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Abstract
This paper introduces segmentation-based 3D non-photorealistic rendering, in which 3D scenes are rendered as
a collection of 2D image segments. Segments abstract out unnecessary detail and provide a basis for defining new
rendering styles. These segments are computed by a spectral clustering algorithm that incorporates 3D informa-
tion, including depth, user-defined importance, and object grouping. Temporally coherent animation is created by
biasing adjacent frames to have similar segmentations. We describe algorithms for rendering segments in styles
inspired by a number of hand-painted images.

1. Introduction

Non-photorealistic rendering (NPR) algorithms allow us to
create new forms of artistic 3D rendering and to explore the
nature of art. An important element in painting and draw-
ing is the partitioning of an image into segments, or dis-
tinct image regions. Although one does not normally inter-
pret artistic images in this way, if we do view them looking
for segments, the degree to which they can be found is strik-
ing. For example, Figures 2 and 3 show images with distinct
artistic styles, but in each it is possible to identify some no-
tion of segments, where distinct objects or texture have been
grouped together. In general, each segment corresponds to
grouping scene elements into a single 2D image region, and
each segment is drawn as a single unit. Notice, for example,
how in Figure 2, paint builds up near the segment boundaries
that we have manually identified, as the artist carefully con-
trols the strokes in those regions. Furthermore, these strokes
near segment boundaries tend to follow the contours of those
boundaries. Segments can be drawn with a single watercolor
wash, a group of paint strokes, a solid color, or a variety of
other techniques. Depending on the artistic style, segmen-
tation performs several vital functions. First, segmentation
helps abstract out unnecessary details, thereby clarifying the
content of a scene. Second, segments can create a sense of
2D design, independent of the goal of expressing 3D con-
tent. Third, a good segmentation makes drawing easier, since
each segment can be drawn with a single stroke or wash. It
is not always straightforward to describe what makes a good
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segmentation, since it is highly dependent on many factors,
including viewing position, scene geometry, the relative im-
portance of different objects, and the artistic style. Segments
are view-dependent, as illustrated by the change in detail
of distant objects as they move closer to the viewer in the
frames of hand-painted animation in Figure 3. We do not
claim that most artists consciously segment images. Instead,
we argue that, conscious or not, some form of segmenta-
tion is present in many artistic styles, and that segmentation
provides an important tool for understanding and mimicking
artistic styles.

For these reasons, a general approach to segmentation
for automatic non-photorealistic rendering could be a valu-
able tool for designing new and interesting artistic styles.
In this paper, we introduce segmentation-based 3D non-
photorealistic rendering and animation, in which 3D scenes
are rendered using segments as a fundamental primitive.
To render a scene, our system computes a segmentation
of the image plane into distinct segments; each segment is
then rendered independently of the others. We show that us-
ing segments allows us to define a variety of NPR styles,
with similar stylization and abstraction to those in hand-
made images. We also describe a technique for producing
temporally-coherent segmentations in order to create artistic
animation.

Although previous authors have computed segmentations
for image-based NPR, these systems produced rendering
styles very closely tied to the choice of image-processing
algorithms. In contrast, we consider rendering of 3D scenes,
which frees us from the difficult problem of extracting scene
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Figure 1: Left: A 3D scene. Center: A segmentation of the scene. Right: A painterly style applied to the segmented scene.

properties from a photograph—our system makes use of ge-
ometric information and user annotations to produce better
segmentations. This system uses a general approach to seg-
mentation, taking into account the rich information available
in a 3D scene and allowing a user to weight the effect of
these features on the outcome of the segmentation process.

Our approach is as follows. For each frame, we first com-
pute colors, depths, normals, and object IDs for each pixel by
standard 3D rendering. We then segment the image based on
these features, using a spectral clustering algorithm (Section
3). Temporal coherence in animation is encouraged by seg-
menting adjacent frames together. Given a segmentation, we
can then render the scene in a variety of styles that explicitly
make use of the segments (Section 4). Figure 1 shows such
a segmentation of a 3D scene and a corresponding artistic
style.

2. Related work

Some authors have used a notion of a user-specified segmen-
tation in NPR. In some of the earliest NPR work, the ren-
dering style is set manually for different objects [WS94] or
image regions [CAS∗97, SWHS97]. These systems require
some form of user intervention to produce each image. In
contrast, our system requires a user to author a 3D scene
and rendering style, but can then automatically render ar-
bitrary new views once segmentation parameters have been
selected.

Fixed segmentations have been applied in object-space
for 3D scenes. For example, 3D scenes in [CAS∗97] are
rendered with each object matted independently. The sys-
tem described in [KHRO01] requires a user to group ob-
jects and specify stylistic parameters for the groups. Luft
and Deussen [LD06] manually assign objects or groups of
objects to segments to be rendered in a watercolor style. Us-
ing a fixed, object-based segmentation is computationally in-
expensive, but it does not directly capture view-dependent
effects. Performing segmentation in image-space, however,
allows segments to dynamically abstract away or highlight
detail in a view-dependent fashion.

Figure 2: Left: Detail of Wayne Thiebaud’s “Around the
Cake” (Oil on canvas, 1962). Right: For purposes of illustra-
tion, we have manually identified segments within the paint-
ing, each of which roughly corresponds to a distinct set of
brush stroke orientations, sizes, and/or colors.

A number of authors have employed automatic image
segmentation algorithms for NPR in 2D. DeCarlo and San-
tella [DS02] create abstracted image representations based
on image segmentation and eye-tracking data; each segment
is smoothed and rendered as a solid color with occasional
edge strokes. Gooch et al. [GCS02] segment an image into
very small regions and fit a single paint stroke to each re-
gion. Bangham et al. [BGH03] render each segment of a
photograph with a solid color. Bousseau et al. [BKTS06]
also apply their watercolor style to segmented photographs.
Similar approaches have been applied to processing video
sequences: in each case, the video sequence is broken into
space-time segments, and each segment is rendered with a
simple solid-color rendering style [WXSC04, CRH05]. All
of these papers produced very high-quality, appealing re-
sults; however, most of the effort has focused on coupling the
result of segmentation to a single rendering style. Our work
is different from these previous works in that we present a
general segmentation algorithm for rendering 3D scenes, in-
corporating 3D geometric information, and we show how a
variety of rendering styles can be built from a segmentation
of a scene.

Many rendering techniques have been developed for ren-
dering 3D scenes, such as contour rendering [ST90], pen-
and-ink illustration [WS94], and painting [Mei96]. These
systems are largely complementary to ours: these papers
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Figure 3: Sequence of frames from Georges Schwizgebel’s animation “L’Homme sans Ombre” (oil and acrylic on cells, 2004),
showing a range of detail levels. Buildings in the distance are illustrated as simple boxes, but with much more detail in close-up.

mainly describe various rendering styles for 3D, whereas we
describe techniques for automatically assigning styles to dif-
ferent parts of a scene.

Our work is directly related to NPR methods that per-
form adaptive simplification of a 3D rendering, for exam-
ple, varying detail as a function of object depth or image
density [KLK∗00, KMN∗99, WS94]. A related approach is
to remove strokes to match target tones or density [DS00,
GDS04, WM04]. These systems are designed for simplify-
ing specific styles of stroke renderings based on local crite-
ria such as depth and tone. In contrast, our system performs
global simplification of an image and provides a basis for a
variety of rendering styles. These systems are complemen-
tary to ours and could possibly be combined with it. For ex-
ample, adaptive stroke rendering could be applied to each
image region based on the rendering style for that segment.

Our work bears superficial similarity to Level-of-Detail
(LOD) techniques, but the goals are fundamentally differ-
ent. LOD methods seek to improve performance by reduc-
ing scene complexity without changing the appearance of
the scene. In contrast, our goal is to modify the visual ap-
pearance of the scene in an artistic manner, without regard
to performance.

3. Segmenting 3D renderings

In this section, we describe a graph-based procedure for seg-
menting an image of a 3D rendering.

There are many existing image segmentation algorithms,
but not all of them are suitable for our purposes. For
our application, the method must be automatic (including
determining the number of segments), must produce rea-
sonable segmentations for complex images, must produce
temporally-coherent segmentations, and must also be able
to take into account object groupings, e.g., the fact that two
pixels are or are not part of the same object. Additionally,
we would like the method to be reasonably fast. One well-
known segmentation algorithm is k-means, which is limited
to producing roughly spherical segments, and cannot pro-
duce the curved or narrow segments observed in Figures 2
and 3. Furthermore, the number of segments must be speci-
fied in advance. The Mean Shift algorithm [CM02] can pro-
duce more complex segmentations and determine the num-
ber of segments, but it is not clear how to take grouping

information into account, or how to enforce temporal co-
herence without performing segmentation as a batch pro-
cess, as in [WXSC04]. Min-cut algorithms can produce very
good segmentations on images [BK04] but require signif-
icant user guidance. We also experimented with local seg-
mentation heuristics, but they yielded poor results for com-
plex scenes.

Our segmentation is derived from the Normalized Cuts
algorithm [SM00], a graph-based spectral method. Normal-
ized Cuts optimizes a clustering metric that simultaneously
minimizes a measure of similarity between different seg-
ments and maximizes similarity within them, while requir-
ing the user to only set a single segmentation threshold pa-
rameter once the weighting function that specifies the sim-
ilarity between pixels is fixed. Being a graph-based algo-
rithm for segmentation, Normalized Cuts does not require
an explicit feature space, so the weighting function can be
specified directly to give one more intuitive control over the
meaning of segmentation parameters. We introduce exten-
sions to the Normalized Cuts algorithm that provide for tem-
poral coherence and faster computation.

3.1. Graphs from 3D scenes

We begin by constructing an undirected graph G = (V,E)
from the image, with nodes V and edges E. There is one
graph node for each pixel in the image, and edges are intro-
duced between nodes corresponding to adjacent pixels. Edge
weight is determined by pixel affinity—the more strongly-
related two pixels are, the greater the weight on their shared
edge. To produce the affinities, we first render several ref-
erence images: a color image of the scene, a depth map, a
normal map, an object ID reference image, and an impor-
tance map. For the importance map, each object in the scene
may be optionally tagged (in advance) as being more or less
“important.” The importance map is generated by rendering
the scene with each object shaded in proportion to its im-
portance, that is, an unimportant element is rendered with a
darker shade than a more important element.

Given these reference images, we can define a feature vec-
tor fi for each pixel i:

fi =

(

wcci,wnni,
wz

zi +β

)T

(1)
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where ci = (ri,gi,bi)
T is the color of the pixel, ni is the

camera-space normal at the pixel, zi is the depth of the pixel,
all wc, wn, and wz are user-defined weights, and β is a user-
defined bias on depth. Expressing depth in the feature vec-
tor as 1/(zi + β) treats objects that are far from the viewer
as having similar depth, even though the absolute difference
in depth between them may be greater than that of objects
closer to the viewer. This models how artists often group
distant objects together.

The weight on the edge between graph nodes i and j is:

w(i, j) = exp
(

−
(

‖ fi − f j‖
2 + c

)

σi j

)

. (2)

The constant c expresses the fact that no two adjacent pixels
are exactly the same, since they occupy different positions
in 2D. The scaling parameter σi j consists of three terms:
σi j = oi jgi jsi j . The weight oi j is used to separate differ-
ent objects in the scene—if pixels pi and p j belong to dif-
ferent objects, then oi j is set to wo > 1; if the object IDs
are the same, then oi j = 1. This has the effect of weaken-
ing edges connecting nodes between two different objects
in the scene. Group IDs are used with gi j in a similar fash-
ion, where objects may be tagged with group IDs by a user.
If pi and p j belong to different groups, gi j = wg > 1, oth-
erwise gi j = 1. For example, this allows us to specify that
a group of bushes should be segmented together before be-
ing segmented with a nearby object that happens to also be
green. Finally, the parameter si j is used to emphasize im-
portant objects by encouraging them to be segmented and to
prevent unimportant objects from being overly segmented.
Each pixel pi has an associated importance value si ∈ [0,1],
as determined from the importance map. The weight is de-
fined as si j =

(

max(si,s j)
)ws , where ws ≥ 1 is the weight for

importance. Hence, an edge between two nodes with small
si and s j will be strengthened, but there will be little or no
effect on the edge if either of the nodes are considered im-
portant.

3.2. Normalized Cuts

We now review the Normalized Cuts algorithm [SM00]. Let
A and B be any two disjoint sets of nodes in some graph G.
The cut between A and B is defined as

cut(A,B) = ∑
u∈A,v∈B

w(u,v). (3)

Similarly, the association between A and V is

assoc(A,V ) = ∑
u∈A,t∈V

w(u, t). (4)

The normalized cut between A and B is

Ncut(A,B) =
cut(A,B)

assoc(A,V )
+

cut(A,B)

assoc(B,V )
(5)

The image segmentation problem is to partition the graph
into segments A and B in a manner that minimizes
Ncut(A,B).

Figure 4: Condensing a graph for Normalized Cuts. Left:
A graph produced from a rendering of two colored trian-
gles. Each node in the graph corresponds to a pixel, and
edges connect adjacent pixels. Right: A corresponding con-
densed graph. Each condensed node has a self-edge with
weight equal to the sum of the weights between its nodes in
the original graph. The weight between the two condensed
nodes is equal to the sum of the weights across the triangle
boundary in the original graph.

Finding the optimal normalized cut is NP-complete, but
an approximate solution can be obtained as follows. Let x be
a vector with N elements, each corresponding to one node
in G, where xi = 1 if node i is in segment A, and xi = −1
otherwise. Let D be the degree matrix, a diagonal N × N
matrix with Dii = ∑ j w(i, j), and let W be the symmetric
weight matrix, Wi j = w(i, j). With Ŵ = D−W, it can then
be shown that

Ncut(x) =
(1+x)T Ŵ(1+x)

4k1T D1
+

(1−x)T Ŵ(1−x)

4(1− k)1T D1
(6)

where k =
(

∑xi>0 Dii
)

/(∑i Dii) and 1 is an N × 1 vector of
ones. Moreover, it can be shown that, if we relax the prob-
lem to allow elements of x to take on any real value, Ncut(x)
is minimized by the eigenvector corresponding to the second
smallest eigenvalue of the matrix D−1/2ŴD−1/2. This solu-
tion can be converted into a graph partition by thresholding
x, so that values above the threshold are set to 1 and the rest
are set to −1. The threshold is chosen to minimize Ncut(x)
by exhaustively searching through all possible N −1 values.

To segment a graph into more than two partitions, the
same Normalized Cut algorithm is recursively applied to
each segment. The process stops when Ncut(x) exceeds a
user-defined threshold, τn, and no additional cuts are made.

3.3. Condensing graphs

The Normalized Cuts algorithm is very slow for even
moderately-sized graphs, since it requires computing eigen-
vectors of a very large matrix. In order to get faster results,
we apply Normalized Cuts to a reduced graph G′ in which
each node may correspond to many pixels. This graph is pro-
duced by combining all pairs of graph nodes sharing an edge
with a weight larger than a user-defined threshold, τc; the re-
maining nodes comprise the nodes of G′. By decreasing this
threshold, a user can obtain faster performance, although at
the cost of a possible undersegmentation.
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A naïve approach to computing the edges of this con-
densed graph would be to set the weight of the new edges
of G′ to be the sum of the weights of their corresponding
edges of G. Unfortunately, this gives a poor approximation
to clustering the original graph with Normalized Cuts. For
example, consider an image made up of a red triangle and
an adjacent blue triangle (Figure 4). In general, the optimal
normalized cut for this image should separate the two tri-
angles. However, suppose we condensed this graph to two
nodes. Each node would correspond to a triangle, with a sin-
gle condensed edge with weight w between them, where w is
equal to the sum of the weights of the edges between the two
triangles. Then, there is one possible cut, and it can easily be
shown that the cost of this cut is 2, regardless of the original
edge weights. Since this cost is the maximum possible cost
of a cut, the edge will never be cut, as it exceeds any sensible
user-specified value for the cut threshold, τn.

To address this, we augment G′ by adding an edge from
every condensed node u′ to itself. The weight of this edge is
equal to the sum of the edge weights collapsed on u′:

w(u′,u′) = ∑
u,v∈S(u′)

w(u,v), (7)

where S(u′) is the set of nodes in G that correspond to
u′ ∈ G′. We can then apply Normalized Cuts to G′. Since
every node in G corresponds to one node in G′, a cut of
G′ can be directly converted to a cut of G. Moreover, it is
straightforward to show that the condensing operation has
the following desirable property: every cut of G′ has the
same cost as the corresponding cut of G (Appendix A). That
is, segmenting a condensed graph is equivalent to segment-
ing its original graph under the constraint that condensed
edges cannot be cut.

In our implementation, we compute the weights for the
edges of the full graph every time a new frame is rendered.
The condensed graph is then constructed by visiting each
node in the graph once and performing a breadth-first search
along edges above the condensing threshold for nodes to
add to the current condensed node. Finally, the weights on
the condensed edges are summed from their corresponding
edges in the full graph, and the condensed graph is ready to
be segmented.

3.4. Temporal coherence

When rendering individual frames of an animation sequence
independently, there is no guarantee that consecutive frames
will yield consistent segmentations. We motivate a solution
to this problem as follows. Suppose that we were segmenting
an entire video sequence at once. In addition to constructing
a graph for each frame, we would introduce graph edges be-
tween nodes in adjacent frames, possibly scaled by a user-
specified weight wk. In our algorithm, we only segment one
frame at a time, so we can discard graph nodes for all future
frames. Moreover, since the segmentation for the previous

t – 1 t t – 1 t

Figure 5: Segmentation coherency. Left: The previous
frame’s graph nodes at t − 1 are grouped into coherency
nodes based on their segmentation (inside the dashed cir-
cles). Right: The coherency nodes in the previous frame are
assigned edges (the blue lines) to nodes in the current frame
t with weights scaled by wk, and the combined graph is seg-
mented.

frame is already known, we can collapse the subgraph for
the previous frame into one node per segment while discard-
ing older frames.

We call these condensed nodes corresponding to segments
from the previous frame coherency nodes (illustrated in Fig-
ure 5). Introducing coherency nodes has the effect of seg-
menting adjacent frames together, under the constraint that
the segmentation from the previous frame cannot be modi-
fied. Consequently, the segmentation for the current frame is
biased to be similar to the previous frame.

In practice, we link together pixels at the same positions
in image-space between frames. This works well for larger
segments, but thin or fast moving segments might share few
edges between frames. An approach to handling such details
might be to associate areas of geometry with specific seg-
ments and track these areas between frames in object-space,
however, the computational cost of associating pixels with
points on geometry would be high.

4. Rendering styles

In this section, we demonstrate several artistic styles based
on segmentation. There are a large number of segmentation
parameters to tune, but they were selected to have an intu-
itive meaning in adjusting the composition of a scene. We
found that setting parameters to achieve a reasonable seg-
mentation for a single image is typically easy; sometimes
using only a subset of the available parameters is sufficient
for producing an acceptable segmentation. It can be more
difficult to find a set of parameters that works well over an
entire animation due to the need to tune the coherency, but
once a set of parameters is found, the segmentation tends to
work quite well. It is necessary to initialize a slightly differ-
ent set of segmentation parameters for the first frame than
for subsequent frames of an animation, since segment sizes
should be smaller due to the lack of coherency nodes. Pa-
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c wc wn wz β wo wg ws wk τc τn

Still life 0.25 8 1 2 1 2 2 - - 0.15 0.005
Forest (initial frame) 0.25 3 - 50 0 2 5 6 - 0.75 0.015

Forest (subsequent frames) 0.25 3 - 50 0 3 5 6 0.2 0.75 0.08
Mug (fewer segments) 0.25 - - - - - 3 - - 0.75 0.5
Mug (more segments) 0.25 1 0.5 - - - 2 - - 0.75 0.5

Table 1: Parameters used to generate segmentations for Figures 6-9. A dash indicates that a parameter’s associated reference
image was not rendered to compute the segmentation. The forest scene images were rendered as frames of an animation with
coherency, and all other images were rendered independently.

rameters used to generate all of the figures are given in Table
1.

Next, we discuss some of the specific rendering styles
based on the result of a segmentation of a 3D scene.

Toon. A basic style is a cartoon rendering style, with toon
shading and increased brightness and saturation applied to
a scene. The segmentation is used to reduce contour den-
sity, rendering object contours only near the boundaries of
the segments in image space. Contours within a segment are
not drawn, eliminating unnecessary clutter. For example, the
tree line in Figure 6 contains many contour edges that can be
distracting. The set of boundary-contours is determined by
sampling segment IDs in the image plane. This pixel sam-
pling method does lead to a small number of contours being
incorrectly labeled, but the errors are typically minor. Seg-
ments may be solidly shaded with the average color of the
pixels inside of them, or a user may chose to only solidly
shade segments with a large average depth. As segments get
closer, they may be faded into their standard toon shading to
reveal more detail.

Painted strokes. We also demonstrate a painterly rendering
technique (Figure 7) capable of producing effects similar to
those of Figures 2 and 3. In this style, each segment is filled
with long, curved paint strokes based on the underlying ref-
erence color, similar to those of [Her98], until a target stroke
density is met. Strokes are placed by selecting seed points
randomly in the image plane, and rejecting those that fall in
a region that is too dense. The length of a stroke is traced out
from each seed, as in [JL97]. A distance field is computed for
each segment using the algorithm described in [FH04], and
points within a user-set distance from a segment boundary
follow the isocontours of this distance field. Strokes further
from a segment boundary follow a path based on the normals
of the 3D geometry, as follows. Let n be the camera-space
normal at a pixel. Then the direction of a stroke at that pixel
is set to (max(|ny|, |nz|/2),nx)

T . Figure 7 shows the result-
ing stroke directions on one scene. This causes strokes to
carefully follow segment boundaries, as in Figure 2. Strokes
are terminated when they reach a maximum length, turn by
an angle greater than a threshold, or enter an area where the
difference in color is greater than a threshold. After a suf-
ficient number of strokes are selected for rendering, addi-

Figure 6: A toon style. Top: A forest scene with no seg-
mentation. Note how the contours are cluttered in the back-
ground where there are many trees. Center: Segmentation is
applied to group together many of the background elements.
Contours are only drawn near segment boundaries, result-
ing in a cleaner image. Bottom: Detail of the background
without segmentation (left) and with segmentation (right).
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Figure 7: The use of segmentation for a painterly style. Top:
Only surface normals determine stroke direction, and length
or differences in color terminate strokes. Bottom: Strokes
near segment boundaries follow their path and strokes do
not cross into adjacent segments.

tional passes may be made to render thinner strokes in gaps
that are difficult to fill with broad strokes. Strokes may op-
tionally be rendered using Hertzmann’s relief texturing al-
gorithm [Her02], with greater changes in relief normals near
segment boundaries, to simulate a build up of paint charac-
terized by Figure 2, as in Figure 1. For coherency in anima-
tion we use the approach described in [Mei96]; seed points
are projected onto the models to be tracked in 3D between
frames. At each frame, seed points furthest from the viewer
are removed in areas where the stroke density is too high,
and new strokes are created in areas where the density is too
low.

Stippling. A simple stippled style is demonstrated as well
(Figure 8). This style is rendered by drawing more points
in darker regions and near segment boundaries. A Perlin
noise texture is first generated, with each value in [0,1] cor-
responding to a point where a stippled point might be drawn.
A function of the reference image darkness dr ∈ [0,1] and
the average segment darkness ds ∈ [0,1] is computed at that
pixel and scaled according to the distance δ to the near-
est segment boundary. If the resulting value is greater than

the value of the noise at the same pixel, a point is ren-
dered. In our implementation, the function is defined as f =
(c + αrdr + αsds)b1/(δ2 + b2)

b3 , where c = 0.3, αr = 0.5,
αs = 0.2, b1 = 2.75, b2 = 256, and b3 = 0.25. Frame to
frame coherency is achieved by using the same noise texture
throughout an animation. This technique is fast and avoids
points “sticking” to the 3D geometry.

The rendering times for our algorithms depend highly on
the scene complexity and the rendering style. Reference im-
ages and segmentations for the still life in Figure 7 with
around 600 condensed nodes requires about 20 seconds per
frame, on average, using a 3.4GHz Intel Xeon. The painting
style takes an additional 40 seconds to compute, or 15 sec-
onds for the toon style with contour reduction (most of this
time is spent computing object space contours on the scene).
However, the forest scene in Figure 6 can take as little as 5
seconds to render and segment over 100 condensed nodes,
with another 15 seconds to draw paint strokes or 5 seconds
to compute segment-boundary contours. Regardless of scene
content, the stippled style requires less than one third of a
second to render. Segmentation time is increased by com-
plex scenes that result in a high number of condensed nodes,
slowing down the eigenvalue decomposition. The painterly
style can run slower with detailed models, since projecting
the stroke seed points onto the 3D geometry for tracking in
animation requires a large number of rays to be cast. Simi-
larly, the toon style depends primarily on the time to com-
pute view-dependent contours on the scene.

5. Discussion and future work

In this paper, we have introduced algorithms for creating
segmented renderings of 3D scenes. This system produces
image and video representations that abstract out distant and
unimportant scene detail in a compelling and effective man-
ner. Moreover, segmentation provides a basis for various
artistic styles, as shown in Figure 9.

An important problem is to perform segment-based ren-
dering in real-time. The time to compute the 613,280 edge
weights alone takes about a quarter of a second for a
640x480 image, using only a single reference image. This
does not take into account the overhead of computing the
segmentation and rendering the final artistic style. An ap-
proach might be to compute the segmentation using refer-
ence images at a much lower resolution and propagating the
segmentation to the final, larger rendered image. This would
also reduce memory requirements, but the memory needed
to store the reference images and graphs is not a significant
problem, with buffer sizes being fixed other than the con-
densed graph, which is usually small. Furthermore, such an
approximation will reduce the quality of the segmentation.
One possibility is to design 3D culling and level-of-detail al-
gorithms appropriate for segmented scenes. This would be
desirable, since one of the main applications we envision for
segmentation is in creating artistic virtual worlds. Modern
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Figure 8: The effect of different segmentations on the stip-
pled style. Top: Only four segments are used–the pencils,
mug, table, and background. Bottom: More segments are
generated, such as the shadow on the table, resulting in
much more focus on the outline of the shadow.

programmable graphics hardware might also be used to con-
struct the graph’s matrix and perform the segmentation in
much less time.

Our paper gives a taste of the rendering styles enabled
by segmentation, but we expect that a wide variety of
other styles can also be achieved. For example, it has been
demonstrated that watercolor works well with segmenta-
tion [CAS∗97,BKTS06,LD06], and styles such as batik and
woodblock printing tend to have a segmented appearance
that would fit well into our system.

Another open problem is to create a good interface for de-
signing artistic styles that depend on a segmentation. Seg-
ments would fit very naturally into the procedural NPR
shaders of Grabli et al. [GTDS04] as a fundamental primi-
tive. A more challenging problem is to specify segmentation-
based styles with a WYSIWYG interface [KMM∗02].
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Appendix A: Condensed Normalized Cuts

Our method of constructing a condensed graph produces
Normalized Cut values equal to the corresponding cuts on
the full graph, as follows. Let G′ = (V ′,E′) be a condensed
graph that represents a graph G = (V,E). Each condensed
node u′ in V ′ corresponds a set of nodes in V , S(u′). Suppose
we have arbitrary partitions A′ and B′ of G′. Then, there are
corresponding partitions A and B of G such that u ∈ A if and
only if u∈ S(u′) and u′ ∈ A′. We use the notation S(A′) to re-
fer to the union of S(u′), for all u′ ∈ A′. Hence, u ∈ S(u′) and
u′ ∈ A′ implies that u ∈ S(A′). With weights on condensed
edges in G′ equal to the sum of the weights of their corre-
sponding set of edges in G, we have cut(A′,B′) = cut(A,B).
This can be shown by the following:

cut(A′,B′) = ∑
u′∈A′,v′∈B′

w(u′,v′) (8)

= ∑
u′∈A′,v′∈B′

(

∑
u∈S(u′),v∈S(v′)

w(u,v)

)

(9)

= ∑
u∈S(A′),v∈S(B′)

w(u,v) (10)

= ∑
u∈A,v∈B

w(u,v) (11)

= cut(A,B). (12)

Note that assoc(A,V ) = assoc(A,A) + cut(A,B), and
assoc(A′,V ′) = assoc(A′,A′) + cut(A′,B′). Thus, we need
only show that assoc(A,A) and assoc(A′,A′) are equivalent:

assoc(A′,A′) = ∑
u′ 6=v′∈A′

w(u′,v′)+ ∑
u′∈A′

w(u′,u′) (13)

= ∑
u′ 6=v′∈A′

(

∑
u∈S(u′),v∈S(v′)

w(u,v)

)

+

∑
u′∈A′

(

∑
u,v∈S(u′)

w(u,v)

)

(14)

= ∑
u,v∈S(A′)

w(u,v) (15)

= ∑
u,v∈A

w(u,v) (16)

= assoc(A,A). (17)

As shown in [Kol05], the spectral optimization algorithm
still applies to this condensed weight matrix with non-zeros
on the diagonal.
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Figure 9: Simple scenes rendered in various artistic styles based on 2D segments. From top to bottom: Scene segmentation,
toon shading with segment-boundary contours, painterly strokes without relief texturing, and stippling.
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