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Abstract

We present a method for rendering single-bounce indirect illumination in real time on currently available graphics
hardware. The method is based on the instant radiosity algorithm, where virtual point lights (VPLs) are generated
by casting rays from the primary light source. Hardware shadow maps are then employed for determining the
indirect illumination from the VPLs. Our main contribution is an algorithm for reusing the VPLs and incrementally
maintaining their good distribution. As a result, only a few shadow maps need to be rendered per frame as long as
the motion of the primary light source is reasonably smooth. This yields real-time frame rates even when hundreds
of VPLs are used.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Bitmap and framebuffer
operations I.3.7 [Computer Graphics]: Shadowing, Radiosity

1. Introduction

This paper describes a method for rendering single-bounce
indirect illumination at real-time frame rates using current
graphics hardware (Figure 1). Our method requires no pre-
computation and is able to handle dynamic lighting condi-
tions, given that the motion of the light sources is reasonably
smooth. We require that the geometry used for bouncing off
indirect illumination remains static. Dynamic objects can-
not thus generate indirect illumination effects such as color
bleeding, but they can receive indirect illumination from
other parts of the scene. Shadowing of direct illumination
is of course still possible.

Our method is a variant of the instant radiosity algo-
rithm [Kel97]. In instant radiosity, light paths are traced from
the light source, and virtual point lights (VPLs) are gener-
ated at the vertices of these paths (Figure 2a). These VPLs
are then used for illuminating the scene, in addition to the
primary light source (Figure 2b). In our method, we employ
hardware shadow mapping for determining the visibility be-
tween the VPLs and the visible surfaces of the scene. Inter-
leaved sampling [KH01] is used for reducing the number of
shadow map lookups without introducing upsampling arti-
facts.

Figure 1: An example of direct and single-bounce indirect
illumination combined. Here, indirect illumination is com-
puted using 256 virtual point lights, 4–8 of which are up-
dated every frame. This scene with ∼80K triangles runs at
49 fps in 1024× 768 resolution using a single off-the-shelf
GPU. Computations related to indirect illumination con-
sume approximately 71% of total rendering time.
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(a) (b) (c)

Figure 2: Principle of instant radiosity and VPL reuse. (a) In instant radiosity, paths are traced from the primary light source,
and virtual point lights (VPLs) are placed in each reflection/absorption point. Since we are limited to single-bounce indirect
illumination, we do not continue the paths beyond the first hit. (b) When rendering a point seen by camera (orange dot on the
floor), the visibility from each VPL is determined. Incident irradiance is accumulated from the visible VPLs. Direct illumination
is computed separately (not illustrated here). (c) When the light source moves, the standard method is to recast rays and
construct new VPLs. Instead of doing this, we examine which VPLs from previous frame are still valid, i.e. can be seen from the
new light source position. In the case depicted, only one VPL below the table is invalid and cannot be reused. Potential camera
movement does not affect this step.

Limiting the light paths to a single bounce makes the
method particularly straightforward to implement. Previ-
ously, Tabellion and Lamorlette [TL04] have demonstrated
that a single bounce of indirect illumination is sufficient in
many cases even in high-quality offline rendering. We feel
that this limitation is not critical to interactive applications
such as computer games, either.

Our key contribution is a method for reusing the VPLs
so that their shadow maps need not be computed every
frame (Figure 2c). By carefully recomputing the intensities
of the reused VPLs, and making sure only valid VPLs get
reused, no temporal lag is introduced. In practice, it is usu-
ally enough to compute less than ten shadow maps each
frame in order to take the movement of the primary light
source into account. Extreme motions of the light source
may force us to discard more VPLs than we can afford to re-
compute, leading to temporary degradation of shadow qual-
ity.

The method for choosing which VPLs are reused is based
on the dispersion measure [Nie92, LaV06] of a point set.
Niederreiter characterizes dispersion as a metric for devia-
tion from denseness, and it is closely related to the more
common discrepancy metric. The dispersion of a point set is
much easier to compute than its discrepancy, and generating
new points so that dispersion is reduced is straightforward.

2. Previous Work

Interactive global illumination. The simplest way of in-
teractively visualizing scenes including global illumination
effects is to use precomputed static lighting solutions, e.g.,
radiosity [CW93]. Such techniques not only form a signif-
icant body of graphics literature, but have also found their

way in practical applications in computer games, where the
solutions are usually stored in “light maps”. However, both
the scene and the lighting have to remain static.

Ambient occlusion [ZIK98] is a heuristic approximation
to global illumination now in common practical use [Lan02].
For a point being shaded, it is defined as the hemispher-
ical integral of either the visibility function or some suit-
able function of the distance to the nearest surface in each
direction. The model nicely reproduces soft dark corners,
an important feature of “real” global illumination solutions.
Kontkanen and Laine [KL05] and Malmer et al. [MMAH]
describe techniques for rendering ambient occlusion to the
surroundings of moving, rigid objects.

Dachsbacher and Stamminger [DS05, DS06] describe ap-
proximate image-space techniques for the interactive render-
ing of indirect illumination. Unlike our method, their tech-
niques do not consider visibility, i.e., indirect shadows.

Non-heuristic methods for interactive or real-time render-
ing of indirect illumination fall roughly in two categories.
Instant radiosity [Kel97] and its variants form one cate-
gory. These methods construct (quasi-)random paths from
the light sources and deposit virtual point lights (VPLs)
at the vertices of the paths. When used together with a
suitable shadow solver, usually shadow maps, these point
lights represent the full indirect illumination in the scene.
Instant radiosity techniques are GPU-friendly due to the fact
that most of the computation is spent on per-pixel lighting.
However, variants based on ray tracing on a cluster of PCs
have also been described; see Wald’s thesis [Wal04] for an
overview. Several of these techniques employ interleaved
sampling [KH01] for smooth reconstruction of indirect illu-
mination [Wal04, SIMP06b]. Both Wald and coworkers and
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Segovia et al. [SIMP06a] describe bidirectional algorithms
for guiding the generation of VPLs according to view im-
portance, i.e., their contribution to the final image. Temporal
coherence in non-static indirect illumination, or rather the
lack of it, remains a major problem for all these algorithms.

Precomputed light transport techniques form the second
category of methods for interactive rendering of physically-
based indirect illumination. These methods precompute
transport operators that are used at runtime for computing
a global illumination solution that corresponds to the cur-
rent direct illumination conditions in a static scene. How-
ever, most of these techniques work with distant illumina-
tion only (e.g. [SKS02]). Kristensen et al. [KAMW05] de-
scribe a technique for rendering indirect illumination from
omnidirectional, local, moving light sources. The results are
impressive, but dynamic objects are not supported, and pre-
processing costs are substantial. Kontkanen et al. [KTHS06]
extend wavelet radiosity for computing a full hierarchical
direct-to-indirect transport operator for a static scene. The
technique supports all types of light sources, and, in prin-
ciple, glossy BRDFs. However, dynamic objects cannot be
easily supported. Furthermore, precomputation still takes
tens of minutes.

Quality of sample distributions. In the context of integra-
tion, the quality of sample distributions is commonly mea-
sured using discrepancy, which is the ability of a sampling
pattern to estimate areas of subregions inside a domain. If a
subregion covers N% of the domain, ideally the subregion
would also cover N% of the sampling points. Discrepancy is
the the maximum difference between the two for any subre-
gion. Numerous variants of discrepancy exist, and we refer
an interested reader to the book by Matousek [Mat99]. Of-
ten the set of subregions is limited to axis-aligned rectangles;
unfortunately the resulting measure is not rotation-invariant,
which would be a problem in our application. Discrepancy
is also fairly expensive to compute and does not directly in-
dicate which sample is the most redundant or where exactly
should a new sample be inserted during incremental updates.

Niederreiter [Nie92] presents dispersion as another met-
ric for measuring the quality of point sets. Typically disper-
sion is computed as the largest empty circle in the domain,
and it is thus rotation-invariant. As will be discussed in Sec-
tion 4, dispersion is fast to compute [SH75, AK00] and di-
rectly indicates where new samples should be inserted dur-
ing incremental updates. Discrepancy and dispersion are re-
lated so that low discrepancy implies low dispersion, while
the converse is not true [LaV06]. For example, the Sukharev
grids (regular grids) have optimal dispersion but bad discrep-
ancy. In our application, however, the incremental updates
do not seem to result in any visible regularity. Incremen-
tal dispersion reduction has been previously used at least
in the context rapidly exploring random trees for motion
planning [LL04]. While not intimately related to computer
graphics, their problem has some similarities with our set-

ting: inserting new samples is relatively expensive and ex-
isting samples cannot be moved. Obnoxious facility loca-
tion [Cap99] is another field of study in which a point maxi-
mally far from everything else is desired.

Agarwal et al. [ARBJ03] describe an algorithm for im-
portance sampling of environment maps. The Hochbaum-
Shmoys algorithm they use for adding sampling points re-
sults in a similar minimization of dispersion as our method.
However, they operate on a discrete set of possible locations
for sampling points, in contrast to our continuous domain.

On conceptual level the incremental dispersion reduction
resembles sequential Monte Carlo methods, e.g. [DDJ06,
DFG01], that maintain and improve sampling distributions
over time. Most such methods move the samples between
frames, whereas in our context it is crucial to keep most of
the samples stationary between frames.

3. Algorithm Outline

For each frame, our method performs the following steps for
computing the indirect illumination:

1. Determine the validity of each VPL (Sec. 4.4).
2. Remove all invalid VPLs and possibly a number of valid

ones to improvement the distribution (Sec. 4.5).
3. Create new VPLs according to allotted budget. Render

paraboloid shadow maps for them (Sec. 4.6).
4. Compute intensities for VPLs (Sec. 4.7).
5. Render the positions, normals, and colors as seen from

camera into a G-buffer.
6. Split the G-buffer into a number of tiles.
7. Loop over tiles and accumulate illumination from a sub-

set of VPLs in each of them.
8. Combine the tiles back into a single image.
9. Smooth the accumulated illumination using a spatially-

varying filter kernel.

After the indirect illumination is computed, it can be com-
bined with direct illumination and precomputed illumina-
tion from stationary light sources (light maps). In practice, it
is advisable to calculate direct illumination in parallel with
CPU-intensive VPL management tasks (Steps 1–4). Also,
G-buffer rendering and splitting (Steps 5 and 6) can be per-
formed in parallel with VPL management.

VPL management (Steps 1–4), which is our main con-
tribution, is discussed in detail in Section 4. Accumulating
incident illumination and performing the spatially-varying
illumination filtering (Steps 5–9) are presented in Section 5.

4. VPL Management

The directional distribution of the VPLs as seen from the
point light source should ideally follow the directional in-
tensity distribution of the light source. When this is the case,
each VPL represents a similar fraction of the total light
source power. The goal of VPL management is to keep the
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distribution of VPLs as close to the ideal as possible by
removing and adding new VPLs within an allotted budget.
Since we keep most of the VPLs fixed between frames, the
movement of the light source skews the distribution away
from the ideal.

This section describes our method for reusing VPLs and
incrementally maintaining their good distribution. First, we
take a look at the domains in which the calculations related
to VPL positioning are performed (Section 4.1), and explain
how rendering quality is controlled (Section 4.2). We then
describe the metric we use for deciding which VPLs we
delete and where new VPLs are located (Section 4.3). Af-
ter this, we examine step by step our method for removing
old VPLs and generating new ones (Sections 4.4–4.7).

4.1. Domains of Distributions

Because we only consider point-like light sources, the direc-
tional distribution of VPLs as seen from the light source can
be mapped into a 2D domain. We can then perform all com-
putations related to the VPL distribution in this 2D domain,
instead of using the actual 3D positions of the VPLs. De-
spite the potential confusion, we refer to the points obtained
by mapping the VPL directions into the 2D domain as sam-
pling points, even though we are not actually sampling any
function.

Our implementation supports two types of primary light
sources: 180◦ spot lights with cosine falloff, and omnidirec-
tional point lights. With spot lights, the most suitable 2D
domain is the unit disc that is obtained by flattening the
z coordinate of the hemisphere pointing at the spot direc-
tion (Figure 3a). According to the so-called Nusselt ana-
log [CW93], the differential areas on the disc then corre-
spond exactly to cosine-weighted differential solid angles,
meaning that uniform distribution on unit disc corresponds
to the desired cosine-weighted distribution on hemisphere
(Figure 3b). Note that spot light sources with different falloff
angles can be easily mapped to the unit disc by a radial
stretch. With omnidirectional primary light sources, we op-
erate on the surface of the unit sphere (Figure 3c). These 2D
domains are different in the sense that the unit disc has a
boundary, while the unit sphere has not.

Most of the VPL management operations require the De-
launay triangulation and the associated Voronoi diagram
computed for the entire set of sampling points. These are
computed in the same domain where we carry out the rest
of the geometric operations, i.e. unit disc or unit sphere.
For unit sphere, we compute the Delaunay triangulation by
constructing a 3D tetrahedralization of the sampling points
on the sphere. The surface faces of this tetrahedralization
are then conceptually lifted onto the surface of the sphere,
yielding spherical triangles. In our implementation, we use
CGAL computational geometry library [CGA06] for per-
forming all non-trivial geometrical operations such as trian-
gulations and tetrahedralizations.

4.2. Quality Control

The quality of the VPL distribution is controlled by
application-defined budget for constructing new VPLs. Two
values are specified: minimum and maximum number of
new VPLs created each frame. We denote these values by
recalcMin and recalcMax, respectively. By using a nonzero
recalcMin, we ensure that the quality of the VPL distribu-
tion is improved even when all VPLs are valid. On the other
hand, by specifying recalcMax, we can guarantee real-time
frame rate even in more demanding situations, at the expense
of temporal degradation of quality. The maximum number of
VPLs is denoted by maxLights.

4.3. Dispersion Metric

The dispersion of a point set P in metric space (X ,d) is de-
fined by

δ(P) = sup
x∈X

min
p∈P

d(x, p) (1)

In our case, space X is either the unit disc or unit sphere, and
d is the Euclidean distance. To be pedantic, when X is the
unit sphere, d should measure the distance along the spheri-
cal surface. However, since we are not interested in the value
of the dispersion but want to know the point x ∈ X that gives
it, we may equally well use Euclidean distance in R3.

Simply put, Equation 1 states that for unit disc, dispersion
δ is the radius of the largest empty circle, i.e. containing no
sampling points, whose center is located inside the disc.

4.4. Validity Testing

When the primary light source is a spot light, a VPL
becomes invalid if either of the following conditions are
met: 1) it is occluded from the new position of the primary
light source, or 2) it falls outside the illumination region of
the primary light source. With omnidirectional light sources,
condition 2 cannot occur, and occlusion is the only reason
that forces invalidating VPLs.

We check the occlusion by casting a shadow ray from the
primary light source to VPLs using a conventional CPU ray
tracer. The ray tracer only considers the static part of the
scene, as occlusion from dynamic objects is not to be taken
into account. It might also be possible to use the shadow
map computed for the primary light source for determining
the validity of VPLs, but we did not investigate this option.
Determining which VPLs are outside the illumination region
of a spot light source is trivially accomplished by calculating
the dot products between primary light source direction and
the vectors to the VPLs.

4.5. Deleting VPLs

It often happens that even after deleting every invalid VPL,
we need to delete valid ones to make room for recalcMin
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(a) (b) (c)

Figure 3: Domains for sampling point distributions. In every frame, we first map the directions of VPLs into sampling points
in a 2D domain, then perform VPL computations in this domain, and finally, if a new VPL are created, map the new sampling
point back to directional distribution to cast the ray that determines the actual spatial location of the new VPL. (a) With spot
lights, we perform sampling point computations on unit disc. The sampling points are obtained by constructing a basis where
the z axis points to the spot direction, transforming the normalized direction vectors to VPLs into this basis, and dropping the
z coordinate. (b) According to the Nusselt analog, the areas on the unit disc correspond to integrals of the emission function
in spot light with 180◦ falloff. Therefore, uniform distribution on the unit disc yields the correct directional distribution of the
VPLs. (c) With omnidirectional light sources, the sampling points are located on the surface of unit sphere, and the mapping is
performed simply by normalizing the direction vectors to VPLs.

new VPLs. In this case, we need to decide which VPLs to
delete. We use a simple heuristic based on the Delaunay tri-
angulation of the sampling points. Notice that the sampling
points of the invalid VPLs have already been removed and
the triangulation updated accordingly.

First, we find the shortest Delaunay edge in the triangu-
lation. Second, we examine the neighbors of the two ver-
tices connected to the edge, and compute the distances to
the second closest neighbors of them. The vertex that has
smaller distance to second-closest neighbor is then deleted.
After deleting the sampling point, we update the triangula-
tion. This operation is repeated until there are recalcMin free
VPLs.

This deletion method always increases the smallest dis-
tance between two points, which represents the greatest local
concentration of sampling points. We have found this sim-
ple heuristic to consistently perform well and predictably. It
is certainly possible to develop more sophisticated heuristics
by e.g. considering multiple removals at once, but we find it
quite unlikely that significant improvements can be made.

4.6. Creating New VPLs

The most critical part of the reuse algorithm is the creation
of new VPLs, i.e. sampling points in the 2D domain. Our
approach is based on systematically reducing the dispersion
of the set of sampling points.

Our strategy is to place the new sampling point at the cen-
ter of the largest empty circle containing no sampling points.

It is easy to see that this guarantees the reduction of disper-
sion except in the special case where there are more than one
maximal empty circles with equal radii. Even then, the strat-
egy guarantees that dispersion is reduced whenever possible.

Unlike discrepancy, dispersion is quite easy to calculate
in Euclidean spaces. It has been shown [SH75, AK00] that
for a planar set of points in a domain bounded by convex
polygon, the largest empty circle is always centered at:

1) vertex of the Voronoi diagram, touching three points,
2) point where an infinite Voronoi edge intersects the bound-

ary of the domain, touching two points, or
3) vertex of the bounding polygon, touching one point.

With the unit disc, we can regard its bounding circle as an in-
finitely tessellated polygon, which allows us to immediately
see that cases 1 and 2 hold for the disc as well. However,
case 3 may then occur at any point of the bounding circle.
Fortunately the only way this can happen is when a Voronoi
cell contains the entire line segment from its Delaunay point
to the opposite side of the bounding circle through the ori-
gin. In this rare case the center of the largest empty circle is
at the point where the line segment intersects the bounding
circle.

Finding the largest empty circle and consequently the
dispersion therefore requires no more than enumerating
Voronoi vertices and edges, performing elementary intersec-
tion operations, and computing distances. In the spherical
domain, the lack of boundary makes the computation of dis-
persion even simpler. From the previous list of cases, only
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case 1 is possible, and therefore the largest empty circle is
always found at a Voronoi vertex.

After finding the location for the new sampling point, we
add it to the distribution and update the Delaunay triangu-
lation. Then, a ray is cast from the primary light source to
the direction corresponding to the sampling point. If the ray
exits the scene, no VPL is created. Otherwise, a new VPL
is placed at the intersection point, and a paraboloid shadow
map [HS98,BAS02,OBM06] is rendered for it. The color of
the new light source is defined by the color of the surface
at the hit point. With textured surfaces, we employ a heav-
ily blurred version of the texture for determining the color,
in order to avoid sporadic illumination effects due to small
texture details.

This process is repeated until we have created recalcMax
new sampling points, or when we hit maxLights, the given
maximum number of VPLs.

4.7. Computing Intensities for VPLs

Because of the movement of the light source and limited
number of sampling point repositionings, it is unlikely that
the sampling points will be evenly spread across the domain.
Therefore, assigning equal intensity to all VPLs would pro-
duce incorrect results. To remedy this, we need to recompute
the intensity of each VPL per frame.

The intensity of a VPL should equal the emission func-
tion of the primary light source integrated over the solid an-
gle it represents. Due to our choice of 2D domain for the
sampling points, this is proportional to the area that the cor-
responding sampling point represents in the domain. Fol-
lowing Yakowitz et al. [YKS78], we assign the area of the
Voronoi region around the corresponding sampling point
as the intensity for the VPL. Computing the areas of the
Voronoi regions can be done using elementary geometry
both on unit disc and unit sphere. The intensities of the VPLs
are finally scaled so that their sum equals the total power of
the light source.

5. Illumination Accumulation and Filtering

When the VPLs have been updated, we may start rendering
the final image as seen by the camera. All of these operations
(Steps 5–9 of the algorithm outline) are conceptually iden-
tical previously presented methods for interleaved sampling
and filtering [KH01,Wal04,SIMP06b], and we will therefore
cover them quite briefly.

5.1. Indirect Light Accumulation

Rendering the G-buffer. We begin by rendering the world-
space positions, normals, and colors of visible pixels into
an off-screen frame buffer. Following the terminology of
Segovia et al., we call this the initial G-buffer.

Splitting the G-buffer. To facilitate low-resolution accu-
mulation of indirect illumination, we split the contents of the
G-buffer into n×m tiles. The split is done so that each tile
represents the entire image sub-sampled with a different off-
set. In other words, the contents of pixel (a,b) in the tile with
index (i, j), where i∈ [0, . . . ,n−1] and j ∈ [0, . . . ,m−1], are
read from pixel (an+ i,bm+ j) of the original image.

Segovia et al. observed that splitting should be done using
multiple passes over the image to enhance cache coherency.
However, we found in our tests that current hardware per-
forms the split fastest in a single pass. The result of the split
is stored into split G-buffer. Only positions and normals are
needed in this buffer.

Accumulating incident illumination. We assign each VPL
to one of the tiles in the split G-buffer so that each tile
has approximately the same number of affecting lights. We
then process each tile using a fragment shader that fetches
the world-space position of the pixel, performs the shadow
lookups from the paraboloid maps of the assigned VPLs, and
computes the incident illumination based on position and
normal of the pixel and positions and intensities of the light
sources. Note that the color of the receiving surface is not
taken into account at this point.

As noted by Keller [Kel97], the singularity in the 1/r2

falloff of VPLs may cause objectionable artifacts when re-
ceiving surface is very close to a VPL. To work around this
problem, we clamp the maximum irradiance that a single
VPL can contribute.

Combining tiles. After the incident illumination has been
accumulated in the tiles, we combine the results back into
a single full-sized illumination buffer, performing the ex-
act opposite of the splitting step. Because each of the n×m
tiles used a different set of VPLs, the resulting illumination
buffer has a structured noise pattern that repeats in n×m
pixel blocks.

5.2. Illumination Filtering

Our approach to filtering the incident illumina-
tion is a synthesis of previously used techniques.
Segovia et al. [SIMP06b] compute a discontinuity buffer
and performed a Gaussian blur constrained by the detected
discontinuities. Wald [Wal04] also uses a discontinuity
buffer, but performs the filtering using a box kernel whose
size exactly matches the tiling of the noise pattern, i.e.
n×m pixels. This kind of filter has the desirable property of
being able to remove the structured noise completely from
continuous surfaces (Figure 4).

In our method, we also use n × m wide box filter, but
instead of computing a discontinuity buffer, we choose the
support of the filter dynamically on a per-pixel basis. Un-
fortunately, it is impossible to use the physically motivated
thresholding criterion of irradiance caching [WRC88], since

c© The Eurographics Association 2007.

282



S. Laine et al. / Incremental Instant Radiosity for Real-Time Indirect Illumination

(a) (b)

Figure 4: After the G-buffer is merged, a structured noise
pattern, repeating every n×m pixels, emerges due to the
use of a different set of VPLs in each tile. (a) Noise pattern
before filtering when 4× 4 tiles were used. (b) The result
after applying a spatially-varying box filter.

ILLUMINATION-FILTER(int px, int py)
int count = 0
Vec3 accum = {0,0,0}
Vec3 pos = TEX(texPositions, px, py)
Vec3 normal = TEX(texNormals, px, py)
for y in [0, . . . ,m] do

for x in [0, . . . ,n] do
int tx = px + x−bn/2c
int ty = py+ y−bm/2c
Vec3 pos2 = TEX(texPositions, tx, ty)
Vec3 normal2 = TEX(texNormals, tx, ty)
if (|pos2−pos| < α) and (normal2 ·normal > β) then

accum = accum+ TEX(texIllumination, tx, ty)
count = count +1

end if
end for

end for
result = accum/count

Figure 5: Pseudocode of the geometry-sensitive illumination
filter. Constants α and β determine the thresholds for spatial
distance and difference between normals, respectively.

we have no knowledge of the mean distance from the receiv-
ing point to nearby surfaces.

The pseudocode for the box filter is given in Figure 5.
We simply loop over the pixels under the box kernel, and
compute geometric distance and normal difference between
the pixel being processed and the pixels under the ker-
nel. Two threshold values α and β are used for thresh-
olding the differences in positions and normals, respec-
tively. The same thresholding criteria were also used by
Segovia et al. [SIMP06b] for constructing the discontinuity
buffer, where only neighboring pixels are considered. The
value for α obviously depends on the scale of the scene,
while setting β = 0.8 seems to work reasonably well in all
situations.

We note that the support of the filter contains always at

least one pixel, namely the one that is directly under the cen-
ter. When n or m is even, the filter cannot be exactly centered,
but since we are dealing with smoothly varying indirect illu-
mination, the resulting half-pixel shift is impossible to notice
in practice. We also experimented with 2n×2m wide box fil-
ters, but the increase in quality was marginal, while the cost
of filtering was roughly doubled.

When motion blur is used, the performance could be fur-
ther optimized by using only a subset of the VPLs for each
sub-frame, as proposed by Keller [Kel97].

6. Results

We studied the effect of VPL reuse on the performance by
comparing against a method that generates all VPLs anew
each frame. All other parts of the algorithm are the same for
both our algorithm and the comparison method. We note that
the comparison method strongly resembles the state-of-the-
art algorithm of Segovia et al. [SIMP06b].

All performance measurements were run on a dual-core
2.2GHz AMD Athlon 64 with 1GB of memory and an
NVIDIA GeForce 8800 GTX with 768MB of memory. Only
one of the CPU cores was used, i.e. our program was single-
threaded.

Three test scenes were used. CORNELL is the classical
Cornell box, SIBENIK is an architectural model, and MAZE

features a simple surrounding scene with a detailed statue.
In each scene, we measured the efficiency of our method
and the comparison method with a single light source. Both
spot and omnidirectional light sources were tested. Because
we use paraboloid mapping for the shadow maps of the
VPLs, the scenes need to be tessellated so that linear tri-
angle boundaries do not cause objectionable artifacts in the
paraboloid maps. The scenes and triangle counts before and
after tessellation are shown in Figure 6.

The number of VPLs was fixed to 256, which gave the
best output quality considering both the visibility of artifacts
and the speed of rendering. The recomputation budget was
set to 4–8 VPLs per frame for all test cases. The resolution of
the shadow maps for VPLs was 256× 256, and with 16-bit
depth values, the total video memory consumed by the 256
shadow maps was 32MB. For direct illumination we com-
pute a shadow cube map with 1024x1024 resolution on each
side. The direct shadow lookup is smoothed using a 16-tap
percentage-closer filter [RSC87]. Aside from shadow maps,
all buffers are in 16-bit floating-point format.

We chose to always split the G-buffer into 4×4 tiles, since
this resulted in best rendering speed with 256 VPLs. With
more tiles, the filtering step becomes slow enough to out-
weigh the gains from a faster accumulation step, and with
fewer tiles, the accumulation starts to dominate.

As was mentioned in Section 3, the CPU calculations re-
lated to VPL management are always executed in parallel
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CORNELL: 32 / 4.4K triangles MAZE: 55K / 63K triangles SIBENIK: 80K / 109K triangles

Figure 6: The test scenes used. For each scene, both the original and tessellated triangle counts are given. The tessellated
version of the scene is used only for rendering the paraboloid shadow maps for the VPLs.

with GPU tasks by allowing one-frame delay in the positions
and intensities of the VPLs. Since the CPU processing power
is not the limiting factor in our test cases, the frame rates
are exactly the same with spot and omnidirectional primary
light sources. The time taken by VPL management depends
somewhat on the complexity of the scene, mainly because
of the ray casts involved. With spot light sources, the VPL
management took 3.6–5.0 milliseconds in our test scenes,
while omnidirectional light sources required 16.0–16.2 mil-
liseconds. The huge difference is explained by the need for
3D Delaunay tetrahedralization with omnidirectional lights,
whereas 2D triangulation is sufficient for spot lights.

Table 1 summarizes the timings from our test runs.
The timings for each individual GPU task were obtained
by flushing the GPU pipeline before and after each task,
whereas FPS measurements were made without any addi-
tional synchronization. This explains the slight discrepancy
between the reported FPSs and the timing breakdowns. As
can be observed, our algorithm was up to 7 times faster than
the comparison method.

Relative to the comparison method, our algorithm scales
favorably with number of VPLs and scene complexity be-
cause our technique updates fewer shadow maps per frame.
These are important characteristics due to the increasing
trend in scene complexities, and because the number of
VPLs is an important factor in the perceived quality of the
indirect illumination. Also, the results produced by our algo-
rithm seem to exhibit less flickering artifacts than the com-
parison method using the same number of VPLs. Image res-
olution affects all frame buffer operations approximately lin-
early, and therefore the relative speedup decreases in higher
resolutions.

In an additional test with 1024 VPLs, we obtained a frame
rate of 31 FPS in Sibenik in 1024 × 768 resolution, while
the comparison method performed at only 2 FPS. Unfortu-
nately we ran into performance problems with the CGAL
library when using this many VPLs, especially with omni-
directional light sources. This resulted in unpredictable stut-

ters in the frame times. Thus, a faster implementation for
performing Delaunay triangulations and tetrahedralizations
would be needed. Ideally, the tetrahedralization should be
replaced with a triangulation on the surface of the sphere.

7. Discussion and Future Work

Our implementation supports diffuse surfaces only, but han-
dling glossy BRDFs would be quite simple in theory. The
only modification would be in the accumulation step that
would need to consider the BRDFs of the surfaces at the
VPL and at the receiving point. In particular, VPL man-
agement would not be affected at all. Unfortunately, with
highly specular BRDFs, the contributions of individual
VPLs would become more conspicuous, necessitating the
use of significantly more VPLs than for diffuse or only
mildly glossy receivers.

Our primary light sources are point-like, and extending
our algorithm to true area light sources is a potential avenue
for future work. It seems that the VPL distribution calcula-
tions would then need to be done in 4D space. However, the
number of VPLs needed for achieving a given quality should
remain approximately the same as in the case of point light
sources. A crude approximation for area light sources could
be made by computing the intensities of VPLs as if the pri-
mary light source were an area light, even if the VPLs are in
fact created by casting rays from a single point.

Perhaps the biggest limitation of our approach is that in-
direct illumination can bounce from static geometry only.
We feel, however, that the ability of dynamic objects to
receive indirect illumination largely alleviates this limita-
tion. This support for dynamic objects is a major improve-
ment over previously presented precomputation-based ap-
proaches [KAMW05, KTHS06], which are unable to il-
luminate dynamic objects. The lack of indirect illumina-
tion effects caused by dynamic objects seems to be a rela-
tively minor issue, since shadowing of direct illumination—
which of course works in conjunction with our method—is
a much more noticeable dynamic illumination effect. Fur-
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Scene Resolution
Direct Indirect illumination FPS Speedup factor
illum. G-buffer Σ Common Shadow map rendering Comp. Our

Indirect Frame
SM+PCF rendering (Table 2) Our method Comp. method method method

CORNELL
1024×768 4.4 1.1 12.1

0.7 30.8
35.1 65.1 2.2 1.9

1600×1200 6.7 2.0 24.1 21.2 29.7 1.5 1.4

MAZE
1024×768 5.6 1.5 12.1

2.0 82.3
12.5 49.2 5.1 3.9

1600×1200 8.8 2.5 24.1 10.2 28.5 3.4 2.8

SIBENIK
1024×768 6.9 1.8 12.1

3.1 140.3
7.1 48.6 9.8 6.8

1600×1200 10.2 2.9 24.1 6.3 25.9 5.2 4.1

Table 1: Timings from our test scenes. The number of VPLs is 256 in each case. All timings are in milliseconds. The columns
from left to right: name of the test scene; resolution; time taken by direct illumination including shadow map rendering and
percentage-closer filtering; rendering the G-buffer; common scene-independent operations (see Table 2 for breakdown); ren-
dering shadow maps for new VPLs in our method; rendering shadow maps for all VPLs in the comparison method; frames per
second for comparison method; frames per second for our method; speedup in indirect illumination calculations; speedup in
total frame time. All results are averaged over 1000 frames where both the light source and the camera are moving. Note that
the total frame time is the same for spot and omnidirectional lights for our method, since the VPL management is done on CPU
in parallel with GPU operations.

thermore, shadowing of indirect illumination could probably
be approximated using ambient occlusion techniques [KL05,
MMAH].

Limiting the illumination path length to single bounce
makes the reuse of VPLs simple and efficient, but it limits
the extent to which our method can approximate true global
illumination. However, extending the algorithm to handle
multiple bounces seems relatively straightforward. Instead
of reusing first-hit VPLs, we could reuse entire paths, and
validating the first-hit VPLs would also validate the path
continuing from it, since the scene and the path remain static.

Another major limitation is that the method is not view-
dependent. In a realistic application with large scenes the
distribution of VPLs should be driven by view-importance,
i.e., computations should be concentrated on effects visi-
ble to the camera. A simple distance-based heuristic aug-
mented with precomputed visibility data might already work
satisfactorily, but more elaborate methods could be devel-
oped, e.g. along the lines of bidirectional instant radios-
ity [SIMP06a].

As was mentioned in Section 5.2, we currently assign
VPLs to G-buffer tiles in the order they are generated. It
could be very useful to use some kind of heuristics for as-
signing the VPLs to tiles so that each tile has a representative
set of VPLs. This could avoid worst-case scenarios where all
brightly illuminating VPLs get assigned to a single tile. This
kind of uneven VPL assignment yields high variance in the
structured illumination pattern, which in turn results in fil-
tering artifacts at sharp boundaries.

Considering our method’s performance, scalability, sim-
plicity, potential extensions, and unintrusiveness to the rest
of the rendering pipeline, we believe that it has the poten-
tial to become the algorithm of choice for rendering global
illumination effects in future applications.

Resolution Split Accum. Combine Filter Σ Common
1024×768 2.1 5.7 0.7 3.6 12.1
1600×1200 4.1 11.7 0.7 7.6 24.1

Table 2: Scene-independent common steps in indirect illu-
mination rendering. Timings are in milliseconds. These steps
are performed both in our method and in the comparison
method. Columns from left to right: G-buffer splitting; in-
direct illumination accumulation; G-buffer combining; inci-
dent illumination filtering; total time taken by these common
operations.
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