these residuals to reduce the 
error of the vector quantizer, as follows. 
A not so well known property of ݇-means clustering is that 
it can be extended to partially defined data and still pre-
serve its convergence properties [LFWV03].  The standard ݇-means clustering algorithm iterates between 
(1) assigning each vector to the closest cluster point, and 
(2) updating each cluster point as the mean of the vectors 
assigned to it.  The generalization for partially defined data 
is to modify these steps to just ignore the undefined com-
ponents of the input vectors, both when computing 
distances in step 1 and the centroid points in step 2. 

5.3 Construction of adaptive VQ tree  
We seek to construct a simplified VQ tree while bounding 
the ܮஶ approximation error at all levels to a given threshold 
value ߬.  Because VQ compression is lossy, even the 
complete VQ tree may not satisfy the tolerance ߬, and in 
that case our goal is to avoid introducing any further such 
errors. 
At a high-level, the construction of the adaptive VQ tree ܶᇱ 
involves three steps: 
(1) Create a complete mipmap tree ܶ of desired data 
values. 

(2) Apply brood-based vector quantization to form a 
complete VQ tree ܶᇱ of compressed residuals. 
(3) Adaptively prune the tree ܶᇱ subject to satisfying ߬. 
A useful extension is to reach a desired compression rate 
(e.g. 1.5 bits/pixel) by repeating step (3) using a binary 
search over ߬. 
A limitation of this algorithm is that it computes the per-
level VQ codebooks using all block residuals in the com-
plete tree, even though the final simplified tree will only 
contain a subset of these blocks.  However, the effect 
should be minor since the pruned blocks have near-zero 
residuals.  There is actually a complicated inter-dependence 
between the tree structure and the per-level codebooks.  In 
particular, it is not a good idea to recompute new code-
books on the final simplified tree because this could result 
in approximation errors that exceed the tolerance τ. 
We next discuss the 3 steps in more detail. 
Mipmap construction.  In fine-to-coarse order ݈ ൌ1-ܮ … 0, we compute the desired values ݀ at nodes of level ݈ from those at level ݈1 as a least-squares optimization minௗฮ ܲ,ାଵ݀ െ ݀ାଵฮଶ

 where the rows of matrix ܲ,ାଵ 
contain the multilinear interpolation weights (i.e. 0, 1, or 
powers of భమ, for our primal subdivision). 
VQ compression of the complete tree.  We process each 
level ݈ ൌ 1 … -of the tree in coarse-to-fine order as fol ܮ
lows.  We compute the predicted values  ൌ ܲିଵ,ܽିଵ by 
multilinear interpolation of the approximated values ܽିଵ at 
the next-coarser level (with ܽ ൌ 0).  The residuals ݎ ൌ ݀ െ  , are compressed using brood-based VQ
resulting in compressed residuals ̃ݎ.  Thus, the approx-
imated values are ܽ ൌ    , and we clamp these to theݎ̃
signal range which is typically [0,1].  We also compute the 
signed approximation errors ݁ ൌ ܽ െ ݀. 
Adaptive tree pruning.  We process each level ݈ ൌ1-ܮ … 0 of the VQ tree ܶᇱ in fine-to-coarse order, looking 
to prune its leaves.  The basic idea is to allow simplifica-
tion as long as the accumulated approximation errors at all 
affected nodes in the original tree ܶ do not exceed the 
tolerance, i.e. ݈, ԡ݁ԡஶ  ߬. 
Because autumnal trees are full, the atomic simplification 
operation on ܶᇱ is the removal of all 2ௗ leaf nodes in a 
brood.  Thus, we need only consider a brood if all its 
subtrees have been pruned.  Since each child in the brood 
(assumed at level ݈) contains a codebook index encoding a 2ௗ block of data, the simplification operation effectively 
removes a 2ௗ block of residual values ̃ݎ ؿ ݈ ାଵ in levelݎ̃  1.  We allow the brood to be removed if the subtraction 
of these residuals does not increase the approximation error 
(at any node in the original tree ܶ) beyond the tolerance ߬.  
Specifically, we compute the updated approximation errors ݁ᇱ by interpolating the subtracted residuals to each finer 
level ݈ᇱ  ݈  1 as ݁ᇲᇱ ൌ ݁ᇲ െ ܲᇲ,ାଵ̃ݎ and check if ฮ݁ᇲᇱ ฮ  ߬. 
Even within a level, the affected subtrees of residual blocks ̃ݎ for different broods do overlap at their boundaries, so 
we visit the candidate broods in order of increasing residual 
norm ԡ̃ݎԡ to hopefully remove more smaller residuals 
than fewer larger ones. 

c© The Eurographics Association 2007.

S. Lefebvre & H. Hoppe / Compressed Random-Access Trees for Spatially Coherent Data 343



5.4 Codebook sharing 
Although codebooks are relatively compact (3 KB for a 
single-channel image), they need to be stored along with 
each image.  On smooth data such as distance fields and 
light maps, we find that data residuals are extremely auto-
similar across levels, so a shared codebook can be reused 
by all tree levels subject to an appropriate scaling factor, 
thus requiring only 1 KB.  Specifically, we construct the 
shared codebook ݎௌ at the finest level.  Then for each 
coarser level we compute the scaling factor ԡݎԡ ԡݎௌԡ⁄   of 
the image residuals relative to the shared codebook, and 
apply this scaling to the codevectors. 
In addition, for a class of images with similar content, we 
can design a universal codebook using a training image 
(Figure 9).  Section 6.3 presents results using a universal 
codebook on distance fields.  However we find that such a 
universal codebook does not extend well to dissimilar light 
maps or color images. 

6. Applications and compression results 
We demonstrate the efficiency of tree-based compression 
on several data types, including light maps, alpha mattes, 
distance fields, and high-dynamic-range images.  Table 2 
summarizes the results.  All examples use forested mip-
maps.  Compression times range from 2 to 10 minutes, 
most of which is spent in VQ optimization.  We manually 
selected target bit-rates; it would be desirable to automate 
this rate selection based on image content. 
We compare memory sizes with BC4U and DXT1 (for 
grayscale and color images respectively) which are both 4 
bits/pixel, as these are widely available representatives of 
block-based compression. The reported memory sizes 
include both the tree and codebook.  We also compare with 
the block-based VQ scheme of [BAC96].  Please refer to 
our supplemental results for additional examples. 
Note that many block-based schemes like BC4U and DXT1 
require storage of separate (compressed) mipmap levels, 
which effectively raises storage cost to 5.33 bits/pixel for a 
full pyramid.  In contrast, our tree representation directly 
includes all mipmap levels. 
Another benefit of trees, which makes direct comparisons 
challenging, is that while the inter-level residuals are 
quantized (to 8 bits), the reconstructed signal is floating-
point and attains greater accuracy at each finer level, as 
demonstrated with the distance function in Section 6.3. 

Close-up of original 
(8 bpp) 

Tree-compressed 
(1 bpp) 

BC4U-compressed
(4 bpp) 

Figure 4: Close-up on the light map of Figure 1. 

 

Dataset 
Input Compressed tree BC4U/

DXT1
Beers
[1996]

Dim. Size
(KB)

Size 
(KB) 

Bits/ 
pixel 

PSNR 
(dB) 

PSNR
(dB) 

PSNR
(dB) 

Land (lightmap) 10252 1051 135 1.03 44.2 48.8 40.6 
Lady (matte) 10252 1051 139  1.06 52.8 53.0 44.6 
Teapot (dist) 10252 131 8.7 0.07 - - - 
Piggy (HDR) 5132 3158 165 5.00 - - - 
Monkey (matte) 10252 1050 95 0.72 51.2 51.5 43.8 
Bull (dist) 10252 131 7.8 0.06 - - - 
Desk (HDR) 644x874 6754 349 4.96 - - - 
Atlas (lightmap) 10252 3151 269 2.05 49.6 52.5 41.4 
Nefertiti (RGB) 5132 790 65 1.97 37.8 36.3 33.9 
Flowers (RGB) 5132 790 116 3.52 31.0 29.6 28.2 
Table 2: Quantitative results including comparison with 4 
bit/pixel BC4U or DXT1 compression and 2 bit/pixel VQ 
scheme of [BAC96]. 

6.1 Light maps 
Our approach is especially well suited to light maps, as 
they contain both smoothly varying regions and sharp 
shadow boundaries. Figure 4 compares our method to 
BC4U compression which is 4 bits/pixel and has a PSNR 
of 48.8 dB.  As shown in the graph of Figure 6, we reach 
this numerical accuracy at 2.2 bits/pixel.  Moreover, Figure 
4 shows that even at 1 bit/pixel (44.2 dB), our reconstruc-
tion is visually more faithful, with less noise and fewer 
dithering artifacts. 

6.2 Alpha mattes 
Alpha mattes often have only a small fraction of pixels 
with fractional alpha values.  Our adaptive tree nicely skips 
all the solid regions of an alpha map, while precisely 
reproducing the smooth transitions between opaque and 
transparent areas.  The alpha matte of Figure 5 is com-
pressed by BC4U at 4 bits/pixel with an accuracy of 51.5 
dB. We achieve a similar result at only 0.7 bits/pixel (see 
Figure 6). 
 

Input alpha matte (10252) Adaptive tree T′ 

Close-ups of input Close-ups of compressed 
Figure 5:Compression of alpha matte (0.7 bpp;51.2 dB) 
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range detail image, and quantize its channels (separately) to 
8 bits.  We compress this quantized detail image using 
ordinary DXT1 compression in 4 bits/pixel (Figure 12e). 
The overall representation uses 5 bits/pixel and compares 
favorably with the earlier result of [MCHA06] at 8 
bits/pixel.  We report rms errors in log2(RGB) space as in 
[XPH05]. Our tree-compressed result has few color quanti-
zation artifacts, even at extreme exposure levels. 

6.5 Texture atlases 
Texture atlases often contain charts separated by unused 
space (Figure 10).  Our compressed tree ignores these 
undefined regions in two ways.  First, the tree structure is 
adaptively pruned.  Second, thanks to our sparse VQ 
approach (Section 5.2), the codebook quality is not im-
pacted by the boundaries between the defined and 
undefined areas. 
We modify the compression algorithm as follows.  First, 
we extrapolate data outside the chart boundaries with a 
pull-push step [SSGH01].  We use this new image to 
compute the mipmap of desired values.  Second, we re-
move from the mipmap tree ܶ all sub-trees covering empty 
regions; the tree is no longer complete, and some residual 
blocks now contain undefined data values.  This is handled 
by our modified VQ as described Section 5.2. 

Original atlas 
(black is unused) 

Tree-compressed  
(2.05 bpp; 49.6 dB) 

Adaptive tree ܶᇱ  
(close-up) 

Figure 10: Multi-chart texture atlas compression. Unused 
regions are omitted from the tree and ignored by VQ. 

6.6 Limitation: color images 
Tree compression can also be applied to color images.  It is 
most effective on images with large smooth areas, such as 
in Figure 13 where we obtain a 2X memory savings com-
pared to DXT1 compression, with slightly higher accuracy. 
However, on more common images with uniform high-
frequency detail, the resulting tree becomes too dense to be 
a significant benefit over traditional block-based approach-
es, as shown in Figure 11. 

Adaptive tree T′ (close-up) Tree-compr. (3.52 bpp; 31 dB) 
Figure 11: Uniformly distributed detail creates a near-
complete tree, which is not our desired scenario. 

(a) Input (644×874) close-up (b) Log-RGB of (a) 

(c) Adaptive tree on (b) (d) Tree-compression of (b) 

(e) Detail (b minus d) (DXT1) (f) Final image using (d) and (e)

Input HDR image (close-up at 3 different exposures) 

Tree-compressed HDR image (4.96 bpp; log2(RGB) rmse = 0.19)

  Original  Our result   [MCHA06] Original  Our result [MCHA06]
Comparison with Munkberg et al [MCHA06] 

Figure 12: For an HDR image, aggressive tree compres-
sion in log(RGB) space (at 1 bit/pixel), with remaining 
detail represented as a low-dynamic-range DXT1 image (4 
bits/pixel).  In comparison, Munkberg et al [MCHA06] 
report rmse=0.25 at 8 bits/pixel. 
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Input image (5132) Close-up of adaptive tree Tᇱ 

Close-ups of input Tree-compr. (1.97 bpp; 37.8 dB)

DXT1-compr. (4 bpp; 36.3 dB) [BAC96] (2 bpp; 33.9 dB) 
Figure 13: Compression of a relatively smooth color 
image, compared with DXT1 compression and with uni-
form 2×2 block VQ using a 256-entry codebook. 

7. Tree evaluation 
Our decompression scheme is easy to implement on a CPU.  
The following is pseudocode for trilinear evaluation at a 
point ݔ and mipmap level ݈: 
value Evaluate(point ݔ, float ݈) { 
 If ݈  4, 
  return trilinearly filtered value from mipmap. 
 Identify the square cell containing ݔ at level 4 
  (i.e. the starting level for trees in the forested mipmap). 
 For each of the four corners of this cell: 
  retrieve the root node address and value. 
 Re-express point ݔ in the cell’s local coordinates. 
 Loop: 
  At point ݔ, bilinearly interpolate the four node values.
   If --݈ ൏ 1 or all four node addresses are NULL, 
   return value at ݔ lerp’ed with that in prior level using ݈.
   Set the new cell as the quadrant containing point ݔ. 
  For each of the four new cell corners: 
   Predict the new node value using bilinear interpolation. 
   If the node parent address is non-NULL, 
    Access the VQ codebook to add the residual value. 
    Update the node address to the appropriate child. 
  Re-express point ݔ in the new cell’s coordinates. 
} 

Due to the tree adaptivity and the collapse of coarsest 
levels into a forested mipmap, the number of tree levels 
traversed in the loop is relatively low on average, as shown 
in the rightmost column of Table 4. 
We have also implemented the evaluation procedure within 
a GPU pixel program.  DirectX 10 enables unfiltered 
access to 1D memory buffers with a maximum size of 128 
MB.  This linear memory layout enables better caching 
behavior than the complex addressing resulting from 
unfolding the tree in a 2D texture.  Integer arithmetic lets 

us decode the data structure efficiently.  The image decom-
pression shader compiles to 298 instructions.  On a 
GeForce 8800 GTX, we render the images at their original 
resolutions with full filtering enabled.  The decompression 
rates, shown in Table 3, are about 20X slower than the 
DXT1/BC4U schemes.  But of course, these block-based 
decompression schemes benefit from specialized hardware 
in the GPU, and the texture caching and filtering system 
have been optimized for their use.  We analyze possible 
caching strategies in the next section.  Even without assis-
tance from specialized hardware, our scheme allows real-
time rendering when decompressing a screen-sized texture. 

Dataset Frames/sec Dataset Frames/sec
Land (lightmap) 48 Bull (dist) 122 
Lady (matte) 60 Ennis (HDR) 34 
Teapot (dist) 115 Atlas (lightmap) 47 
Desk (HDR) 64 Nefertiti (RGB) 207 
Monkey (matte) 82 Flowers (RGB) 189 
Table 3: Current rendering performance on the GPU. 

8. Analysis and discussion 
Benefits of tree structure.  Data coherence generally 
permits a very adaptive hierarchy.  In particular, note the 
representation of the signed distance function in Figure 8, 
where the adaptive tree is able to represent the smooth 
function at a coarse resolution, yet still capture its localized 
fine detail (such as sharp corners) at fine resolution.  Also, 
our scheme supports floating point signals at no additional 
cost, as exploited in the HDR application. 
Bandwidth analysis.  An important consideration in any 
compression scheme is the memory bandwidth necessary to 
decode samples under typical texture access patterns.  
Indeed, as processors continue to integrate more computa-
tional cores, bandwidth becomes the likely bottleneck.  
Although our hierarchical compression involves several 
memory accesses (up to 8 at each resolution level in the 
worst case), most of these accesses are temporally coherent 
and can therefore be intercepted on-chip.  In this section we 
explore two such bandwidth reduction strategies, which can 
be used separately or together: 
• Cache of multiresolution nodes. We introduce a cache 

indexed by the parent address and child index (0..3), 
which returns the child node address and its float value.  
(Addresses refer to locations within the memory buffer.)  
We assume a fully associative cache with LRU replace-
ment as in [IM06]. We find that a cache of 256 entries is 
already very effective. Each entry requires 12 bytes for 
grayscale signals, so the cache occupies only 3KB. 

• Buffering of the last query.  We store the multiresolution 
samples used by the last sample evaluation, i.e. a stack 
of cells, each holding an ሺݔ,  ,ሻ location, 4 data valuesݕ
and 4 memory buffer addresses.  For a grayscale image, 
a 6-level stack needs 216 bytes.  Given a query point, we 
iterate through the stack levels fine-to-coarse until the 
point lies within the buffered cell, and then begin the 
coarse-to-fine tree evaluation algorithm as before.  Con-
sequently we avoid traversing the tree from its root if 
intermediate resolutions are already buffered, and thus 
reduce computation in addition to bandwidth. 

c© The Eurographics Association 2007.

S. Lefebvre & H. Hoppe / Compressed Random-Access Trees for Spatially Coherent Data 347



  

 

We have 
bandwidth
of Figure 
traversal, a
as scanline
atlas of Fi
order in sc
book is sm
an on-chip
Table 4 an
the light m
times sma
Accessing
in a memo
ly larger t
KB).  For 
cache and 
KB, whic
representa
of total ca
ciently lar
affect ban
tion.  For t
the compre
Large dat
(Section 5
pruning it
However, 
algorithm 
The runtim
Of course,

Uncom
Image
Comp
Morto
 with m
 with b
 with b
Scanli
 with m
 with b
 with b

Table 4: A
the tree-co
and with o

Uncom
Image
Comp
Atlas 
 with m
 with b
 with b

Table 5: 
Figure 15 

performed a se
h reduction strat
1, we simulate
as would be typ
e traversal.  We
gure 10 onto th
creen-space.  In
mall (1 KB) and
p buffer. 
nd Table 5 sum
map, the compre
aller than the 
 this compresse

ory bandwidth o
than even the o
the Morton or

d the last-query
ch is only 1.1
ation.  Figure 14
ache size for thi
rge node cache

ndwidth, but do
the atlas access
essed represent
tasets.  Our cu
.3) creates a 
, and thus doe
it should be po
to more conci

me representatio
, a practical alte

Scheme 
mpressed image 
e with its mipmap
pressed representa
on order: tree eval
multiresolution n
buffering of last q
both cache and bu
ine order: tree eva
multiresolution n
buffering of last q
both cache and bu
Analysis of me
ompressed 102
our two bandwid

Scheme 
mpressed image 
e with its mipmap
pressed representa
access: tree evalu
multiresolution n
buffering of last q
both cache and bu
Memory band
with the atlas o

et of simulatio
tegies.  Using t

e a Morton (Z-o
pical in a rasteri
e also simulate t
he mesh in Figu
n both cases, th
d we assume th

mmarize the sim
essed data size 
uncompressed 

ed data without 
of 25807 KB, w
original uncom
rdering, introdu
 buffer reduces
 times the co
4  graphs band
is Morton trave
e, the last-que
oes significantl
s in Table 5, the
tation due to mi
urrent tree con
complete tree 

es not scale we
ossible as futur
sely compute a
on should scale
ernative is a tilin

Bits/

p pyramid 
ation 
luation 1

node cache 
query 
uffering 
aluation 1

node cache 
query 
uffering 
emory bandwid
52 light map of
dth reduction st

Bits/

p pyramid 
ation 
uation 2
node cache 
query 
uffering 

dwidth for text
of Figure 10. 

ons using these
the 10252 light 
order) texture-s
ization pass, as 
texture mappin
ure 15, with Mo
he  256-entry c
hat it is loaded

mulation results. 
is 135.3 KB, o
mipmap pyra

any caching re
which is signific

mpressed data (
ucing the 3KB n
s bandwidth to
ompressed mem
dwidth as a func
ersal.  With a s

ery buffer does
ly reduce comp
e bit rate is less 
ipmapping. 

nstruction proce
before adapti

ell to large ima
re work to alte
accumulated er
e to larger text
ng structure. 

/pixel Average
number
levels

traversed

8 
10.7 
1.03 

190.6 4.8
1.1 4.8
3.7 0.4
1.1 0.4

190.6 4.8
9.6 4.8

19.2 0.98
9.8 0.98

dth cost to eval
f Figure 1, wit
trategies. 

/pixel Average
number
levels

traversed

8 
10.7 
2.05 

270.7 4.8
1.8 4.8

44.7 0.92
1.8 0.92

turing the mes

 two 
map 

space 
well 

g the 
orton 
code-
d into 

 For 
or 10 
amid.  
esults 
cant-
1052 
node 

o 147 
mory 
ction 
suffi-
s not 
puta-
than 

edure 
ively 
ages. 

er the 
rrors. 
tures. 

luate 
thout 

sh of 

Ba
nd

w
id

th
  (

bi
ts

/p
ix

el
)

Figu
(inc
 

Figu
the 

9.
We
hier
stru
map
inte
subd
Som
• D

d
• U

[Z
• A

sp
• U

c
• G

g
• A
• R

d
• Im

10.
We 
autu
alph
Figu
ima
The

0
1
2
3
4
5
6
7
8

0 1000

ure 14: Band
cluding node ca

ure 15: Viewpo
atlas of Figure 

Summary and
have introduce

rarchies using 
ucture.  Such a 
p interpolation 
rpolation is ac
division structu

me avenues for 
Dynamic loadin
data, exploiting 
Use of the qu
ZDTS07] for dy

Application of th
parse VQ will b

Use of tree-com
ollision detectio

Generalization o
graph, for repres
Architectural de
Runtime tree u
data. 
mproved tree co

Acknowledgm
thank Hanan S

umnal trees, N
ha-matte data. T
ure 15 is from

age of Figure 1
e HDR image of

0 2000
Cache Size (

nod
last-
last-

dwidth as func
ching and/or la

oint used for ba
10. 

d future work 
ed a framework

a compact 
tree provides a
structure, and w

chieved most e
ure. 
future work inc
ng and unloadi
local offsets to 
uadtree constru
ynamic compre
he tree structure
be especially ad

mpressed 3D di
on. 
of the tree struc
sentation of tile
signs for hardw

updates for inc

ompression usin

ments 
Samet for point

Nick Apostolof
The textured mo
m the MIT CS
1 is courtesy o
f Figure 11 is fr

3000 4000
(bytes)

e caching
-query buffer
-query  + node cach

ction of total 
ast-query buffer

andwidth measu

k for compressin
randomly-acce
a natural contin
we have a show
efficiently usin

clude: 
ing of subtree
allow data relo
uction of Zie

ession on the GP
e to octree textu
dvantageous. 
stance fields fo

cture to a direc
ed texture patter
ware implement
cremental chan

ng perceptual m

ting us in the d
ff and Jue Wa
odel used in Fig
AIL database. 

of Roimela et a
rom OpenEXR

 

5000

ing

cache size 
r). 

 
urements on 

ng adaptive 
essible tree 
nuous mip-
wn that this 
ng a primal 

s for large 
ocation. 
egler et al 
PU. 
ures, where 

or real-time 

cted acyclic 
rns. 
tation. 
nges to the 

metrics. 

direction of 
ang for the 
gure 10 and 

The HDR 
al [RAI06]. 
. 

c© The Eurographics Association 2007.

S. Lefebvre & H. Hoppe / Compressed Random-Access Trees for Spatially Coherent Data348



11. References 
[BAC96] BEERS A., AGRAWALA M., CHADDHA N.  1996.  

Rendering from compressed textures.  ACM SIGGRAPH. 
[BD02]   BENSON D., DAVIS J.  2002.  Octree textures.  ACM 

SIGGRAPH, 785-790. 
[Bly06]   BLYTHE D.  2006.  The Direct3D 10 system.  ACM 

SIGGRAPH, 724-734. 
[BWK02]  BOTSCH M., WIRATANAYA A., KOBBELT L.  2002.  

Efficient high quality rendering of point sampled geometry.  
Eurographics Workshop on Rendering, 53-64. 

[BA83] BURT P.,  ADELSON E.  1983.  The Laplacian pyramid 
as a compact image code.  IEEE Trans. on Comm. 31(4), 
532-540. 

[CCG96] CHADDHA N., CHOU P., GRAY R.  1996.  Con-
strained and recursive hierarchical table-lookup vector 
quantization.  IEEE Data Compression Conference. 

[CB04] CHRISTENSEN P., BATALI D.  2004.  An irradiance 
atlas for global illumination in complex production scenes.  
Eurographics Symposium on Rendering. 

[CAD04] COHEN-STEINER D., ALLIEZ P., DESBRUN M.  2004.  
Variational shape approximation.  ACM SIGGRAPH, 905-
914. 

[DGPR02]  DEBRY D., GIBBS J., PETTY D., ROBINS N.  2002.  
Painting and rendering on unparameterized models.  ACM 
SIGGRAPH, 763-768. 

[FM86] FABBRINI F., MONTANI C.  1986.  Autumnal qua-
dtrees.  The Computer Journal, 29(5), 472-474. 

[FFBG01] FERNANDO R., FERNANDEZ S., BALA K., GREEN-
BERG D.  2001.  Adaptive shadow maps.  ACM SIGGRAPH, 
387-390. 

[FPRJ00] FRISKEN S., PERRY R., ROCKWOOD A., JONES T.  
2000.  Adaptively sampled distance fields: A general repre-
sentation of shape for computer graphics.  ACM SIGGRAPH, 
249-254. 

[Gar82] GARGANTINI I.  1982.  An effective way to represent 
quadtrees.  Communications of the ACM, 25(12), 905-910. 

[GG92] GERSHO A., GRAY R.  1992.  Vector quantization and 
signal compression. Kluwer Academic Publishers, Boston. 

[GS84] GERSHO A., SHOHAM Y.  1984.  Hierarchical vector 
quantization of speech with dynamic codebook allocation.  
ICASSP, 9(1), 416-419. 

[GW91] GOLDBERG M., WANG L.  1991.  Comparative 
performance of pyramid data structures for progressive im-
age transmission.  IEEE Trans. on Comm. 39(4). 

[Hec90] HECKBERT P.  1990.  Adaptive radiosity textures for 
bidirectional ray tracing.  ACM SIGGRAPH, 145-154. 

[HG88] HO Y-S., GERSHO A.  1988.  Variable-rate multi-stage 
vector quantization for image coding.  IEEE ICASSP, 1156-
1159. 

[HW91] HUNTER A., WILLIS P.  1991.  Classification of quad-
encoding techniques.  Eurographics Conference. 

[IM06] INADA T., MCCOOL M.  2006.  Compressed lossless 
texture representation and caching.  Eurographics Graphics 
Hardware, 111-120. 

[Kno80] KNOWLTON K.  1980.  Progressive transmission of 
grey-scale and binary pictures by simple, efficient, and loss-
less encoding schemes.  Proceedings of IEEE. 

[KE02] KRAUS M., ERTL T.  2002.  Adaptive texture maps.  
Graphics Hardware, 7-15. 

[LH06] LEFEBVRE S., HOPPE H.  2006.  Perfect spatial hash-
ing.  ACM SIGGRAPH, 579-588. 

[LKS*06] LEFOHN A., KNISS J., STRZODKA R., SENGUPTA S., 
OWENS J.  2006.  Glift: Generic, efficient, random-access 
GPU data structures.  ACM TOG, 25(1). 

[LFWV03] LENDASSE A., FRANCOIS D., WERTZ V., VERLEY-
SEN M.  2003.  Nonlinear time series prediction by weighted 
vector quantization.  ICCS, 417-426. 

[Llo82] LLOYD S.  1982.  Least squares quantization in PCM.  
IEEE Transactions on Information Theory 28(2). 

[MB98] MCCABE D., BROTHERS J.  1998.  DirectX 6 texture 
map compression.  Game Developer, 42-46. 

[MCHA06] MUNKBERG J., CLARBERG P., HASSELGREN J., 
AKENINE-MÖLLER T.  2006.  High dynamic range texture 
compression for graphics hardware.  ACM SIGGRAPH. 

[NH92] NING P.,  HESSELINK L.  1992.  Vector quantization 
for volume rendering.  Workshop on Volume Visualization, 
69-74. 

[RAI06] ROIMELA K., AARNIO T., ITÄRANTA J.  2006.  High 
dynamic range texture compression.  ACM SIGGRAPH. 

[RL01] RUSINKIEWICZ S., LEVOY M.  2001.  QSplat: A 
multiresolution point rendering system for large meshes.  
ACM SIGGRAPH, 343-352. 

[Sam85] SAMET H.  1985.  Data structures for quadtree ap-
proximation and compression.  CACM 28(9), 973-993. 

[Sam06] SAMET H.  2006.  Foundations of multidimensional 
and metric data structures.  Morgan Kaufman. 

[SSGH01] SANDER P., SNYDER J., GORTLER S., HOPPE H.  
2001.  Texture mapping progressive meshes.  ACM SIG-
GRAPH, 409-416. 

[SK01] SAUPE D., KUSKA J.-P.  2001.  Compression of isosur-
faces for structured volumes.  VMV, 471-476. 

[SW03] SCHNEIDER J., WESTERMANN R.  2003.  Compression 
domain volume rendering.  IEEE Visualization, 39. 

[Sha93] SHAPIRO J.  1993.  Embedded image coding using 
zerotrees of wavelet coefficients.  IEEE Trans. on Signal 
Processing, 41(12), 3445-3462. 

[SA05] STRÖM J., AKENINE-MÖLLER T.  2005.  iPACKMAN: 
High-quality, low-complexity texture compression for mo-
bile phones.  ACM Graphics Hardware, 63-70. 

[TS00] TZOVARAS D., STRINTZIS M.  2000.  Optimal construc-
tion of reduced pyramids for lossless and progressive image 
coding.  IEEE TCS, 47(4), 332-348. 

[VG88] VAISEY J., GERSHO A.  1988. Variable rate image 
coding using quad-trees and vector quantization.  EURASIP. 

[Woo84] WOODWARK J.  1984.  Compressed quad trees.  The 
Computer Journal, 27(3), 225-229. 

[XPH05] XU R., PATTANAIK S., HUGHES C.  2005.  High-
dynamic-range still-image encoding in JPEG 2000.   IEEE 
CG&A 25(6), 57-64. 

[YFT80] YAMADA Y., FUJITA K., TAZAKI S.  1980.  Vector 
quantization of video signals.  Proceedings of IECE. 

[ZDTS07] ZIEGLER G., DIMITROV R., THEOBALT C., SEIDEL 
H.P. 2007. Real-time Quadtree Analysis using HistoPyra-
mids. IS&T and SPIE Conference on Electronic Imaging. 

[ZS01] ZORIN D., SCHRÖDER P.  2001.  A unified framework 
for primal/dual quadrilateral subdivision schemes. CAGD, 
18(5), 429-454. 

 

c© The Eurographics Association 2007.

S. Lefebvre & H. Hoppe / Compressed Random-Access Trees for Spatially Coherent Data 349


