
Compressed Random-Access Trees for Spatially Coherent Data
Sylvain Lefebvre1 and Hugues Hoppe2
1 REVES-INRIA, Sophia-Antipolis, France
2 Microsoft Research, Redmond, WA, USA

Abstract
Adaptive multiresolution hierarchies are highly efficient at representing spatially coherent graphics data. We
introduce a framework for compressing such adaptive hierarchies using a compact randomly-accessible tree
structure. Prior schemes have explored compressed trees, but nearly all involve entropy coding of a sequen-
tial traversal, thus preventing fine-grain random queries required by rendering algorithms. Instead, we use
fixed-rate encoding for both the tree topology and its data. Key elements include the replacement of pointers
by local offsets, a forested mipmap structure, vector quantization of inter-level residuals, and efficient coding
of partially defined data. Both the offsets and codebook indices are stored as byte records for easy parsing by
either CPU or GPU shaders. We show that continuous mipmapping over an adaptive tree is more efficient
using primal subdivision than traditional dual subdivision. Finally, we demonstrate efficient compression of
many data types including light maps, alpha mattes, distance fields, and HDR images.

Light map (1.0 bits/pixel) Alpha matte (0.4 bits/pixel) Distance field (0.07 bits/pixel) HDR image (5.0 bits/pixel)
Figure 1: Coherent data stored in a compact randomly accessible adaptive hierarchy with efficient mipmap filtering.

1. Introduction
Spatial data in computer graphics is often very coherent.
For example, distance fields are continuous, light maps are
smooth except at shadow boundaries, alpha mattes are
constant except near silhouettes, and high-dynamic-range
(HDR) images have broad regions of similar luminance.
Effective data compression permits more image content to
be stored within a given memory budget.
There is a large body of work on compressing coherent
data, particularly in the context of images. However, most
compression schemes such as JPEG2000 involve sequential
traversal of the data for entropy coding, and therefore lack
efficient fine-grain random access. A fundamental chal-
lenge in rendering is that, while some input can be
streamed sequentially (e.g. geometric primitives), the
remaining data accesses are often random (e.g. projected
texture maps, parallax occlusion maps, shadow maps).
Compression techniques that retain random access are
more rare. A common approach is fixed-rate compression
of image blocks, such as vector quantization [YFT80;
NH92;BAC96] and the S3TC/DXT scheme widely availa-
ble in hardware [MB98].

For the case of coherent data, traditional block-based
compression has two drawbacks. First, blocks encode data
at a single scale and therefore lack a good prediction model
for low-frequency variations (e.g. linear ramps) that span
across many blocks. Second, most schemes allocate a
uniform bit-rate across the image, and thus lose informa-
tion in high-detail regions, while over-allocating bits in
low-detail regions.
Adaptive hierarchies such as wavelets and quadtrees offer
both multiresolution prediction and spatial adaptivity [e.g.
Sha93;Sam06]. Such tree structures have been applied to
light maps [Hec90], distance fields [FPRJ00], point sets
[RL01], octree textures [BD02;DGPR02], and irradiance
[CB04]. Several techniques compress trees as reviewed in
Section 2, but these techniques generally require sequential
traversal and therefore give up efficient random access.
Contributions. We design a compressed tree representa-
tion that preserves fine-grain random access by using fixed-
rate encoding for both the tree topology and its data. As
shown in Figure 1, our scheme efficiently compresses
coherent spatial data that is typically difficult for traditional
block-based approaches: distance fields, light maps, alpha
mattes and HDR images. To our knowledge this is the first

Eurographics Symposium on Rendering (2007)
Jan Kautz and Sumanta Pattanaik (Editors)

c© The Eurographics Association 2007.

http://www.eg.org
http://diglib.eg.org

scheme to offer random access to a compressed adaptive
hierarchy. Novel elements include:
• Use of a primal-subdivision tree structure for efficient

mipmap filtering over an adaptive hierarchy.
• Replacement of node pointers by local offsets, and

optimization of tree layout for concise offset encoding.
• A forested mipmap structure formed by replacing the

coarsest levels by a mipmap and indirection table.
• Lossy compression of inter-level residuals using vector

quantization (VQ) over broods in the tree, and extension
to sparsely defined data.

The end result is an extremely simple data structure in
which both topology and data are encoded in 8-bit fields.
Because the codebook indices refer to data blocks rather
than individual samples, the tree is one level shallower than
the finest resolution data.
Our scheme is not intended for detailed color images,
which result in dense trees and are thus better handled by
block-based schemes. Nonetheless we show that these
encode reasonably well.
Evaluation cost. One concern with tree structures is that
they may increase memory bandwidth since each query
involves several memory references. However, hierarchic-
al access patterns are very coherent in practice [CB04], so
most memory reads can be intercepted by memory caches.
In fact, with sufficient query locality, the tree data only
needs to be read from memory once (per pass), so the
compactness of the tree is a bandwidth win, as analyzed in
more detail in Section 8.
To mitigate the computational cost of traversing the tree,
we collapse the coarsest levels to form a “forested mip-
map” as described in Section 4.3.
Our compressed adaptive tree is appropriate for both CPU
and GPU evaluation. We demonstrate trilinear mipmap
evaluation within a pixel shader, and achieve real-time
performance without specialized hardware.

2. Related work
Sequential traversals. Most schemes for compressing tree
data consider a linear ordering of the tree nodes and encode
a sequence of traversal codes and/or data residuals [e.g.
Kno80;Woo84;Sam85;GW91;TS00]. Using a good predic-
tion model and entropy coding, such pointerless
representations achieve excellent compression, and have
been applied to image wavelets [Sha93], isosurfaces
[SK01], and point-based surfaces [BWK02]. However,
these linear representations do not allow efficient random
access to the spatial data, as they require decompression of
the whole tree.
Location codes. An alternative is to store a spatially
ordered list of the locations of leaf nodes [e.g. Gar82], but
such a list does not permit hierarchical compression of the
node data.
Random-access trees. Rusinkiewicz and Levoy [RL01]
introduce a point-cluster hierarchy that supports view-
dependent traversal. Their structure could be adapted to
random point queries, but this would require decoding of
many sibling nodes at each tree level.

Hierarchical vector quantization. Several schemes use
VQ in a hierarchical setting. Gersho and Shoham [GS84]
apply VQ to coarse-level amplitudes, and use these quan-
tized values to guide the selection of codebooks at finer
levels. Vaisey and Gersho [VG88] adaptively subdivide
image blocks based on their variance, apply frequency
transforms to the blocks, and use different VQ codebooks
for different-sized blocks. The multistage hierarchical
vector quantization (MSHVQ) of Ho and Gersho [HG88] is
closest to our approach in that its stages perform down-
sampling, block-based VQ, and subtraction of the linearly
interpolated reconstructions. It differs in that the VQ
blocks do not form a regular tree structure, and adaptivity
is only considered in the last stage with highest resolution.
Tree-structured VQ [GG92] uses a decision tree to accele-
rate VQ encoding; another acceleration technique is
hierarchical table lookup [CCG96].
Block-based schemes. Block-based data compression has
been a very active area of research [e.g. SW03;SA05]. The
latest graphics hardware supports several new block-based
schemes [Bly06]. The most relevant to us is
DXGI_FORMAT_BC4_UNORM (BC4U), a scheme for
lossy compression of single-channel (grayscale) images; it
is 4 bits/pixel like the original DXT1 scheme.
Adaptive random-access schemes. Other adaptive repre-
sentations include indirection tables [KE02], page tables
[LKS*06], quadtrees of images [FFBG01], B-trees of
losslessly compressed blocks [IM06], and spatial hashing
[LH06]. These schemes are able to adapt the spatial distri-
bution of data samples, but do not focus on hierarchical
compression of the data itself.
Unlike previous random-access compression schemes, our
hierarchy exploits data prediction across resolutions, which
is key to concisely encoding smoothly varying data.

3. Primal subdivision for efficient interpolation

3.1 Traditional dual subdivision
In a traditional region quadtree (dimension ݀ ൌ 2), nodes
correspond to spatial cells that are properly nested across
resolution levels, forming a dual-subdivision structure
[ZS01]. An important drawback of a dual tree is that
mipmap filtering becomes expensive when the tree is
adaptive. Indeed, Benson and Davis [BD02] explain that
mipmap interpolation requires a total of 3ௗ lookups per
level. The problem is that pruned tree nodes must be
interpolated from the next-coarser level (as shown by the
red arrows in Figure 2a), and this interpolation requires a
large support (e.g. point ܦ requires values from nodes ܤ ,ܣ,
and ܥ). Also, in pruned areas of the tree, the successive
interpolations of the 3ௗ local nodes is equivalent to a
multiquadratic B-spline, which is nicely smooth but expen-
sive to evaluate.

3.2 Our primal subdivision approach
We instead associate tree nodes with the cell corners (e.g.
as in [FPRJ00] and [LKS*06]), so that finer nodes have
locations that are a superset of coarser nodes (though their
values may differ). This corresponds to a primal-
subdivision structure, and allows continuous interpolation

c© The Eurographics Association 2007.

S. Lefebvre & H. Hoppe / Compressed Random-Access Trees for Spatially Coherent Data340

over an adaptive tree using only 2ௗ lookups per level (e.g.
nodes ܥ,ܤ in Figure 2b). Moreover, refinement can termi-
nate with simple multilinear interpolation when all 2ௗ local
nodes are pruned. To our knowledge these advantages of
primal trees have not been explained previously.
To represent a primal tree, we “slant” the tree structure as
shown in Figure 2b. Thus, in 2D, the children of a node at
location ሺݔ, ,ݔሻ have locations ሺݕ ݔሻ, ሺݕ ൅ 2ି௟, ,ݔሻ, ሺݕ ݕ ൅2ି௟ሻ, and ሺݔ ൅ 2ି௟, ݕ ൅ 2ି௟ሻ in level ݈. This slanting
causes some subtrees to fall outside the input domain, as
illustrated by the dangling links on the right boundary.
(Dual trees have similar undefined subtrees if the domain
size is not a power of two.) Fortunately, our data compres-
sion scheme (Section 5) is able to efficiently ignore such
undefined data.
For completeness, we show pseudocode for continuous
mipmap interpolation over a primal 1D tree, first on a
complete tree:

class Tree {
 Tree L, R;
 float val;
}

float evaluate1D(Tree root, float x, float level) {
 return evaluate1DRec(x, level, root.L, root.R);
}

float evaluate1DRec(float x, float level, Tree l, Tree r) {
 float vC = interp(l.val, r.val, x); // value at current level
 if (level<=0.0) return vC;
 float vF; // value at finer level
 if (x<0.5) { // select left / right subtree
 vF = evaluate1DRec((x-0.0)*2, level-1.0, l.L, l.R);
 } else {
 vF = evaluate1DRec((x-0.5)*2, level-1.0, l.R, r.L);
 }
 if (level>=1.0) return vF;
 return interp(vC, vF, level); // blend two levels
}

Next, we eliminate the recursion and generalize the evalua-
tion to an adaptive tree:
float evaluate1D(Tree root, float x, float level) {
 Tree l = root.l, r = root.r;
 float vl = l.val, vr = r.val;
 float vC = interp(vl, vr, x); // value at current level
 for (;;) {
 if (!l && !r) return vC; // early exit if pruned
 vm = interp(vl, vr, 0.5); // default midpoint value
 if (x<0.5) { // select left / right subtree
 x = (x-0.0)*2; l = (l ? l.L : 0); r = (l ? l.R : 0); vr = vm;
 } else {
 x = (x-0.5)*2; l = (l ? l.R : 0); r = (r ? r.L : 0); vl = vm;
 }
 if (l) vl=l.val; // set values if not pruned
 if (r) vr=r.val;
 float vF = interp(vl, vr, x); // value at current level
 if (level<=1.0) return interp(vC, vF, level);
 vC = vF; level = level-1.0;
 }
}

The generalization of the evaluation procedure to higher
dimensions is straightforward.

DD

AA BB CC

((aa)) dduuaall ssuubbddiivviissiioonn ((bb)) pprriimmaall ssuubbddiivviissiioonn
DD

BB CC

Figure 2: Dual-subdivision and primal-subd. trees in 1D.
In an adaptive tree, pruned nodes (hollow circles) must be
interpolated from coarser values, and this is more compli-
cated in dual subdivision.

4. Compressed tree topology
We now describe our scheme for compressing the topology
of the tree; Section 5 will address the compression of its
associated data.
Terminology. A tree node with at least one child is an
internal node; otherwise it is a leaf. The depth of a node is
the length of the path to the root, so the root node has depth
zero. Level ݈ of the tree refers to all nodes at depth ݈. The
tree height ܮ is the maximum level. A complete tree has all
its leaves at the same depth, and hence a total of 2ௗ௅
leaves. In an arbitrary tree, each node may have any
number (0 to 2ௗ) of children. We focus on full trees, in
which all internal nodes have a full set of (2ௗ) children.
Note that a complete tree is always full, but not conversely.

4.1 Traditional tree data structures
We begin by reviewing structures for tree topology. In the
simplest case, each node contains a data record and 2ௗ
pointers to child nodes, any of which can be NULL:
struct Node {
 Data data;
 Node* children[2d]; // NULL if the child is pruned
};

Assuming 32-bit pointers, the tree topology requires 4 ڄ 2ௗ
bytes per node, with much wasted space at the leaf nodes.
Sibling tree. An improvement for full trees is to allocate
sibling nodes contiguously (forming a brood), and to store
a single pointer from the parent to the brood [HW91], thus
reducing topology encoding to 4 bytes/node:
struct Node {
 Data data;
 Brood* brood; // pointer to first child, or NULL
};

struct Brood { // children nodes allocated consecutively
 Node nodes[2d];
};

Autumnal tree. If pointers and data records have the same
size, an even better scheme is to raise the data from leaf
nodes into their parents, to form an autumnal tree [FM86].
Hence the Node structures are only allocated for internal
nodes. A single bit identifies if a child is a leaf, and is
often hidden within the pointer/data field. Tree topology is
reduced to 4 ڄ 2ିௗ ൅ ଵ ଼ൗ bytes/node. For a quadtree, this is
1.125 bytes/node, much less than the sibling tree.

L R val
ll

ll..LL
L R val

ll..RR
L R val

L R val
rr

rr..LL
L R val

rr..RR
L R val

c© The Eurographics Association 2007.

S. Lefebvre & H. Hoppe / Compressed Random-Access Trees for Spatially Coherent Data 341

 dd XX

ee hh aa -- -- bb kk ll -- --cc

mmnn pp qq ff oo -- rr --ggss tt -- -- ii uu -- -- --jj

 dd XX ee hh aa mmnn pp qq ff ss tt -- -- ii -- -- bb oo -- rr -- gg uu -- -- -- jj kk ll -- --cc

mm
pp

ss
nn

qq
tt

oo
rr

uu

kk ll
jj

 gg
hh

ee
ii

ff cc

bb

dd

aa

Figure 3: Example of a primal autumnal tree and its
memory packing. Dashes denote undefined data values.

struct PointerOrData {
 bit leafchild;
 union {
 Node* pointer; // if not leafchild
 Data data; // if leafchild
 };
};

struct Node { // only for internal nodes
 Data data;
 PointerOrData children[2d];
};

4.2 Encoded local offsets
Even in an autumnal tree, the pointers remain the limiting
factor for memory size. Our contribution is to replace such
pointers by local offsets. Hunter and Willis [HW91]
consider replacing absolute pointers by offsets, but define
offsets from the start of the tree data structure. Instead, we
define offsets locally, such that an offset of zero refers to
memory just after the current node.
Starting with an autumnal tree, we replace each absolute
32-bit pointer by a local scaled offset encoded into 7 bits.
The tree data values will also be encoded into 7 bits, so that
the PointerOrData structure fits nicely in one byte.
We pack the nodes in memory in preorder as shown in
Figure 3. At fine levels, parent nodes are close to all of
their children. At coarser levels, the children become
separated by their own subtrees, so the offset from the
parent to its last child grows. Our idea is to encode each
offset ݕ into a 7-bit code ݔ א ሾ0,127ሿ as ݕ ൌ ௟ݏ ԝݔ where ݏ௟
is a per-level scaling parameter. At finer levels where
offsets are small, this encoding is wasteless with ݏ௟ ൌ 1.
At coarser levels where ݏ௟ ൐ 1, if the desired offsets cannot
be encoded exactly (i.e. are not a multiple of ݏ௟), we leave
some padding space between the subtrees.
We perform the packing in a fine-to-coarse order. For each
level, having already packed the finer subtrees into memo-
ry blocks, we iteratively concatenate these subtree blocks
after their respective parents such that they are addressable
as encoded offsets from the parents — leaving padding
space as needed. We exhaustively search for the integer
scaling factor ݏ௟ א ሼݕڿmax 127⁄ ۀ … maxሽ that gives the bestݕ
packing (where ݕmax is the largest offset). Table 1 shows
some example results.
Another strategy would be to pack nodes in level-order
(equivalent to breadth-first search). However, such order-
ing would give offsets that are larger and less predictable.

Level ݈ Num. nodes Scaling ݏ௟ Padding (bytes)
0 1 500 58
1 4 316 354
2 9 135 897
3 25 61 960
4 76 26 1016
5 202 10 555
6 486 5 0
7 1228 1 0
8 3218 1 0
9 8322 1 0

Table 1: Result of offset encoding for the data in Figure 5.
A forested mipmap replaces tree levels 0-4 (Section 4.3).

4.3 Forested mipmap
Maintaining the coarsest levels as a tree structure has a
number of drawbacks: (1) These levels are usually dense,
so adaptivity is unnecessary; (2) The traversal of these
coarse levels adds runtime cost; (3) Much of the padding
space introduced by our offset encoding occurs there; (4)
VQ compression is ineffective due to the small number of
data nodes. For these reasons, we collapse the coarsest tree
levels 0..4 to form a (non-adaptive) mipmap pyramid. At
the finest of these pyramid levels, we also store a 172
indirection table with pointers to the resulting clipped
subtrees. We call this overall structure a forested mipmap.
For the same example in Table 1, the forested mipmap
results in a decrease of 1847 bytes. Overall the tree topolo-
gy requires 0.36 bytes/node for this quadtree.

5. Compressed tree data
A benefit of a tree structure ܶ is that data at finer levels can
be predicted from coarser levels [e.g. BA83], in our case by
simple multilinear interpolation. In the case of spatially
coherent data, the residual differences tend to be small.
Indeed, pruning of subtrees with near-zero residuals al-
ready offers significant data compression. In this section,
we examine how to further compress the data residuals
themselves.

5.1 Brood-based vector quantization
To support efficient random access, we compress the inter-
level residuals using vector quantization. VQ is an ap-
proach that approximates a set of vectors by a small
codebook, replacing each vector by an index into the
codebook [GG92].
Specifically, we apply VQ to the blocks of data residuals
associated with the broods of the tree. Recall that a brood
is the set of 2ௗ children of a parent node. Each codebook
index encodes the data residuals for these 2ௗ data samples.
We use a codebook of 128 elements: Each codebook index
is 7 bits. For a complete quadtree, these indices correspond
to storage of 1.75 bits per data at the finest level, or a total
of 2.33 bits per data when accounting for all levels.
Thus, we create a new tree ܶᇱ (which we call a VQ tree) in
which each node data is a 7-bit codebook index. Because
each index encodes a block of residual data, the VQ tree ܶᇱ
is one level shorter than the original data tree ܶ. That is,
each leaf node in ܶᇱ stores data for 2ௗ samples in leaves of

c© The Eurographics Association 2007.

S. Lefebvre & H. Hoppe / Compressed Random-Access Trees for Spatially Coherent Data342

ܶ. Our association of a data block per tree node is similar
to brick maps [CB04], although we store residuals and
encode the blocks.
For a single-channel image, each residual vector contains 4
pixel residuals, and is therefore 4-dimensional. The 128
codevectors are a sparse sampling of this 4D space. (For a
color image, the codevectors are an even sparser sampling
of a 12D space.) Fortunately, there is significant cluster-
ing. In addition, the VQ tree is able to correct coarse-level
errors in the finer levels. Because the tree encodes a
cascade of small residuals, tree-based VQ yields signifi-
cantly less error than VQ applied to a uniform grid of
blocks [BAC96], as seen in Figure 13.
In 2D, we visualize the adaptive primal tree ܶᇱ by outlining
each node’s Voronoi region, and showing its VQ data as 4
sub-squares. This nicely reveals both the tree structure and
the data resolution.
Implementation. We compute a separate codebook at
each tree level, using ݇-means clustering [Llo82], which
converges to a local minimum of the summed intra-cluster
variance. To help jump out of local minima, we use cluster
teleportation as in [CAD04].
To reduce codebook sizes, we further quantize the codevec-
tor themselves to 8 bits per coordinate, and this is achieved
as an easy extension to the ݇-means clustering algorithm.
Lastly, at the finest level ܮ of the tree, we know that all
nodes must be leaves. Therefore we omit the leafchild bit
and instead use an 8-bit codebook index, together with a
256-entry codebook. This helps to improve compression
accuracy at the finest level.

5.2 Extension of VQ to undefined data
As discussed in Section 3.2, subtrees sometimes extend
beyond the defined domain, so there exist residual blocks
for which some data values are undefined. We exploit the
fact that we don’t care about these residuals to reduce the
error of the vector quantizer, as follows.
A not so well known property of ݇-means clustering is that
it can be extended to partially defined data and still pre-
serve its convergence properties [LFWV03]. The standard ݇-means clustering algorithm iterates between
(1) assigning each vector to the closest cluster point, and
(2) updating each cluster point as the mean of the vectors
assigned to it. The generalization for partially defined data
is to modify these steps to just ignore the undefined com-
ponents of the input vectors, both when computing
distances in step 1 and the centroid points in step 2.

5.3 Construction of adaptive VQ tree
We seek to construct a simplified VQ tree while bounding
the ܮஶ approximation error at all levels to a given threshold
value ߬. Because VQ compression is lossy, even the
complete VQ tree may not satisfy the tolerance ߬, and in
that case our goal is to avoid introducing any further such
errors.
At a high-level, the construction of the adaptive VQ tree ܶᇱ
involves three steps:
(1) Create a complete mipmap tree ܶ of desired data
values.

(2) Apply brood-based vector quantization to form a
complete VQ tree ܶᇱ of compressed residuals.
(3) Adaptively prune the tree ܶᇱ subject to satisfying ߬.
A useful extension is to reach a desired compression rate
(e.g. 1.5 bits/pixel) by repeating step (3) using a binary
search over ߬.
A limitation of this algorithm is that it computes the per-
level VQ codebooks using all block residuals in the com-
plete tree, even though the final simplified tree will only
contain a subset of these blocks. However, the effect
should be minor since the pruned blocks have near-zero
residuals. There is actually a complicated inter-dependence
between the tree structure and the per-level codebooks. In
particular, it is not a good idea to recompute new code-
books on the final simplified tree because this could result
in approximation errors that exceed the tolerance τ.
We next discuss the 3 steps in more detail.
Mipmap construction. In fine-to-coarse order ݈ ൌ1-ܮ … 0, we compute the desired values ݀௟ at nodes of level ݈ from those at level ݈൅1 as a least-squares optimization minௗ೗ฮ ௟ܲ,௟ାଵ݀௟ െ ݀௟ାଵฮଶ

 where the rows of matrix ௟ܲ,௟ାଵ
contain the multilinear interpolation weights (i.e. 0, 1, or
powers of భమ, for our primal subdivision).
VQ compression of the complete tree. We process each
level ݈ ൌ 1 … -of the tree in coarse-to-fine order as fol ܮ
lows. We compute the predicted values ݌௟ ൌ ௟ܲିଵ,௟ܽ௟ିଵ by
multilinear interpolation of the approximated values ܽ௟ିଵ at
the next-coarser level (with ܽ଴ ൌ 0). The residuals ݎ௟ ൌ ݀௟ െ ,௟ are compressed using brood-based VQ݌
resulting in compressed residuals ̃ݎ௟. Thus, the approx-
imated values are ܽ௟ ൌ ௟݌ ൅ ௟, and we clamp these to theݎ̃
signal range which is typically [0,1]. We also compute the
signed approximation errors ݁௟ ൌ ܽ௟ െ ݀௟.
Adaptive tree pruning. We process each level ݈ ൌ1-ܮ … 0 of the VQ tree ܶᇱ in fine-to-coarse order, looking
to prune its leaves. The basic idea is to allow simplifica-
tion as long as the accumulated approximation errors at all
affected nodes in the original tree ܶ do not exceed the
tolerance, i.e. ݈׊, ԡ݁௟ԡஶ ൑ ߬.
Because autumnal trees are full, the atomic simplification
operation on ܶᇱ is the removal of all 2ௗ leaf nodes in a
brood. Thus, we need only consider a brood if all its
subtrees have been pruned. Since each child in the brood
(assumed at level ݈) contains a codebook index encoding a 2ௗ block of data, the simplification operation effectively
removes a 2ௗ block of residual values ̃ݎ஻ ؿ ݈ ௟ାଵ in levelݎ̃ ൅ 1. We allow the brood to be removed if the subtraction
of these residuals does not increase the approximation error
(at any node in the original tree ܶ) beyond the tolerance ߬.
Specifically, we compute the updated approximation errors ݁௟ᇱ by interpolating the subtracted residuals to each finer
level ݈ᇱ ൒ ݈ ൅ 1 as ݁௟ᇲᇱ ൌ ݁௟ᇲ െ ܲ௟ᇲ,௟ାଵ̃ݎ஻ and check if ฮ݁௟ᇲᇱ ฮ ൑ ߬.
Even within a level, the affected subtrees of residual blocks ̃ݎ஻ for different broods do overlap at their boundaries, so
we visit the candidate broods in order of increasing residual
norm ԡ̃ݎ஻ԡ to hopefully remove more smaller residuals
than fewer larger ones.

c© The Eurographics Association 2007.

S. Lefebvre & H. Hoppe / Compressed Random-Access Trees for Spatially Coherent Data 343

5.4 Codebook sharing
Although codebooks are relatively compact (3 KB for a
single-channel image), they need to be stored along with
each image. On smooth data such as distance fields and
light maps, we find that data residuals are extremely auto-
similar across levels, so a shared codebook can be reused
by all tree levels subject to an appropriate scaling factor,
thus requiring only 1 KB. Specifically, we construct the
shared codebook ݎௌ at the finest level. Then for each
coarser level we compute the scaling factor ԡݎԡ ԡݎௌԡ⁄ of
the image residuals relative to the shared codebook, and
apply this scaling to the codevectors.
In addition, for a class of images with similar content, we
can design a universal codebook using a training image
(Figure 9). Section 6.3 presents results using a universal
codebook on distance fields. However we find that such a
universal codebook does not extend well to dissimilar light
maps or color images.

6. Applications and compression results
We demonstrate the efficiency of tree-based compression
on several data types, including light maps, alpha mattes,
distance fields, and high-dynamic-range images. Table 2
summarizes the results. All examples use forested mip-
maps. Compression times range from 2 to 10 minutes,
most of which is spent in VQ optimization. We manually
selected target bit-rates; it would be desirable to automate
this rate selection based on image content.
We compare memory sizes with BC4U and DXT1 (for
grayscale and color images respectively) which are both 4
bits/pixel, as these are widely available representatives of
block-based compression. The reported memory sizes
include both the tree and codebook. We also compare with
the block-based VQ scheme of [BAC96]. Please refer to
our supplemental results for additional examples.
Note that many block-based schemes like BC4U and DXT1
require storage of separate (compressed) mipmap levels,
which effectively raises storage cost to 5.33 bits/pixel for a
full pyramid. In contrast, our tree representation directly
includes all mipmap levels.
Another benefit of trees, which makes direct comparisons
challenging, is that while the inter-level residuals are
quantized (to 8 bits), the reconstructed signal is floating-
point and attains greater accuracy at each finer level, as
demonstrated with the distance function in Section 6.3.

Close-up of original
(8 bpp)

Tree-compressed
(1 bpp)

BC4U-compressed
(4 bpp)

Figure 4: Close-up on the light map of Figure 1.

Dataset
Input Compressed tree BC4U/

DXT1
Beers
[1996]

Dim. Size
(KB)

Size
(KB)

Bits/
pixel

PSNR
(dB)

PSNR
(dB)

PSNR
(dB)

Land (lightmap) 10252 1051 135 1.03 44.2 48.8 40.6
Lady (matte) 10252 1051 139 1.06 52.8 53.0 44.6
Teapot (dist) 10252 131 8.7 0.07 - - -
Piggy (HDR) 5132 3158 165 5.00 - - -
Monkey (matte) 10252 1050 95 0.72 51.2 51.5 43.8
Bull (dist) 10252 131 7.8 0.06 - - -
Desk (HDR) 644x874 6754 349 4.96 - - -
Atlas (lightmap) 10252 3151 269 2.05 49.6 52.5 41.4
Nefertiti (RGB) 5132 790 65 1.97 37.8 36.3 33.9
Flowers (RGB) 5132 790 116 3.52 31.0 29.6 28.2
Table 2: Quantitative results including comparison with 4
bit/pixel BC4U or DXT1 compression and 2 bit/pixel VQ
scheme of [BAC96].

6.1 Light maps
Our approach is especially well suited to light maps, as
they contain both smoothly varying regions and sharp
shadow boundaries. Figure 4 compares our method to
BC4U compression which is 4 bits/pixel and has a PSNR
of 48.8 dB. As shown in the graph of Figure 6, we reach
this numerical accuracy at 2.2 bits/pixel. Moreover, Figure
4 shows that even at 1 bit/pixel (44.2 dB), our reconstruc-
tion is visually more faithful, with less noise and fewer
dithering artifacts.

6.2 Alpha mattes
Alpha mattes often have only a small fraction of pixels
with fractional alpha values. Our adaptive tree nicely skips
all the solid regions of an alpha map, while precisely
reproducing the smooth transitions between opaque and
transparent areas. The alpha matte of Figure 5 is com-
pressed by BC4U at 4 bits/pixel with an accuracy of 51.5
dB. We achieve a similar result at only 0.7 bits/pixel (see
Figure 6).

Input alpha matte (10252) Adaptive tree T′

Close-ups of input Close-ups of compressed
Figure 5:Compression of alpha matte (0.7 bpp;51.2 dB)

c© The Eurographics Association 2007.

S. Lefebvre & H. Hoppe / Compressed Random-Access Trees for Spatially Coherent Data344

30

35

40

45

50

55

0

PS
N

R
(d

B)

Figure 6:
matte exa
results wit

6.3 Adap
Adaptively
tation for
applying t
mainly int
the criterio
let the tole
preserve th
Our schem
vector out
pressed tre
representa
And, this
trained on
To measur
the zero i
measure th
and the or
bly high 8
rasterized
the distanc
and magn
possible us
Figure 7 sh
larger as
outline, an

Traditiona
Figure 7:
much mor
tance field
at 10252 re

1

Rate-distortion
amples. Isola
th DXT1, BC4U

ptively sampled
y sampled dista
vector outlines

tree compressio
terested in the s
on used in the
erance τ be larg
he sign of the ap
me precisely a
tlines. In the
ee is 7.8 KB w

ation (with quad
result is obta
the image in Fi

re the accuracy
isocurve of the
he RMS distan
iginal curve. T

82 dB, i.e. the
at a resolution

ce representatio
nification (Figu
sing a traditiona
hows that a trad
it cannot expl

nd hence require

al binary-valued t
 A traditional

re refined than
d. (Both perfect
esolution.)

2
Bits per pixel

n curve for the l
ated dots repr
U, and [BAC96

d distance field
ance fields are a
s and 3D shape
on to such a dis
shape of its zero

adaptive tree
er, but restrict t
pproximated da
and compactly

example of F
while the origina
dratic Bezier se
ined using a u
igure 9.

y of our represe
e compressed
nce between p
The geometric P
error is not vis
less than 10K2

on permits high-
ure 8f-g), wh
al binary image
ditional binary-
oit the smooth
es more refinem

tree Tree-comp
quadtree on th
our tree comp

tly reproduce F

3

lightmap

alpha matte

lightmap BC4U

alpha matte BC4U

lightmap [Beers]

alpha matte [Beers

light map and a
resent compres
].

ds
an elegant repre
es [FPRJ00]. W
stance field, we
o set, so we mo
simplification.
the simplificatio
ata everywhe
y encodes com
Figure 8, the c
al parametric ve
egments) is 3.2
universal codeb

entation, we ex
distance field,
oints on this c
PSNR is a rema
sible if the shap
2 pixels. Moreo
-quality antialia
ich would no
e.
-valued tree is m
hness of the ve
ment.

pressed distance f
he binary imag
pression of the
Figure 8a raster

4

s]

alpha
ssion

esen-
When
e are
odify
 We

on to
ere.

mplex
com-
ector
KB.

book

xtract
and

curve
arka-
pe is
over,
asing

ot be

much
ector

field
ge is

e dis-
rized

(a) I

(d)

(g)
Figu
sign
acce
reso
bina
as a

Tra

Figu
dista
cod
accu

6.4
Mun
pres
usin
the
com
ima
Spe
ima
ben
lum
artif
from

Input vector shap

Tree-compressed
distance

) Thresholding on
ure 8: Represe
ned-distance fie
essible compre
olution-indepen
ary image woul
a smooth shape

aining image Usi
(24

ure 9: Trainin
ance fields, wi

ding quality. P
uracy of the ou

High-dynam
nkberg et al [
sent DXT-like
ng a luminance-

high-dynamic
mpressed tree a
age to encode th
cifically, we a

age to capture th
efit of encodin

minance is that
facts. Then we
m the original lo

e (b) Distance

d (e) Threshold
using (d)

n magnification o
entation of a v
eld at 10252 res
essed tree (7.8K
ndent antialiasi
ld require 131K
outline as show

ng specialized co
4.4KB, PSNR 79.2d

ng data used fo
ith negligible d
PSNR numbers
tline curves.

ic-range image
MCHA06] and
compression s
-hue factorizati
range variatio

and to rely on
he remaining de
apply tree comp
he HDR variatio
ng all 3 color
we reduce sub
subtract the com
og(RGB) image

field (c) Ada

ding
)

(f) An
usi

of binary image an
ector shape (3
solution using a
KB), and its b
ing and magnif
KB and would n
wn in (g).

odeb.
dB)

Using univ
(21.2KB, PS

or universal co
deterioration i
s measure the

es
d Roimela et a
chemes for HD
on. Our idea is

ons using an a
an ordinary lo

etail.
pression to the
on at only 1 bit/
channels rathe

bsequent hue q
mpressed log(R
e to create a low

aptive tree

ntialiasing
ng (d)

nd (d) resp.
.2KB) as a
a randomly
benefits for
ification. A
not magnify

ersal codeb.
SNR 79.2dB)
odebook on
in resulting
e geometric

al [RAI06]
DR images,
s to capture

aggressively
ow-dynamic

e log(RGB)
/pixel. The

er than just
quantization
RGB) signal
w-dynamic-

c© The Eurographics Association 2007.

S. Lefebvre & H. Hoppe / Compressed Random-Access Trees for Spatially Coherent Data 345

range detail image, and quantize its channels (separately) to
8 bits. We compress this quantized detail image using
ordinary DXT1 compression in 4 bits/pixel (Figure 12e).
The overall representation uses 5 bits/pixel and compares
favorably with the earlier result of [MCHA06] at 8
bits/pixel. We report rms errors in log2(RGB) space as in
[XPH05]. Our tree-compressed result has few color quanti-
zation artifacts, even at extreme exposure levels.

6.5 Texture atlases
Texture atlases often contain charts separated by unused
space (Figure 10). Our compressed tree ignores these
undefined regions in two ways. First, the tree structure is
adaptively pruned. Second, thanks to our sparse VQ
approach (Section 5.2), the codebook quality is not im-
pacted by the boundaries between the defined and
undefined areas.
We modify the compression algorithm as follows. First,
we extrapolate data outside the chart boundaries with a
pull-push step [SSGH01]. We use this new image to
compute the mipmap of desired values. Second, we re-
move from the mipmap tree ܶ all sub-trees covering empty
regions; the tree is no longer complete, and some residual
blocks now contain undefined data values. This is handled
by our modified VQ as described Section 5.2.

Original atlas
(black is unused)

Tree-compressed
(2.05 bpp; 49.6 dB)

Adaptive tree ܶᇱ
(close-up)

Figure 10: Multi-chart texture atlas compression. Unused
regions are omitted from the tree and ignored by VQ.

6.6 Limitation: color images
Tree compression can also be applied to color images. It is
most effective on images with large smooth areas, such as
in Figure 13 where we obtain a 2X memory savings com-
pared to DXT1 compression, with slightly higher accuracy.
However, on more common images with uniform high-
frequency detail, the resulting tree becomes too dense to be
a significant benefit over traditional block-based approach-
es, as shown in Figure 11.

Adaptive tree T′ (close-up) Tree-compr. (3.52 bpp; 31 dB)
Figure 11: Uniformly distributed detail creates a near-
complete tree, which is not our desired scenario.

(a) Input (644×874) close-up (b) Log-RGB of (a)

(c) Adaptive tree on (b) (d) Tree-compression of (b)

(e) Detail (b minus d) (DXT1) (f) Final image using (d) and (e)

Input HDR image (close-up at 3 different exposures)

Tree-compressed HDR image (4.96 bpp; log2(RGB) rmse = 0.19)

 Original Our result [MCHA06] Original Our result [MCHA06]
Comparison with Munkberg et al [MCHA06]

Figure 12: For an HDR image, aggressive tree compres-
sion in log(RGB) space (at 1 bit/pixel), with remaining
detail represented as a low-dynamic-range DXT1 image (4
bits/pixel). In comparison, Munkberg et al [MCHA06]
report rmse=0.25 at 8 bits/pixel.

c© The Eurographics Association 2007.

S. Lefebvre & H. Hoppe / Compressed Random-Access Trees for Spatially Coherent Data346

Input image (5132) Close-up of adaptive tree Tᇱ

Close-ups of input Tree-compr. (1.97 bpp; 37.8 dB)

DXT1-compr. (4 bpp; 36.3 dB) [BAC96] (2 bpp; 33.9 dB)
Figure 13: Compression of a relatively smooth color
image, compared with DXT1 compression and with uni-
form 2×2 block VQ using a 256-entry codebook.

7. Tree evaluation
Our decompression scheme is easy to implement on a CPU.
The following is pseudocode for trilinear evaluation at a
point ݔ and mipmap level ݈:
value Evaluate(point ݔ, float ݈) {
 If ݈ ൑ 4,
 return trilinearly filtered value from mipmap.
 Identify the square cell containing ݔ at level 4
 (i.e. the starting level for trees in the forested mipmap).
 For each of the four corners of this cell:
 retrieve the root node address and value.
 Re-express point ݔ in the cell’s local coordinates.
 Loop:
 At point ݔ, bilinearly interpolate the four node values.
 If --݈ ൏ 1 or all four node addresses are NULL,
 return value at ݔ lerp’ed with that in prior level using ݈.
 Set the new cell as the quadrant containing point ݔ.
 For each of the four new cell corners:
 Predict the new node value using bilinear interpolation.
 If the node parent address is non-NULL,
 Access the VQ codebook to add the residual value.
 Update the node address to the appropriate child.
 Re-express point ݔ in the new cell’s coordinates.
}

Due to the tree adaptivity and the collapse of coarsest
levels into a forested mipmap, the number of tree levels
traversed in the loop is relatively low on average, as shown
in the rightmost column of Table 4.
We have also implemented the evaluation procedure within
a GPU pixel program. DirectX 10 enables unfiltered
access to 1D memory buffers with a maximum size of 128
MB. This linear memory layout enables better caching
behavior than the complex addressing resulting from
unfolding the tree in a 2D texture. Integer arithmetic lets

us decode the data structure efficiently. The image decom-
pression shader compiles to 298 instructions. On a
GeForce 8800 GTX, we render the images at their original
resolutions with full filtering enabled. The decompression
rates, shown in Table 3, are about 20X slower than the
DXT1/BC4U schemes. But of course, these block-based
decompression schemes benefit from specialized hardware
in the GPU, and the texture caching and filtering system
have been optimized for their use. We analyze possible
caching strategies in the next section. Even without assis-
tance from specialized hardware, our scheme allows real-
time rendering when decompressing a screen-sized texture.

Dataset Frames/sec Dataset Frames/sec
Land (lightmap) 48 Bull (dist) 122
Lady (matte) 60 Ennis (HDR) 34
Teapot (dist) 115 Atlas (lightmap) 47
Desk (HDR) 64 Nefertiti (RGB) 207
Monkey (matte) 82 Flowers (RGB) 189
Table 3: Current rendering performance on the GPU.

8. Analysis and discussion
Benefits of tree structure. Data coherence generally
permits a very adaptive hierarchy. In particular, note the
representation of the signed distance function in Figure 8,
where the adaptive tree is able to represent the smooth
function at a coarse resolution, yet still capture its localized
fine detail (such as sharp corners) at fine resolution. Also,
our scheme supports floating point signals at no additional
cost, as exploited in the HDR application.
Bandwidth analysis. An important consideration in any
compression scheme is the memory bandwidth necessary to
decode samples under typical texture access patterns.
Indeed, as processors continue to integrate more computa-
tional cores, bandwidth becomes the likely bottleneck.
Although our hierarchical compression involves several
memory accesses (up to 8 at each resolution level in the
worst case), most of these accesses are temporally coherent
and can therefore be intercepted on-chip. In this section we
explore two such bandwidth reduction strategies, which can
be used separately or together:
• Cache of multiresolution nodes. We introduce a cache

indexed by the parent address and child index (0..3),
which returns the child node address and its float value.
(Addresses refer to locations within the memory buffer.)
We assume a fully associative cache with LRU replace-
ment as in [IM06]. We find that a cache of 256 entries is
already very effective. Each entry requires 12 bytes for
grayscale signals, so the cache occupies only 3KB.

• Buffering of the last query. We store the multiresolution
samples used by the last sample evaluation, i.e. a stack
of cells, each holding an ሺݔ, ,ሻ location, 4 data valuesݕ
and 4 memory buffer addresses. For a grayscale image,
a 6-level stack needs 216 bytes. Given a query point, we
iterate through the stack levels fine-to-coarse until the
point lies within the buffered cell, and then begin the
coarse-to-fine tree evaluation algorithm as before. Con-
sequently we avoid traversing the tree from its root if
intermediate resolutions are already buffered, and thus
reduce computation in addition to bandwidth.

c© The Eurographics Association 2007.

S. Lefebvre & H. Hoppe / Compressed Random-Access Trees for Spatially Coherent Data 347

We have
bandwidth
of Figure
traversal, a
as scanline
atlas of Fi
order in sc
book is sm
an on-chip
Table 4 an
the light m
times sma
Accessing
in a memo
ly larger t
KB). For
cache and
KB, whic
representa
of total ca
ciently lar
affect ban
tion. For t
the compre
Large dat
(Section 5
pruning it
However,
algorithm
The runtim
Of course,

Uncom
Image
Comp
Morto
 with m
 with b
 with b
Scanli
 with m
 with b
 with b

Table 4: A
the tree-co
and with o

Uncom
Image
Comp
Atlas
 with m
 with b
 with b

Table 5:
Figure 15

performed a se
h reduction strat
1, we simulate
as would be typ
e traversal. We
gure 10 onto th
creen-space. In
mall (1 KB) and
p buffer.
nd Table 5 sum
map, the compre
aller than the
 this compresse

ory bandwidth o
than even the o
the Morton or

d the last-query
ch is only 1.1
ation. Figure 14
ache size for thi
rge node cache

ndwidth, but do
the atlas access
essed represent
tasets. Our cu
.3) creates a
, and thus doe
it should be po
to more conci

me representatio
, a practical alte

Scheme
mpressed image
e with its mipmap
pressed representa
on order: tree eval
multiresolution n
buffering of last q
both cache and bu
ine order: tree eva
multiresolution n
buffering of last q
both cache and bu
Analysis of me
ompressed 102
our two bandwid

Scheme
mpressed image
e with its mipmap
pressed representa
access: tree evalu
multiresolution n
buffering of last q
both cache and bu
Memory band
with the atlas o

et of simulatio
tegies. Using t

e a Morton (Z-o
pical in a rasteri
e also simulate t
he mesh in Figu
n both cases, th
d we assume th

mmarize the sim
essed data size
uncompressed

ed data without
of 25807 KB, w
original uncom
rdering, introdu
 buffer reduces
 times the co
4 graphs band
is Morton trave
e, the last-que
oes significantl
s in Table 5, the
tation due to mi
urrent tree con
complete tree

es not scale we
ossible as futur
sely compute a
on should scale
ernative is a tilin

Bits/

p pyramid
ation
luation 1

node cache
query
uffering
aluation 1

node cache
query
uffering
emory bandwid
52 light map of
dth reduction st

Bits/

p pyramid
ation
uation 2
node cache
query
uffering

dwidth for text
of Figure 10.

ons using these
the 10252 light
order) texture-s
ization pass, as
texture mappin
ure 15, with Mo
he 256-entry c
hat it is loaded

mulation results.
is 135.3 KB, o
mipmap pyra

any caching re
which is signific

mpressed data (
ucing the 3KB n
s bandwidth to
ompressed mem
dwidth as a func
ersal. With a s

ery buffer does
ly reduce comp
e bit rate is less
ipmapping.

nstruction proce
before adapti

ell to large ima
re work to alte
accumulated er
e to larger text
ng structure.

/pixel Average
number
levels

traversed

8
10.7
1.03

190.6 4.8
1.1 4.8
3.7 0.4
1.1 0.4

190.6 4.8
9.6 4.8

19.2 0.98
9.8 0.98

dth cost to eval
f Figure 1, wit
trategies.

/pixel Average
number
levels

traversed

8
10.7
2.05

270.7 4.8
1.8 4.8

44.7 0.92
1.8 0.92

turing the mes

 two
map

space
well

g the
orton
code-
d into

 For
or 10
amid.
esults
cant-
1052
node

o 147
mory
ction
suffi-
s not
puta-
than

edure
ively
ages.

er the
rrors.
tures.

luate
thout

sh of

Ba
nd

w
id

th
 (

bi
ts

/p
ix

el
)

Figu
(inc

Figu
the

9.
We
hier
stru
map
inte
subd
Som
• D

d
• U

[Z
• A

sp
• U

c
• G

g
• A
• R

d
• Im

10.
We
autu
alph
Figu
ima
The

0
1
2
3
4
5
6
7
8

0 1000

ure 14: Band
cluding node ca

ure 15: Viewpo
atlas of Figure

Summary and
have introduce

rarchies using
ucture. Such a
p interpolation
rpolation is ac
division structu

me avenues for
Dynamic loadin
data, exploiting
Use of the qu
ZDTS07] for dy

Application of th
parse VQ will b

Use of tree-com
ollision detectio

Generalization o
graph, for repres
Architectural de
Runtime tree u
data.
mproved tree co

Acknowledgm
thank Hanan S

umnal trees, N
ha-matte data. T
ure 15 is from

age of Figure 1
e HDR image of

0 2000
Cache Size (

nod
last-
last-

dwidth as func
ching and/or la

oint used for ba
10.

d future work
ed a framework

a compact
tree provides a
structure, and w

chieved most e
ure.
future work inc
ng and unloadi
local offsets to
uadtree constru
ynamic compre
he tree structure
be especially ad

mpressed 3D di
on.
of the tree struc
sentation of tile
signs for hardw

updates for inc

ompression usin

ments
Samet for point

Nick Apostolof
The textured mo
m the MIT CS
1 is courtesy o
f Figure 11 is fr

3000 4000
(bytes)

e caching
-query buffer
-query + node cach

ction of total
ast-query buffer

andwidth measu

k for compressin
randomly-acce
a natural contin
we have a show
efficiently usin

clude:
ing of subtree
allow data relo
uction of Zie

ession on the GP
e to octree textu
dvantageous.
stance fields fo

cture to a direc
ed texture patter
ware implement
cremental chan

ng perceptual m

ting us in the d
ff and Jue Wa
odel used in Fig
AIL database.

of Roimela et a
rom OpenEXR

5000

ing

cache size
r).

urements on

ng adaptive
essible tree
nuous mip-
wn that this
ng a primal

s for large
ocation.
egler et al
PU.
ures, where

or real-time

cted acyclic
rns.
tation.
nges to the

metrics.

direction of
ang for the
gure 10 and

The HDR
al [RAI06].
.

c© The Eurographics Association 2007.

S. Lefebvre & H. Hoppe / Compressed Random-Access Trees for Spatially Coherent Data348

11. References
[BAC96] BEERS A., AGRAWALA M., CHADDHA N. 1996.

Rendering from compressed textures. ACM SIGGRAPH.
[BD02] BENSON D., DAVIS J. 2002. Octree textures. ACM

SIGGRAPH, 785-790.
[Bly06] BLYTHE D. 2006. The Direct3D 10 system. ACM

SIGGRAPH, 724-734.
[BWK02] BOTSCH M., WIRATANAYA A., KOBBELT L. 2002.

Efficient high quality rendering of point sampled geometry.
Eurographics Workshop on Rendering, 53-64.

[BA83] BURT P., ADELSON E. 1983. The Laplacian pyramid
as a compact image code. IEEE Trans. on Comm. 31(4),
532-540.

[CCG96] CHADDHA N., CHOU P., GRAY R. 1996. Con-
strained and recursive hierarchical table-lookup vector
quantization. IEEE Data Compression Conference.

[CB04] CHRISTENSEN P., BATALI D. 2004. An irradiance
atlas for global illumination in complex production scenes.
Eurographics Symposium on Rendering.

[CAD04] COHEN-STEINER D., ALLIEZ P., DESBRUN M. 2004.
Variational shape approximation. ACM SIGGRAPH, 905-
914.

[DGPR02] DEBRY D., GIBBS J., PETTY D., ROBINS N. 2002.
Painting and rendering on unparameterized models. ACM
SIGGRAPH, 763-768.

[FM86] FABBRINI F., MONTANI C. 1986. Autumnal qua-
dtrees. The Computer Journal, 29(5), 472-474.

[FFBG01] FERNANDO R., FERNANDEZ S., BALA K., GREEN-
BERG D. 2001. Adaptive shadow maps. ACM SIGGRAPH,
387-390.

[FPRJ00] FRISKEN S., PERRY R., ROCKWOOD A., JONES T.
2000. Adaptively sampled distance fields: A general repre-
sentation of shape for computer graphics. ACM SIGGRAPH,
249-254.

[Gar82] GARGANTINI I. 1982. An effective way to represent
quadtrees. Communications of the ACM, 25(12), 905-910.

[GG92] GERSHO A., GRAY R. 1992. Vector quantization and
signal compression. Kluwer Academic Publishers, Boston.

[GS84] GERSHO A., SHOHAM Y. 1984. Hierarchical vector
quantization of speech with dynamic codebook allocation.
ICASSP, 9(1), 416-419.

[GW91] GOLDBERG M., WANG L. 1991. Comparative
performance of pyramid data structures for progressive im-
age transmission. IEEE Trans. on Comm. 39(4).

[Hec90] HECKBERT P. 1990. Adaptive radiosity textures for
bidirectional ray tracing. ACM SIGGRAPH, 145-154.

[HG88] HO Y-S., GERSHO A. 1988. Variable-rate multi-stage
vector quantization for image coding. IEEE ICASSP, 1156-
1159.

[HW91] HUNTER A., WILLIS P. 1991. Classification of quad-
encoding techniques. Eurographics Conference.

[IM06] INADA T., MCCOOL M. 2006. Compressed lossless
texture representation and caching. Eurographics Graphics
Hardware, 111-120.

[Kno80] KNOWLTON K. 1980. Progressive transmission of
grey-scale and binary pictures by simple, efficient, and loss-
less encoding schemes. Proceedings of IEEE.

[KE02] KRAUS M., ERTL T. 2002. Adaptive texture maps.
Graphics Hardware, 7-15.

[LH06] LEFEBVRE S., HOPPE H. 2006. Perfect spatial hash-
ing. ACM SIGGRAPH, 579-588.

[LKS*06] LEFOHN A., KNISS J., STRZODKA R., SENGUPTA S.,
OWENS J. 2006. Glift: Generic, efficient, random-access
GPU data structures. ACM TOG, 25(1).

[LFWV03] LENDASSE A., FRANCOIS D., WERTZ V., VERLEY-
SEN M. 2003. Nonlinear time series prediction by weighted
vector quantization. ICCS, 417-426.

[Llo82] LLOYD S. 1982. Least squares quantization in PCM.
IEEE Transactions on Information Theory 28(2).

[MB98] MCCABE D., BROTHERS J. 1998. DirectX 6 texture
map compression. Game Developer, 42-46.

[MCHA06] MUNKBERG J., CLARBERG P., HASSELGREN J.,
AKENINE-MÖLLER T. 2006. High dynamic range texture
compression for graphics hardware. ACM SIGGRAPH.

[NH92] NING P., HESSELINK L. 1992. Vector quantization
for volume rendering. Workshop on Volume Visualization,
69-74.

[RAI06] ROIMELA K., AARNIO T., ITÄRANTA J. 2006. High
dynamic range texture compression. ACM SIGGRAPH.

[RL01] RUSINKIEWICZ S., LEVOY M. 2001. QSplat: A
multiresolution point rendering system for large meshes.
ACM SIGGRAPH, 343-352.

[Sam85] SAMET H. 1985. Data structures for quadtree ap-
proximation and compression. CACM 28(9), 973-993.

[Sam06] SAMET H. 2006. Foundations of multidimensional
and metric data structures. Morgan Kaufman.

[SSGH01] SANDER P., SNYDER J., GORTLER S., HOPPE H.
2001. Texture mapping progressive meshes. ACM SIG-
GRAPH, 409-416.

[SK01] SAUPE D., KUSKA J.-P. 2001. Compression of isosur-
faces for structured volumes. VMV, 471-476.

[SW03] SCHNEIDER J., WESTERMANN R. 2003. Compression
domain volume rendering. IEEE Visualization, 39.

[Sha93] SHAPIRO J. 1993. Embedded image coding using
zerotrees of wavelet coefficients. IEEE Trans. on Signal
Processing, 41(12), 3445-3462.

[SA05] STRÖM J., AKENINE-MÖLLER T. 2005. iPACKMAN:
High-quality, low-complexity texture compression for mo-
bile phones. ACM Graphics Hardware, 63-70.

[TS00] TZOVARAS D., STRINTZIS M. 2000. Optimal construc-
tion of reduced pyramids for lossless and progressive image
coding. IEEE TCS, 47(4), 332-348.

[VG88] VAISEY J., GERSHO A. 1988. Variable rate image
coding using quad-trees and vector quantization. EURASIP.

[Woo84] WOODWARK J. 1984. Compressed quad trees. The
Computer Journal, 27(3), 225-229.

[XPH05] XU R., PATTANAIK S., HUGHES C. 2005. High-
dynamic-range still-image encoding in JPEG 2000. IEEE
CG&A 25(6), 57-64.

[YFT80] YAMADA Y., FUJITA K., TAZAKI S. 1980. Vector
quantization of video signals. Proceedings of IECE.

[ZDTS07] ZIEGLER G., DIMITROV R., THEOBALT C., SEIDEL
H.P. 2007. Real-time Quadtree Analysis using HistoPyra-
mids. IS&T and SPIE Conference on Electronic Imaging.

[ZS01] ZORIN D., SCHRÖDER P. 2001. A unified framework
for primal/dual quadrilateral subdivision schemes. CAGD,
18(5), 429-454.

c© The Eurographics Association 2007.

S. Lefebvre & H. Hoppe / Compressed Random-Access Trees for Spatially Coherent Data 349

