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Abstract

This paper addresses light transport through a discrete random medium, which we define as a volume filled with
macroscopic scattering geometry generated by a random process. This formulation is more general than standard
radiative transport, because it can be applied to media that are made up of closely packed scatterers. A new
approach to rendering these media is introduced, based on precomputed solutions to a local multiple scattering
problem, including a new algorithm for generating paths through random media that moves through the interior of
the medium in large strides without considering individual scattering events. A method for rendering homogeneous
isotropic random media is described that generates paths using precomputed scattering solutions compressed and
randomly sampled using Nonnegative Matrix Factorization. It can efficiently render discrete media, such as a
large pile of glass objects, in which the individual scatterers are visible. The method is demonstrated on scenes
containing tens of thousands of transparent, specular objects that are nearly impossible to render with standard
global illumination techniques.

Categories and Subject Descriptors(according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism

1. Introduction

This paper addresses the problem of rendering complex, ran-
dom three-dimensional transparent structures. A motivating
example for our work is hair, which is made up of many
fibers that are visible and therefore need to be modeled indi-
vidually, but which exhibit smooth large-scale behavior due
to multiple scattering. Accurate multiple scattering solutions
can be computed by tracing rays through the geometry it-
self [MM06], but a statistical method for multiple scattering
has the potential to be much more efficient. In this paper we
take the first steps toward this goal by developing methods
for a class of similar but non-oriented materials.

Many other scenes have similar properties of visible struc-
ture but smooth large-scale behavior: air-liquid foams, such
as soap foam; crystalline materials, such as sugar or salt;
a pile of glass beads or other transparent objects; a forest
canopy made up of randomly distributed leaves (see Fig-
ure 1 for an example). We refer to these structures asdis-
crete random media, a term borrowed from the optical liter-
ature [TDSK98]. When specular reflection dominates, these

scenes are essentially impossible to render using established
global illumination techniques. For our purposes a discrete
random medium is a volume filled with macroscopic scatter-
ing geometry that is generated by a random process: the spe-
cific arrangement of the objects is not important for multiple
scattering, and we can instead look for the average behavior
over the distribution of geometries that could be produced
by the generating process.

Discrete random media differ from the continuous media
commonly simulated in graphics. In continuous media, light
is assumed to interact with infinitesimal scattering particles.
This ensures that scattering events along a path are statisti-
cally independent. In a discrete random medium, scatterers
are often packed close together, which invalidates the inde-
pendence assumptions underlying the standard formulation
of volumetric light transport.

This paper introduces a new approach to analyzing and
simulating light transport in homogeneous, isotropic random
media, which relies onshell transport functions, a novel de-
scription of a medium’s scattering behavior across finite dis-
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Figure 1: Two photographs of glass beads illuminated by
a spotlight. Left: a single layer of beads. Right: a deep con-
tainer of beads, in which light spreads by multiple scattering
in the volume.

tances. Using this formulation we show how the results of
local scattering simulations can be stored and packaged so
that they can later be used to generate paths through random
media that cross long distances without considering individ-
ual scattering events. Finally, we describe a new method for
rendering homogeneous, isotropic random media that gen-
erates paths using precomputed scattering solutions that are
compressed and randomly sampled using Nonnegative Ma-
trix Factorization.

2. Prior Work

Light transmission in continuous media (known as volumet-
ric light transport, or radiative transfer) has been studied ex-
tensively in many fields; Chandrasekhar [Cha60] and Ishi-
maru [Ish78] are good references on the basic theory. Con-
tinuous media are used in computer graphics [CPP∗05] to
simulate visibility and other atmospheric effects, light scat-
tering in clouds, and light reflection from translucent solids
and liquids. Clouds and translucent materials are most sim-
ilar to the scenes we examine in this paper because they are
dominated by multiple scattering. For these cases methods
based on diffusion approximations [Sta95,JMLH01] are of-
ten used. But because of the independence assumptions un-
derlying conventional radiative transport none of these meth-
ods can be used directly on discrete random media.

Our method is based on statistical path tracing and is re-
lated to the many methods in this general class, including
classic path tracing [KV84] and two-pass photon mapping
approaches [JC98,MM06]. Like the hybrid method of Li
et al. [LPT05], we use distance from the surface of a medium

to switch from path tracing near the surface to a more effi-
cient approach in the interior, but we address discrete rather
than continuous media and use an entirely different method
in the interior.

One method in the photon-mapping category, described
by Moon and Marschner [MM06], also handles light trans-
port in volumes filled with scattering objects. That method,
which is specialized to rendering hair, actually traces paths
through the geometry itself, and therefore relies on a
memory-intensive 5D photon map to smooth and cache the
multiply scattered radiance. By contrast, our new method
constructs paths efficiently using a stochastic model, with-
out considering individual scatterers, leading to a simple and
lightweight from-the-eye path tracing method.

Addressing a similar problem to ours from a very differ-
ent approach, Tong et al. [TWL∗05] presented an appear-
ance capture system for quasi-homogeneous materials based
on the idea of using dense BTF-like data to describe effects
of local geometry and texture, coupled to a diffusion model
that describes longer-scale transport. Like our method, theirs
simulates the appearance of multiple scattering as viewed
through a local geometry, but their goals and methods are
quite different.

The termdiscrete random mediumcomes from work in
the optics literature motivated by scattering problems involv-
ing rain, ice, snow, colloids, and other media with closely
spaced scatterers [GMS06,GSI∗03]. Our observations about
attenuation [IK82] and retroreflection [KI84] are well known
from experiments in this field. In these fields long wave-
lengths or small scatterers are often important, and full elec-
tromagnetic scattering analyses and computations are the
norm [TDSK98]. Cost and macroscopic scale have led us
to methods based on geometric optics instead.

At the core of our scattering method is a numerical
representation of a precomputed shell transport function,
which is stored in a factored form computed using Non-
negative Matrix Factorization [LS00], a method that has
been successfully applied to compression, representation,
and sampling of BRDFs [LRR04], illumination [LRR05],
subsurface scattering [PvBM∗06], and spatially-varying
BRDFs [LBAD∗06].

3. Theory

In this section we explain the distinction between continu-
ous and discrete random media and introduce a framework
for describing light transport in discrete random media using
precomputed scattering solutions.

3.1. Continuous and discrete random media

The radiative transport equation [Ish78] is frequently used
to model light propagation through scattering media. In its
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Figure 2: A 2D demonstration of the effects of non-independent scattering events. A circular region is filled with randomly
distributed circles; on the right, the circles are as big as fits in the space, and on the left they are a tenth that size. The
density of circles is increased on the left to match the overall mean free path of the medium. A large number of rays is traced
through this geometry, and the far-field distribution of scattered rays is shown in the center, together with the result of a
volumetric simulation. The small, well-separated circles nearly match the volumetric solution, but the closely packed circles
behave differently.

integral equation form, this standard model relates the radi-
ance in the volume to an integral of itself. The radiance at a
given pointx and directionω, denotedL(x,ω), is:

L(x,ω) =
∫ tz

0
e−σt t σs

∫
S2

fp(ω,ω′)L(y(t),ω′)dω′ dt

+e−σt tzLi(z,ω) (1)

wherey(t) is the arc-length parameterization of the ray,z is
the point at which it exits the volume, andtz is the distance
from x to z.

The first term in this equation describes the contribution
of scattering toL(x,ω). At the pointy(t) on the ray, the light
scattered in the directionω is the scattering coefficientσs

times the integral of the phase functionfp times the radiance
L in the medium aty(t) over the sphereS2. This scattered
light is attenuated over the distancet at the rateσt , known
as the attenuation coefficient. The second term describes the
contribution of transmitted light toL(x,ω): the radianceLi
entering the medium at the end of the ray is attenuated along
the length of the ray before it adds with the scattered light.
This formulation of the radiative transport equation is com-
monly used in computer graphics [CPP∗05].

This model is so widely used that we may easily for-
get that it is a heuristic approximation, based on certain as-
sumptions about what causes scattering [Ish78]. In particu-
lar, scattering is assumed to happen by interaction of light
with scattering particles that are far apart relative to their
size; and the outcome of one scattering event is assumed to
be statistically independent of other events along the path.

In many media, particularly solids, this independence as-

sumption does not hold. When scatterers are closely packed,
but still randomly arranged, they can be treated as a random
medium, in that the statistical properties of the geometry are
more important than the specific arrangement of parts. But
they do not satisfy the requirements of the radiative trans-
port model, as is discussed in Section3.2. We call this kind
of collection of scatterers a discrete random medium.

For example, marble is a discrete random medium be-
cause it is made of many separate crystals separated by dis-
continuities that create reflecting surfaces. Because these
crystals are disorganized the material acts like a scattering
medium on a large scale, but because they are close to-
gether the interactions of paths with nearby crystals are cor-
related. Other examples include soap foam, dense suspen-
sions of droplets or bubbles in liquid, and loose granular
materials like table salt or glass beads. All these materials
can be treated as random media for multiple scattering com-
putations, even though the complete geometry is required for
low-order scattering whenever the structure is visible in the
image.

3.2. Light transport in discrete random media

We can think of the radiative transport model as a stochastic
process for generating paths through the medium. Its job is to
describe the distribution of paths that a light particle might
take after passing through a particular position and direc-
tion. The description given by the radiative transport model
is: “the path goes straight for a distance drawn from an expo-
nential distribution, then turns through an angle drawn from
the phase distribution. The statistics of the rest of the path are
the same.” The three underlying assumptions are that path
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lengths are exponentially distributed, that the turning angle
is independent of the distance traveled, and that subsequent
events are independent of this one.

To describe a discrete random medium in similar terms,
we need to describe the distribution of paths that pass
through a particular point and direction, averaged over all
instances of the random geometry. This stochastic model is
a valid description of the medium in any situation where re-
placing the specific geometry with another geometry drawn
from the same statistical distribution would not change the
image. The stochastic model is not good for directly viewed
parts of the medium when individual scatterers are visible,
but it can be used for computing scattering deeper inside the
medium, where one can no longer tell from the image which
particular arrangement of scatterers is present.

However, the same kind of description as used in the con-
tinuous case, based on independent scattering events, can’t
be used. This can be illustrated by a simple example in 2D.
Figure2 shows a few paths from a simulation of scattering
in a circle filled with dielectric circles in a Poisson distribu-
tion. For small, well separated circles, the angular distribu-
tion of scattered light can be adequately predicted using a
continuous medium in which the phase function is the phase
function of scattering from one circle and the attenuation co-
efficient is computed from the size and density of the cir-
cles. However, when we instead use larger, closely packed
circles with the same mean free path, the result is differ-
ent. In the case of circles, the overall distribution is biased
more toward forward scattering, and a strong retroreflection
peak emerges.† Attenuation through closely packed circles
or spheres also follows a non-exponential decay, as shown
in Figure8.

To successfully represent closely packed scatterers as a
sequence of independent random events, we must look at
statistics of long enough subpaths that the behavior of pre-
ceding and following sections of path are sufficiently inde-
pendent.

3.3. Computing statistics of local multiple scattering

The core idea of our rendering method is to think of scatter-
ing not in terms of single events but by describing the total
effect of all scattering, including multiple scattering, within
a local, homogeneous region. For a particular starting point
x and directionω, we define theshell transport functionas
the 4D distribution over points and directions with which
random paths will exit a sphericalshell centered atx (Fig-

† This phenomenon was observed years ago in the laboratory: a
suspension of spheres in water shows enhanced retroreflection as
the density increases [KI84].
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Figure 3: Geometry of shells in 2D (left) and 3D (right). In
3D, paths start atx traveling in the directionω, and their exit
from the shell is recorded as a function ofy andω′. Because
of symmetry, the probability of exiting aty depends only on
θ1, the angle betweenω and the direction toy.

ure3).‡

Tr (x,ω;y,ω′) = p((y,ω′) | (x,ω))

This function gives the probability that a path willfirst exita
sphere of radiusr around the pointx at (y,ω′) given that it
passes through(x,ω). Considered as a function ofy andω′,
Tr is a probability density over a sphere cross a hemisphere:
Tr dAdΩ is the probability that the path exits the sphere in
the areadA with a direction in the solid angledΩ (in pro-
jected solid angle measure). The probability space forTr

is all paths through all geometries that might be generated
by the random process that describes the medium. One can
think of Tr as predicting the result of an experiment: suppose
we trace many paths through many random geometries, and
select out paths that pass throughx in the directionω, and
record the point and direction where each one first exits the
sphere of radiusr centered atx. The density of the resulting
(point, direction) pairs, with respect to surface area times
projected solid angle, will be described byTr .

The shell transport function for a particular random pro-
cess applies to any other sphere in the medium as long as
the geometry inside the sphere is generated by the same
random process. In this paper we consider homogeneous,
orientation-independent media, whose statistics are station-
ary under all translations and rotations of 3D space, so a sin-
gle shell describes any same-size sphere that fits inside the
medium, for any starting direction. Furthermore, the symme-
try with respect to rotation aroundω means that the transport
functionTr (y,ω′) depends on only three variables, not four.

In order to capture long-distance transport while also fit-
ting into the corners of the volume, we store a set of shell
transport functions for a range of radii, ranging from the
medium’s autocorrelation length up to the largest sphere that

‡ This distribution is essentially the light field [LH96] that would
exit the volume if the medium was illuminated by a narrow directed
beam and everything outside the shell surface was removed.
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fits in the volume. The resulting 4D function can answer the
question:

Of all paths that pass throughx in the directionω,
what is the density of paths, with respect to pro-
jected area and solid angle, exiting the sphere of
radiusr at the pointy in the directionω′?

Knowing the answer to this question is very valuable
in computing lighting in a medium, because it allows the
contribution of light arriving at the shell directly from the
light source to be evaluated. In discrete random media, the
shell transport representation has an additional advantage:
by rolling together all the scattering that happens over a vol-
ume, we capture the effects of correlation between subse-
quent events. As long as the shell radius is larger than the
autocorrelation distance of the geometry, the shells can be
chained together to make a valid statistical model for scat-
tering in the medium.

3.4. The shell transport equation

Using the shell transport function, we can write a new ren-
dering equation that directly relates radiance across large
distances through the medium:

L(x,ω) =
∫

Sr

∫
H

Tr (x,ω;y,ω′)L(y,ω′)dµ(ω′)dA(y)

whereSr is a sphere of radiusr centered atx, Tr is the shell
transport function,H is the hemisphere, andµ is projected
solid angle measure about the normal toSr at y. Figure3
illustrates the notation.

This equation can be used for anyr above the medium’s
autocorrelation distance, but it applies only when the
medium is homogeneous within the shell, and for this rea-
son it cannot be used too close to the surface. Therefore this
method must be coupled to another rendering equation to
provide the boundary condition (or an approximate bound-
ary condition can be used, as described in the next section).

By repeatedly drawing samples according toT, we can
generate paths through a medium using large steps when we
are in large homogeneous regions of random geometry. As
we approach the edges we are forced to take smaller and
smaller steps and eventually invoke the boundary condition.
The distribution can also be used to compute direct illumi-
nation, as described in Section4.3.

4. Method

We have developed a simple rendering algorithm based
on shell transport functions. It applies to homogeneous,
isotropic, random collections of discrete scatterers in which
multiple scattering is dominant. In a preprocess, we trace
paths through a representative part of the scene to compute
an approximation of the shell transport function. We com-
press this function using matrix factorization. During the

shadow
rays

path tracing shell tracing

shells

Figure 4: The main idea of our method. In path tracing, all
events along the path must be considered, and in a purely
specular scene a path makes no contribution if it fails to hit
the light source. With our new method, we use precomputed
shells to advance in large steps, and at each step we can
compute illumination from the source.

main rendering process, we use the stored shell transport
function both to generate paths that advance rapidly through
dense multiple scattering media, and to compute direct illu-
mination within the volume, as shown in Figure4.

4.1. Preprocessing

For the preprocessing phase we manually select a sphere
that just fits within the largest region of the homogeneous
medium. We also specify the autocorrelation distance, which
becomes the minimum shell radiusr0. A set of radii linearly
or logarithmically spaced between these two distances be-
come the shell radiiri .

We generate paths from the center of the sphere using
standard importance sampling methods so that all rays carry
the same weight. A random point and orientation(x,ω)
along each path is chosen to serve as the path’s starting frame
of reference, to avoid correlation between the paths and the
geometry, effectively tracing a different instance of the ran-
dom geometry with each path. When a path first ventures a
distanceri from x and has scattered at least once, we record
θ1 andω′, in coordinates relative toω (see Figure3), in a
data structure associated with shelli. The result is a set of
samples on each shell whose density is proportional to the
shell transport function.

After the paths have been traced, we estimate their den-
sity with respect toθ1 and ω′ using k-nearest neighbor
density estimation in the style of photon mapping. We use
(cosθ1,ω′

u,ω′
v) as the coordinates for the lookup, whereω′

u
and ω′

v are coordinates ofω′ projected to the unit square
under a mapping that preserves projected solid angle on the
hemisphere around the normal to the shell [SC97]. In this
way the computed density is naturally exactly proportional
to the shell transport function. Densities are estimated on a
coarse 3D grid for each shell.
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functionadvanceRayUsingShells(xi ,ωi):

r = max shell radius fitting aroundxi , elser0
d = min(r, distance to surface alongωi from xi)
with probability fa(d)

xi+1 = xi + r ∗ωi ; ωi+1 = ωi
else

choosey with probability pr (y) from Tr

chooseω′ with probability pr (ω′ | y) from Tr

xi+1 = y; ωi+1 = ω′ in world coordinates
if xi+1 is outside of the volume,ωi+1 = xi+1−xi

Figure 5: Pseudocode for advancing rays inside a medium
using shell transport functions.

The resulting four-dimensional array can require a consid-
erable amount of storage, depending on the number of shells
used and the coarseness of the 3D sampling grids. However,
the shell transport functions tend to vary smoothly with re-
spect to both position and direction, and shells with simi-
lar radii tend to have similar shell transport functions, mak-
ing the data highly compressible. Using Nonnegative Matrix
Factorization, we can factor our 4D array into a weighted
sum of a small number of outer products of a function of
(r,θ1) with a function ofω′, each of which is stored as a 2D
array of nonnegative samples. As a result, this factored rep-
resentation requires considerably less storage than the 4D
input array. In addition, this representation can be used to
generate pointsy for a given r according to the marginal
probability pr (y) and to generate directionsω′ according to
the conditional probabilitypr (ω′ | y), allowing us to impor-
tance sample outgoing paths from a given shell during the
path tracing process described in Section4.2. This factored
representation also permits direct evaluation of the probabil-
ities pr (y0) andpr (ω′

0 | y), which are needed to estimate the
contribution of direct illumination within the volume and are
discussed in Section4.3.

While the paths are being traced, we also record the 1D
distribution of free path lengths in a dense histogram. From
this distribution we can derive a discretized attenuation func-
tion fa(d) for the medium, which represents the probability
of a ray continuing unimpeded for a distanced within the
medium. This function can be used directly, with no need
for compression or smoothing.

As a result of this preprocess we now have a compact rep-
resentation of the shell transport functions for a set of shells
with radii that range from the autocorrelation distance of the
medium to the radius of the volume in the scene. These shell
transport functions can be used when inside the core of the
volume to provide a smooth, easily sampled representation
of the path distribution that would result from tracing paths
through spheres of discrete medium. Moreover, these func-
tions are dependent only upon the statistics of the medium,

functionadvanceRayUsingShellsWithDirect(xi ,ωi):

r = max shell radius fitting aroundxi , elser0
d = min(r, distance to surface alongωi from xi)
cast a shadow ray(xi ,ωl ) to light, hittingSr atxl .
if distance to surface alongωl from xi < r

pixel value += light sample∗pr (y = xl )
with probability fa(d)

xi+1 = xi + r ∗ωi ; ωi+1 = ωi
else

choosey with probability pr (y) from Tr

chooseω′ with probability pr (ω′ | y) from Tr

xi+1 = y; ωi+1 = ω′ in world coordinates
cast a shadow ray(xi+1,ωl ) to light
dl = distance to surface alongωl from xi+1
pixel value += light sample∗ fa(dl )∗ pr (ωl | xi+1)

if xi+1 is outside of the volume,ωi+1 = xi+1−xi

Figure 6: Pseudocode for advancing rays inside a medium
using shell transport functions, with direct illumination in-
cluded.

not on the lighting or viewing conditions or the overall shape
of the volume, meaning they could be reused in any other
scene with the same discrete random medium.

4.2. Path tracing

The simplest operation to do with the factored transport
functions is tracing paths. Once a viewing ray has scattered
a minimum number of times and has penetrated to a distance
r0 from the boundary of the medium, we switch from trac-
ing rays to generating samples from the shells as shown in
pseudocode in Figure5. To extend a path, we simply choose
the largest available shell radiusr that fits entirely within the
volume, then importance sample the next point and direction
according to the factored distribution ofTr . This process is
illustrated in Figure4.

When the path comes within a distancer0 from the bound-
ary again, the use of the shell transport functions is no longer
precisely valid, as the shell transport functions are derived
from spheres full of media. It might seem desirable at this
stage to stop using the shell functions and drop back into
standard geometric path tracing. This is not feasible, how-
ever, because if the path is restarted arbitrarily without re-
gard for the local geometry, the generated paths will not be
representative of paths that would actually occur in the dis-
crete medium. For instance, we might start a path inside a
sphere where total internal reflection will prevent its escape.

Instead, we continue to use the smallest shell, and if a
point is generated outside the boundary of the medium we
consider the path to have escaped. In this case the exiting
ray’s direction is that of the ray connecting the previous po-
sition to the escaped position. While this approximate exit

c© The Eurographics Association 2007.

236



J. T. Moon, B. Walter, & S. R. Marschner / Rendering Discrete Random Media Using Precomputed Scattering Solutions

xi

xl

ωl
ωl

ωi xi
xi + 1

ωi

light source

shell shell

medium
surface

first
shadow
ray

light source

medium
surface

second
shadow

ray

Figure 7: The two cases for direct illumination. A path from
(x,ω) could hit a given light source point by choosingxl and
escaping; or the directionωl might be chosen as the next
starting direction. The two ways of escaping the medium are
handled by two shadow rays.

strategy does introduce some error, experiments have shown
that the resulting exiting path distribution is similar on aver-
age to the correct distribution, because shell-generated paths
have scattered through large distances of medium and are
significantly randomized by the time they exit the volume.

4.3. Direct illumination

Tracing paths with shells speeds up computation by taking
large steps within a medium, but even accelerated path trac-
ing of specular discrete media is very inefficient. Since every
contributing path through the volume is part of a caustic or
highlight, there is no way to directly estimate the contribu-
tion of light sources and a traditional path tracer must just
wait for rays to hit the source, which is infrequent for small
sources. A major advantage of using the shell transport func-
tions is that they give the continuous probabilities required
for direct lighting calculations.

At each event along a shell-generated path, we would like
to estimate the probability that the next path segment will
exit the medium and hit a light source by sampling posi-
tions on the light sources. There are two ways in which shell-
generated paths can exit the medium; either by choosing not
to scatter along a path segment near the surface of the vol-
ume, or by generating a point that lies outside of the volume
with a shell transport function. We can calculate the prob-
ability of generating each of these types of exiting paths to
estimate direct illumination.

Figure6 contains the path tracing pseudocode from Fig-
ure 5 except with direct illumination calculations included.
Suppose pointxi is close to the boundary of the volume, as in
the left panel of Figure7. Pointxi+1 may be generated out-
side of the volume, in which case the path continues into the
scene in the direction normal to the last shell atxi+1. This
outgoing ray may hit a light source, and we would like to
estimate this contribution using the continuous shell trans-
port function centered at(xi ,ωi). By casting a shadow ray

(xi ,ωl ) from xi to a light source, we can find a pointxl on
the shell that may contribute this type of direct illumination.
Its contribution is then simply the intensity from the light
sample multiplied by the probability of generating the point
xl using the current shell, which ispr (y = xl ). We can read
this probability directly from the factored representation of
Tr .

Alternatively, a ray(xi+1,ωi+1) may be generated from
a shell around the ray(xi ,ωi), as in the right panel of Fig-
ure7. This path may never scatter again in the medium, and
may then hit a light source, so that contribution needs to be
accounted for here using the current shell transport function.
We cast a shadow ray(xi+1,ωl ) to find one such contribut-
ing exit direction. The probability of generating(xi+1,ωl )
using the current shell function is simplypr (ωl | xi+1), and
the probability of this contributing path exiting the medium
without scattering again is given byfa(dl ), where fa is the
attenuation function for the medium anddl is the distance
betweenxi+1 and the volume boundary in the directionωl .
The contribution of the path is thus the product of these two
probabilities and the intensity of the light sample.

By estimating both of these contributions at every shell-
generated event in paths through the medium, direct illu-
mination is fully included in this algorithm. This leads to
a smooth estimate of the multiple scattered radiance in the
scene, regardless of the size of the light sources, which is
unachievable with conventional path tracing in specular dis-
crete random media.

5. Results

The primary media used to test our algorithm were closely
packed glass spheres, Poisson distributed or physically sim-
ulated in the presence of gravity. We have shown that these
media have significant correlation between consecutive scat-
tering events, as seen in Figure2; unlike other methods based
on continuous formulations, our new shell-based algorithm
is able to account for this correlation. We present images
of test scenes that vary the shape and size of a volume of
spheres, with different types of illumination, rendered with
our new approach as well as with a standard geometric path
tracer. We validate our packed sphere results against a pho-
tograph of multiple scattering in an actual volume of glass
spheres, and finally present the results of our algorithm on a
scene full of small glass Buddha meshes.

We first preprocess each scene to produce factored shell
transport functions for the discrete random media. There are
several parameters that affect the run-time of this stage, and
we present our settings here, although most parameters seem
quite flexible. We choose 12 to 16 linearly spaced sphere
radii, and then trace 500,000 paths from the center of the
scene, which takes around 5 minutes on a single Pentium 4
based machine. We then estimate the sample density in each
shell at 50x50x25 resolution, which takes another 4 minutes.
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The resulting sampled shell transport functions are then fac-
tored using NMF with 4-6 terms, which takes 4 minutes in
MATLAB and reduces data storage from roughly 30 MB
to 250 KB. The resulting factored representation, as well as
the 1D attenuation function derived from the observed his-
togram of free path lengths, are stored on disk with the scene
description files. Figure8 shows the distribution with respect
to θ1 for a set of shells used to render packed spheres, as well
as the observed free path length distribution and the attenu-
ation function fa that was derived from it. In all cases, the
total preprocessing time is a very small fraction of the time
required to render high quality results.

Our new rendering algorithm uses shell transport func-
tions to smoothly estimate the contribution of multiple scat-
tering in discrete scattering media. Low order scattering
from scatterers near the surface of the volume is inherently
not smooth, as reflections and refractions of the light sources
in the scene are distinctly visible. In light of this, our new
results are computed as the sum of two images: an image
containing just the low order scattering, which is rendered
using standard geometric path tracing with a large number of
rays, and another image containing a much smaller number
of higher order paths generated using shell transport func-
tions. Therefore our result images and timings are each bro-
ken out into these two components. This second component
really represents the contribution of our new algorithm, as
we can produce a low-noise image of the high order scatter-
ing several orders of magnitude faster than a geometric path
tracer can.

Figure 9 shows renderings of a scene composed of
120,000 identical glass spheres, Poisson distributed within
a cubic volume. It is illuminated from above by a small rect-
angular area light source, and a rectangular blocker is posi-
tioned above the volume so as to cast a hard shadow edge
across the cube. The spheres are large enough to be seen
individually near the surface, providing visible texture and
specular reflections to the result. But high-order scattering is
visible as well, as light can be seen penetrating deep into the
cube and into the shadowed region of the volume, emerging
as a smoothly varying glow across the image.

The output from a path tracer running on a compute clus-
ter with 128 1.7 Ghz processors for 236 minutes is shown
in Figure9. A considerable amount of noise remains in the
image, particularly in the shadowed and lower regions of the
volume. The two output components from our algorithm are
displayed combined and then separately in Figure9 as well;
the low-order scattering image was computed by a standard
path tracer on the cluster in 12 minutes. The high-order scat-
tering image was produced using shell transport functions
for path generation and direct illumination, and took just
2.25 minutes to render on the cluster. The combined result
contains considerably less noise than the result of the path
tracer but was rendered over 16 times faster.

Figure10 shows photographs of two different collections
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Figure 8: Results of preprocessing a medium filled with
densely packed spheres. Top: the exit position probabilities
for different shell radii r and turning anglesθ1 (this plot
represents the marginal distribution pr (y)). Strong forward
and weaker backward scattering are both observed, in dis-
tributions that widen for larger radii. Bottom: the observed
attenuation function of the medium, along with the distribu-
tion of path segment lengths from which it is derived. Nei-
ther function has the exponential form assumed by radiative
transport.

of 1 mm diameter glass spheres illuminated by hard-edged
spotlights. At left, the spheres are arranged in a cubic vol-
ume, and a considerable amount of light can be seen spread-
ing outside of the spotlit area. At right, the spheres are ar-
ranged in just a single layer, backed by light absorbing mate-
rial, and it is clear that the amount of light spreading outside
of the lit area as well as the intensity of the lit area itself is
considerably less than when the spheres are a part of a vol-
ume. This underscores the importance of multiple scattering
in volumes of such scatterers, and demonstrates the smooth-
ness typical of high-order scattering.

We modeled a scene matching the spotlit volume scene
using measurements of the spheres and volume, and ren-
dered it with both path tracing and our new shell-based ap-
proach. The results are shown in Figure11. Due to the small
size and solid angle of the spotlight, path traced rays are very
unlikely to exit the medium and hit the light source—the im-
age at left is the result of 28.1 hours of path tracing on the
cluster, and the texture of the spheres outside of the spotlight
is still barely visible. Our method required 0.78 hours to path
trace the low-order contribution, and another 0.27 hours to
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Figure 9: Cubes of glass spheres with a hard shadow edge across the top face. Left: path traced image, in 236 minutes on a
compute cluster. Center: combined output of our algorithm, in 14.25 minutes. Top right: path traced low order scattering, in
12 minutes. Bottom right: high order scattering using shells, in 2.25 minutes. Precomputation time was 14 minutes on a single
machine.

compute the high-order scattering image. The sum of these
images is also shown in Figure11. Again we achieve far su-
perior image quality in less than 1/40 the amount of time
as the path tracer. Compared to the renderings, the spheres
in the photograph appear a bit cloudy, with broader specu-
lar highlights within the spotlight and slightly less spreading
light. We conjecture that this is due to non-zero absorption in
the scatterers and contaminants on their surfaces. However,
the spotlit region of the photograph contains approximately
65% of the intensity of the image, while the same region in
our rendering contains 57% of that image’s total intensity,
implying that our scattering simulation is a good approxi-
mation of real-world scattering behavior.

Next we produced a scene in which 100,000 glass spheres
sit piled in a bowl on a table, illuminated by a moderately
sized area light source above and to the left of the camera.
Rendered results are shown in Figure12, including the com-
ponent images from our method. The path tracer required
175 minutes to produce the image on the left, while our new
method took 11.5 minutes to produce the low-order image
and 4.2 minutes for the high-order image. Here our shell-
based approach is able to produce images comparable to the
path traced reference image in 1/11 of the time, which shows
that the new method excels even in more path tracer friendly
scenes like this one, with a larger light source compared with
our other scenes.

Finally we made a scene similar to the bowl of spheres,
but filled the bowl with 10,000 glass Buddha meshes, each
composed of 10,000 triangles. Figure13 shows the results
of our new algorithm on this very complex scene, both from
afar and when zoomed in on the edge of the bowl. The full
bowl image required 113 minutes of low order path tracing
and 21 minutes of high-order shell tracing on the cluster,

while the zoomed image took 135 minutes and 40 minutes
for low and high order images, respectively. While we could
not obtain a photograph of 10,000 miniature glass Buddhas
for comparison, we feel that our algorithm produces con-
vincingly realistic renderings of this scene, much more effi-
ciently than other existing rendering methods.

5.1. Limitations

The method we present is specialized to orientation-
independent homogeneous media and has so far only been
demonstrated on non-absorbing media, as they represent the
most difficult multiple scattering problems. Absorbing me-
dia are supported by our method without additional precom-
putation or rendering time, but extending the method to sup-
port heterogeneous or orientation-dependent media would
increase the amount of required precomputation. Addition-
ally, we ignore refraction at media boundaries when calcu-
lating direct illumination, which would be present if the host
medium surrounding the scatterers differed from the back-
ground medium.

6. Conclusion

We have presented a new framework for solving light trans-
port problems in discrete random media. Discrete random
media are different from the commonly used continuous me-
dia, because the lack of independence between events causes
transport behavior that—even when averaged over random
geometry—does not behave like a continuous medium. This
makes discrete random media difficult to model at the small
scale, based on individual scattering events, other than by
brute force approaches. The key insight of this paper is that
we can regain the independence of events if we redefine the
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Figure 10: Photographs of glass spheres. Left: a cubic volume of spheres under spot illumination. Right: a single layer of
spheres under the same conditions.

Figure 11: Renderings of the volume photographed in Figure10. Left: path traced image, 28.1 hours on a compute cluster.
Right: output of our algorithm, 1.05 hours on the cluster. Precomputation time was 10 minutes on a single machine.
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Figure 12: A bowl of 100,000 glass spheres. Left: path traced image, 175 minutes on a compute cluster. Center: combined
output of our algorithm, 15.7 minutes on the cluster. Top right: path traced low order scattering, in 11.5 minutes. Bottom right:
high order scattering using shells, in 4.2 minutes. Precomputation time was 10 minutes on a single machine.

Figure 13: Renderings of 10,000 glass Buddha meshes, each with 10,000 triangles, using our new method. Left: the full bowl of
Buddhas, 133 minutes on the cluster. Center: inset of the left edge of the bowl of Buddhas, 175 minutes on the cluster. Top right:
path traced low order scattering for the inset, in 135 minutes. Bottom right: high order scattering using shells, in 40 minutes.
Precomputation time was 17 minutes on a single machine.

problem in terms of “larger” events that encapsulate several
scattering events. We have identified a convenient and work-
able way to do this, based on shell transport functions that
encapsulate all scattering within a local volume.

Using these larger-scale primitives in path tracing has two
important advantages. First, it is faster to construct the paths
because fewer events need to be considered. Second, and no
less important, it allows the use of shadow rays, because the
shell functions can predict the probability (over random ge-
ometries) of a path going toward the light source.

An interesting feature of our results is that, after trans-
forming the scattering problem into multidimensional func-
tions that describe long-distance transport directly, the re-

sults tend to be fairly smooth, simple functions for large
radii. This suggests looking for simple representations, such
as empirical functions or continuous scattering problems that
are equivalent for sufficiently large scales.
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