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Abstract

We introduce high dynamic range image hallucination for adding high dynamic range details to the over-exposed
and under-exposed regions of a low dynamic range image. Our method is based on a simple assumption: there exist
high quality patches in the image with similar textures as the regions that are over or under exposed. Hence, we
can add high dynamic range details to a region by simply transferring texture details from another patch that may
be under different illumination levels. In our approach, a user only needs to annotate the image with a few strokes
to indicate textures that can be applied to the corresponding under-exposed or over-exposed regions, and these
regions are automatically hallucinated by our algorithm. Experiments demonstrate that our simple, yet effective
approach is able to significantly increase the amount of texture details in a wide range of common scenarios, with

a modest amount of user interaction.

Categories and Subject Descriptors (according to ACM CCS): 1.3.1 [Computer Graphics]: Hardware Architecture:
Graphics Processors; 1.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism: Texture;

Keywords: high dynamic range, image hallucination, texture synthesis

1. Introduction

High dynamic range (HDR) imaging [RWPDO0S] has
made significant progresses recently, with technolo-
gies ranging from content creation [DM97], tone
mapping on low dynamic range (LDR) displays
[DD02, RSSF02, FLW02, LFUS06], and novel HDR
display systems [SHS*04, LCTS05]. However, capturing
real-world HDR content is not yet a common practice,
as it involves either expensive HDR cameras or using
LDR cameras to capture the same scene under multiple
exposures, a process prone to motion problems. Moreover,
most existing contents such as historical photos are still in
LDR. Consequently if we can add HDR details to enhance
LDR contents, then common users can experience exciting
new HDR hardware and software systems with their existing
LDR contents, including images, videos, and environment
maps.

One possible method to achieve this goal is to reverse
the tone mapping process (e.g. a piece-wise linear mapping
[MDSO07] or a nonlinear mapping [BLDCO06]). However, this
is often quite insufficient, since the LDR features that need
HDR details the most are precisely those parts that are com-
pletely over-exposed or under-exposed (See Figure 1). To
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our knowledge, no solution exists so far that can adequately
address this issue.

Since reconstructing HDR information for over or un-
der exposed LDR regions is an under-constrained problem,
it bears similarity to image hallucination [FJP02, SZTS03],
where a high-resolution image is hallucinated from a sin-
gle low-resolution original. The process involves training a
Bayesian algorithm over a database of high-resolution/low-
resolution image pairs, and then inferring the high-resolution
details by matching the low-resolution information in the
database. Despite this similarity, however, in practice the
same Bayesian technique for traditional image hallucina-
tion cannot be applied to HDR hallucination, since the
over/under-exposed regions do not contain enough informa-
tion for finding correspondences in a database. Moreover,
creating a database suitable for hallucinating all possible
HDR images is a daunting task.

In this paper, we propose a new method for HDR halluci-
nation that does not require any additional information, ex-
cept for a modest amount of user interaction. The user iden-
tifies corresponding textures for each under/over exposed re-
gion using an interactive stroke tool (Figure 1). Using user
supplied strokes, we automatically transfer the appropriate
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Figure 1: HDR image hallucination. (a) Original image with an over-exposed region. The user selects this region via a blue stroke and a

source region via a green stroke, and from these our algorithm automatically hallucinates the missing information with final result shown in

(c). (b, d) are tone-mapped images of the red rectangular regions in (a, c). Our algorithm works by decomposing the original image into a high-

frequency texture (e) and low-frequency illumination (f) components, hallucinating these two components separately (g, h), and combining these

two components to yield the final result (c). Within the low-frequency illumination images (f, h) we also draw the corresponding illumination

profiles for visualization.

texture into the over/under exposed region and re-adjust the
newly synthesized texture to an estimated brightness value
in HDR radiance space.

Our underlying algorithm is based on the simple observa-
tion that many images contain repeating or nearly repeating
texture patches under different illuminations. Hence, we can
add HDR details to an over/under exposed region by trans-
ferring texture details from another patch of the same texture
type that is under good illumination. By exploiting this ob-
servation, we take a constrained texture synthesis approach
[EL99, DCOYO03] for HDR hallucination.

However, unlike traditional texture synthesis where the
entire texture is under roughly uniform lighting, in our sce-
nario texture patches may exhibit drastically different illumi-
nations. Consequently, direct application of traditional tex-
ture synthesis is inadequate. We address this issue by first
decomposing the original image into a low-frequency illumi-
nation component and a high-frequency texture component
using bilateral filtering [TM98, OCDDO1, DD02]. We then
hallucinate the high-frequency texture component via con-
strained synthesis and the low-frequency illumination com-
ponent via elliptical Gaussian fitting. Finally, we combine
these two components to yield the hallucination result.

Another issue with traditional texture synthesis is that it is
not yet applicable to large-scale or semantic structures that
require a level of image understanding or user interpretation,
such as the wood planks in Figure 1. To handle this situation,
we extend our stroke-based interface so that it can warp a
source region into a destination region. Under the same user
interaction, we have also provided a tool for adjusting lo-

cal illumination levels. This is useful for artistic adjustments
of results computed by our automatic Gaussian illumination
fitting.

Using our user-friendly GUI with three stroke-based tools
(texture, warp, and illumination), an ordinary user is capable
of achieving a variety of convincing hallucination results.
Beyond single images, our system can also be extended for
hallucination from multiple images such as texture detail
transfer from a different photograph when no detail is avail-
able from the original image, HDR environment map hal-
Iucination from an LDR environment map, and HDR video
hallucination from an LDR video.

2. Algorithm

Our algorithm operates entirely in the radiance space. First,
in the initialization phase of our algorithm, the input LDR,
1,4, is automatically converted into radiance space from a
calibrated camera curve f(x), i.e. let I = f(I;4-), as shown
in [Nay04]. Unfortunately, recovering the camera curve nor-
mally requires multiple images from the same camera. If this
information is not available, the camera curve can be esti-
mated from the distribution of luminance on image edges,
as shown in [LGYS04]. However, in our current implemen-
tation we simply use a gamma curve with a 2.2 exponent
value, and have found this works well in practice. Next, we
identify the set of over-exposed or under-exposed pixels in
the original LDR using simple thresholding on the relative
luminance of the pixels.

Now that we have an image occupying an LDR subset
of an HDR radiance space, we must fill in missing regions
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Log luminance
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Figure 2: lilustration of our Gaussian fitting process. We use
a band of well illuminated pixels around the over-exposed region
(shown in green) to estimate the Gaussian profile. The width of the
(green) band is equivalent to the spatial variance parameter of the
bilateral filter used in our texture/illumination decomposition.

identified in previous steps. We achieve this by first decom-
posing the LDR in radiance space into a coarse illumination
component and a detailed texture component. The process is
as follows. First, we use bilateral filtering on I to produce
the low frequency layer L;. (In theory it is better to perform
bilateral filtering in the log space of luminance, but since
our image starts out as in low dynamic range, empirically
we have found it sufficient to filter in the original luminance
space.) We then obtain the detail texture layer by simple di-
vision, i.e. Hf = I/L; as in [OCDDO1]. Next, we halluci-
nate each component independently. Note that this illumina-
tion/texture separation is essential for texture synthesis; oth-
erwise regions with similar textures may have widely differ-
ent illumination, causing difficulties in neighborhood search
during constrained synthesis. While we may not achieve the
correct separation in areas of high frequency illuminations
and small scale shadows, it has the desired effect, since we
do want to factor high frequency lighting variations into the
texture part for synthesis as these effects are often repetitive
in nature.

Our decomposition process just described is similar to the
structure-and-texture algorithm in [BVSOO03], but instead of
their energy minimization, we opt to use bilateral filtering for
its simplicity and computation speed. In addition, our goal
is to separate texture details from large scale illumination
instead of structures as in [BVSOO03].

To hallucinate the illumination component, we estimate
the radiance values for over exposed regions via interpola-
tion from a linear combination of elliptical Gaussian kernels.
More specifically, we first compute a weight w(x) for each
pixel x in the illumination layer:

CW%:(X) Y(x) € [0, Cue)

w(x) = 0 Y (x) € [Cue, Coe) (D

MO Loy (x) € [Coen 1]

where Y(x) = r+2g+ b is the relative luminance and
Cue/Coe are user adjustable threshold values. Specifically,
pixels with Y (x) > C,e are considered to be over exposed,
and pixels with Y (x) < Cye are considered to be under ex-
posed. We then hallucinate illumination in log domain as
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Figure 3: lllustration of our segmentation + snapping process. The
colored patches show segmentation results. The foreground stroke
is from user painting (shown in green), whereas the background
stroke is inferred directly from the segmentation boundary. The fi-
nal snapped contour is shown in dashed contour.

follows. We denote L(x) as the logarithm of ¥ (x). Then each
individual over exposed region is separated and assigned a
Gaussian lobe G to its centroid. The variances along x- and
y-axis are decided by the size and shape of the region, usu-
ally the x- and y-extent of the region. The (log luminance)
profile of the Gaussian is determined by an optimization pro-
cedure similar to [GKMDO6] but using only pixels that are
not over-exposed. See Figure 2 for an illustration. Finally,
the new value G(x) is blended with the original logarithmic
luminance value L(x) by the following formula:

O(x) = [1 =w(x)] - L(x) + w(x) - G(x) @

This allows the well-illuminated regions largely unchanged
(e.g. the wall in the gate scene shown in Figure 9). In ad-
dition, we have also implemented a stroke-based interface
for this Gaussian fitting process to let the user interactively
adjust illumination levels for artistic purposes. For a user se-
lected brush size (Cyx,Gy), we simply add a series of Gaus-
sian lobes with variance (Ox, Gy) centered at the brush stroke.

To hallucinate the texture component, we fill in the
over/under exposed regions via constrained texture synthe-
sis. To achieve this, our system first automatically performs
a segmentation of the original image into regions of similar
color via graph cut [BVZ01]. Atrun time, the user first draws
a stroke to indicate the desired source for texture synthe-
sis, and the source region is automatically segmented via the
graph cut based method in lazy snapping [LSTS04]. How-
ever, unlike [LSTS04] which requires two strokes for indi-
cating the foreground and background regions, our system
requires only one foreground stroke. The background stroke
is automatically inferred from the surrounding boundary of
the segmentation regions. See Figure 3 for an illustration.
We note that our approach is similar to points of interest in
[DCOYO03], except our selection process is more automated.
From this user selected region, we perform constrained tex-
ture synthesis to hallucinate the target regions. In our im-
plementation we adopt the K-coherence based constrained
optimization [HZW*06] for interactive synthesis.

For under-exposed regions, we leave the illumination un-
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Figure 4: Iilustration of warping tool. For each target point X over
the over/under exposed regions, its source location X' is determined
via the relative positions of the source (@ ) and destination (@)
strokes via [BN92].

touched. We linearly scale the corresponding hallucinated
texture values so that the maximum luminance < Ce. In ad-
dition, we chose the value of Cy, so that it is greater than the
noise level in the under-exposed regions.

In some cases, a level of image understanding is required
to synthesize structured textons correctly into the image. For
example, the wood planks (Figure 1) are highly structured
and also contain some perspective information. It is unclear
how they should be synthesized in a traditional texture op-
timization framework. In these cases, our algorithm adopts
a warping tool. Here, the user selects an area similar to the
region we are trying to recover using a stroke-based inter-
face similar to our texture brush, and the target region is re-
paired via stroke-based image warping [BN92], as illustrated
in Figure 4. In some sense, our warping tool is an extension
of our optimization based texture synthesis since current tex-
ture synthesis algorithms cannot yet handle highly structured
or large scale semantic information.

Finally, we blend the hallucinated textures, the halluci-
nated illumination map, as well as the original image to pro-
duce a final hallucinated HDR image. We perform blending
via Poisson editing [PGB03] to smooth out the transition be-
tween our hallucinated areas and the original image.

3. Results and Discussion

Based on the algorithm described above, we have imple-
mented a GUI system for interactive HDR hallucination. Our
GUI provides three stroke-based tools: (1) a texture brush
based on constrained texture synthesis, (2) a warping brush
for structured or semantic information, and (3) an illumina-
tion brush for artistic adjustment of local lighting. All results
shown in this paper are obtained using these three tools. The
thresholds for over-exposure and under-exposure, as well as
the standard deviations of the spatial and range Gaussians
for bilateral filtering are empirically adjusted for each image.
In most cases, our automatic illumination estimation suffices
and the illumination brush is used sparingly. Once a user gets
familiar with the tools, the interaction time for each example
is from 1 to 5 minutes. Detailed statistics of user interactions
for all our results are shown in Table 1.

For stochastic scenes such as those shown in Figure 9,

Figure 5: Environment map hallucination. Original LDR map
(left). Ground truth HDR map (middle). Our hallucination result
(right).

L

Figure 6: Hallucination from different sources. Texture sample

(left). The original over-exposed fire (middle). Our hallucination
(right).

we use primarily the texture brush for hallucination, includ-
ing the waves in the stream scene, the bricks on the old city
wall in the gate scene, the skin texture in the frog scene, and
the clouds in the beach and bridge scenes. The church scene
demonstrates a typical case in which traditional texture syn-
thesis is not applicable - due to the large-scale structure of
the windows we have to use our warping brush to hallucinate
the rightmost window from the leftmost one. The illumina-
tion strokes have been applied to fine-tune the sky lighting
on the beach, gate, and bridge scenes, as well as the detailed
texture illumination of the stream scene. Note that due to our
blending method (Equation 2), the illumination brush affects
only over-exposed regions (this is why the wall in the Gate
scene is unaffected). The frog scene demonstrates an under-
exposed case.

In Figure 5, we have re-lighted a 3D environment with
our HDR hallucination of St. Peter’s Basilica. Even though
our goal is not exact reconstruction, our result still compares
favorably against the ground truth over the LDR original,
which is much darker in several regions. In Figure 6, we
have shown a case in which texture does not exist at all in
the original LDR. However, we can simply transfer it from
another image using our warp brush. Finally, our technique
can also be applied to HDR video hallucination as shown
in Figure 9, last case. There, we simply use our automatic
Gaussian fitting to hallucinate the HDR illumination with-
out any manual editing.

Figure 7 compares Adobe healing brush [Geo05] with our
technique. The healing brush repairs a target region by copy-
ing from user selected source regions, so it does not work
well for source regions that are small or fragmented. Our
technique, in contrast, utilizes texture synthesis and is less
sensitive to this problem. Furthermore, texture synthesis of-
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Figure 7: Comparison with Adobe Photoshop healing brush. The
cropped version of the original gate scene is on the left, the result
by Photoshop healing brush is on the middle, and our hallucination

result is on the right. Notice the major quality differences near the
left side of the wall.

Figure 8: Limitations of our approach. The original images are on
the left with our hallucination results on the right. Shown here are
girl (top) and firework (bottom).

ten avoids the unnatural repetitions caused by verbatim re-
gion copy in Photoshop healing brush. Also, since the heal-
ing brush is designed for LDR, but not HDR, images, it does
not provide mechanisms to hallucinate the illumination com-
ponent, nor do the copied regions comply with the target il-
lumination level. Finally, the healing brush is more cumber-
some to use and requires many more interactions, even for
experienced users.

Figure 8 showcases limitations of our system. Basically,
any scene that lacks proper texture information will be be-
yond our technique. In the girl scene, our technique can well
recover the carpet. However, the girl’s face and hair are im-
possible to recover due to their complex geometry and lack
of texture information. In the firework scene, the sparks of
the firework near the bottom-right corner are incorrectly hal-
lucinated. The algorithm has no knowledge of the sparks
shape in the over-exposed region, so the entire region is uni-
formly lit. However, it should be noted that our technique
should never make an image worse, as the user can always
decide which image regions to hallucinate.
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Parameters To determine over/under exposed regions, we
use [Cye,Coe] = [0.05,0.85] as "valid range" for all test im-
ages except the gate scene which we use [0.0,0.8]. For bi-
lateral filtering, we use a spatial parameter of 4 and a range
parameter of 0.2 for all our scenes except wood, where pa-
rameters of 8 and 0.4 are used.

4. Conclusions and Future Work

In this paper, we have proposed a technique to hallucinate an
HDR image from a LDR original with an interactive user in-
terface. We have shown that excellent hallucinations can be
obtained with surprisingly small amount of effort. A poten-
tial future work is to hallucinate secondary HDR effects such
as scattering, glaring, and chromatic aberrations. Moreover,
more advanced illumination models can be used along with
geometry recovering methods, such as shape from shading
and geometric completion, to generate more realistic hallu-
cinations.
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scene # texture strk | # warp strk | # illumi strk
wood 0 2 0
bridge 4 0 2
beach 4 0 1
frog 2 0 0
stream 4 0 2
gate 4 0 2
church 0 4 0
X’mas tree 0 0 0
light bulb 2 0 1
env-map 0 0 1
fire 0 2 0
video 0 0 0
girl 2 0 0
firework 0 0 0

Table 1: User interaction statistics for our results. Green: source

texture/warp strokes. Blue: destination texture/warp strokes. Or-
ange: illumination strokes. The # of texture and warp strokes include
both source and destination. The Christmas tree, firework, and video
results are produced automatically with no user interaction.
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