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Abstract
In this paper, we present a video processing algorithm for texture replacement of moving garments in monocular
video recordings. We use a color-coded pattern which encodes texture coordinates within a local neighborhood in
order to determine the geometric deformation of the texture. A time-coherent texture interpolation is obtained by
the use of 3D radial basis functions. Shading maps are determined with a surface reconstruction technique and
applied to new textures which replace the color pattern in the video sequence. Our method enables exchanging
fabric pattern designs of garments worn by actors as a video post-processing step.

Categories and Subject Descriptors (according to ACM CCS): I.4.1 [Image Processing and Computer Vision]: Dig-
itization and Image Capture I.3.7 [Computer Graphics]: Animation

1. Introduction

Movie production has always consisted of elaborate post-
recording work. Movie cutting has long been the only means
to alter movie content after recording. Even so, the cut has
great influence on the perception (and success) of a movie
and probably constitutes the artistically demanding chal-
lenge to any movie director. Today’s digital image process-
ing tools have greatly advanced movie editing capabilities.
However, considerable, time-consuming manual interaction
is still necessary if the content of a recorded scene is to be
altered long after all actors have gone home.

Our method addresses a specific problem of movie post-
production. We propose to realistically alter garment ap-
pearance and limit manual interaction to segmentation of
the garment region. Our method could also be useful for
virtual fashion presentation in e-commerce. Current roto-
scoping software allows tracking edges or single features in
videos for tasks like matting of CGI objects, selective filter-
ing and creating cartoon animation from video [AHSS04].
For our purpose, however, an automatic approach is needed
which can track several hundred texture features in paral-
lel while handling occlusions automatically. Manual texture
editing is in this case almost infeasible. We propose such
a system to enable texture replacement with correct texture
deformation and lighting.

Figure 1: Input frame (left) and texture replacement result
(right). Notice how shading adds an important visual cue.

Our paper is organized as follows. In Section 2 we de-
scribe related work in this area. Section 3 gives an overview
of our system. In Section 4-7 we detail our proposed method.
Section 8 presents results. We end in Section 9 by drawing
conclusions on our work and we mention ideas for future
work.

2. Related Work

Several authors have worked on texture replacement in still
images. [TLR01] propose to replace near-regular texture pat-
terns in a plane by learning a statistical texture model and
lighting distributions from a sample image. [OCDD01] use
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texture replacement in their image editing system. Depth in-
formation is used to generate foreshortening distortions of
the texture, and lighting changes are also extracted. Image
Analogy [HJO∗01] and Image Quilting [EF01] show tex-
ture transfer effects which preserve local appearance of the
texture but do not model texture distortion and lighting ef-
fects explicitly. [LLH04] present an approach which builds
on user-assisted lattice extraction for near-regular texture
(e.g. a brick wall). A PCA analysis of the obtained geomet-
ric and lighting deformation fields allows to control texture
regularity. Textureshop [FH04a] introduces the idea of us-
ing shape-from-shading to recover a rough set of normals
for a non-textured surface in the image and using these nor-
mals to introduce distortion in the texture synthesis pro-
cess. User interaction is required to fix normal recovery er-
rors. [ZFGH05] present a faster system with improved ob-
ject selection, texture synthesis and shape-from-shading al-
gorithms. [LF04] use a shape-from-texture algorithm to re-
cover the shape and irradiance map for textured cloth to re-
place the texture.

Our work is also related to cloth motion capture where the
goal is to capture 3D motion. Approaches for general tex-
tures [PH03, SM04] and for color-coded patterns [GKB03,
SSK∗05] have been proposed. While periodic and general
patterns can cause serious correspondence problems, color-
coded patterns are able to avoid this problem. These meth-
ods, however, all rely on synchronized multi-video footage
of the garment. Multi-camera systems are mainly used in re-
search labs so a monocular method would open up a vari-
ety of new applications (films, TV etc.). A monocular cloth
capture method is described in [TB02, TH04]. They obtain
reconstructions of non-rigid surfaces by tracking sparse fea-
ture sets. While the results are impressive for single camera
reconstruction, the features are too sparse for a detailed rep-
resentation of cloth folds.

The major difficulty of replacing texture in video
streams consists of achieving temporal coherence. A single-
frame method would inevitably lead to flickering artifacts.
[PLF05b] have proposed an algorithm for real-time non-
rigid surface detection for arbitrary textures which detects a
surface by per frame feature matching in conjunction with
a deformable mesh model. Being a single frame method,
however, temporal coherence is not considered. They ex-
tend this work in [PLF05a] by taking shading effects into ac-
count. [BR04] augment cloth and paper with texture and in-
terpolated lighting by using augmented reality square mark-
ers. Recently [WF06] have retextured special clothing with
color patterns and natural clothing with a limited number
of colors. Their irradiance estimation exploits the property
that pixels can be classified into few color classes. Tex-
ture replacement for video data maintaining temporal coher-
ence has been attempted only recently [Lin05, LL06]. The
method is based on user-assisted lattice extraction for near-
regular texture on cloth. The lattice structure is modeled by
a Markov Random Field and tracked with an affine Lucas-

Kanade algorithm. Temporal coherence of the texture de-
formation and shading maps is achieved by spatiotemporal
smoothing as a post-processing step.

Determining reflectance and shading at each scene point
is also referred to as the intrinsic image problem. The goal
is to decompose an input image into two images, one con-
taining the shading information and the other the reflectance
information. [OCDD01] make the simplifying assumption
that large-scale luminance variations are due to the lighting,
while small-scale variations are due to texture. The texture
features are blurred with an adaptive bilateral filter. A texture
image with uniform lighting is obtained by dividing the ini-
tial image by the blurred image. The computer vision litera-
ture contains several algorithms to solve the general intrinsic
image problem. [TFA05] use machine learning for classify-
ing image pixels while [FDL04] rely on a projection of color
onto gray images minimizing image entropy. In [FDB92] the
shading field is recovered by removing reflectance changes
in the gradient image. Integrating the manipulated gradient
field by solving a Poisson equation leads to the shading im-
age.

Our approach is most closely related to the work by
[Lin05]. Their method is based on near-regular textures
while we recover garment shape information by using a spe-
cial pattern printed on the fabric. Our method is robust to
deformations, lighting changes and feature occlusions and is
reinitialized at every frame. Tracking is fully automated and
does not require any user interaction as in [Lin05]. Know-
ing the garment’s texture, we have more a-priori information
available to avoid ambiguous correspondence matches. This
enables to robustly cope also with fast motion. Seam detec-
tion and interpolation are fully automated. By encoding tex-
ture coordinates in our color code, our method can also deal
with folding topologies where parts of the fabric are hidden
by self-occlusion. Due to ambiguous correspondences this is
difficult for methods based on periodic textures [Lin05].

In the following we

• propose a novel processing pipeline suitable for monocu-
lar video footage

• apply 3D spatiotemporal RBF approximation as a general
approach to ensure temporal coherence, and we

• determine shading maps with thin-plate interpolation.

As the result, we are able to manipulate and change garment
texture as a post-processing step.

3. Overview and Segmentation

Figure 2 shows an overview of our system. For proper tex-
ture replacement, we need a segmentation of the images into
garment and background sections. For this purpose we use
the rotoscoping software by [AHSS04] for contour track-
ing which requires the user to specify contour curves at key
frames. In general, any other video segmentation method
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Figure 2: Overview of the processing steps of our method.

[LSS05, WBC∗05] which delivers alpha mattes could also
be used. These methods all require some amount of user
interaction. This preprocessing step yields boundary curves
which are converted into a binary mask for the foreground
where all further processing is done. Next, we perform im-
age processing for feature classification. We use garments
with a custom-designed color-coded pattern. The pattern
uses five different colors and is constructed in a way that
allows to identify each dot in the pattern by its 3x3 neigh-
borhood. We use the single-frame method from [SSK∗05]
which identifies the dots by their local neighborhood with a
region-growing approach. Texture coordinates can then au-
tomatically be assigned to each dot. The results of the la-
beling algorithm are complemented by a feature tracker and
fed into a texture interpolation algorithm which determines a
time-coherent image texture from the feature positions. For
realistic texture shading we determine the shading image.
The new texture is rendered into each video image by multi-
plying texture color with the corresponding shading image.

4. Image Processing

We convert the input video images into HSV color space in
order to increase color recognition robustness against illu-
mination changes. For color classification, we only use hue
and learn the five color classes from an example image. The
feature pixels are identified with an adaptive thresholding al-
gorithm [GW02] in the luminance image. From these pixel
positions we collect the hue values and fit a Gaussian distri-
bution to each color class (Gaussian mixture model GMM)
with a statistical technique [FH04b]. First, we run k-means
with random initial centers on the input data and apply the
EM algorithm for determining GMMs [HTF01]. As the EM
algorithm can stagnate in local minima this procedure is

restarted 10 times and the result with the best log-likelihood
is kept as the final result. After this step, the pixels seg-
mented by the adaptive thresholding method can be clas-
sified into five color classes. For this purpose we compute
maximum-likelihood decision boundaries from the Gaussian
parameters µi,σi of each color class. The color-classified im-
age is labeled with a connected component algorithm for ev-
ery color separately [HS92]. The obtained features are fil-
tered by an upper and lower bound for their area. Finally,
for every feature the center of mass is calculated. We now
have 2D image coordinates of a number of color dots on the
garment.

5. Feature Recognition and Tracking

We use two different pieces of apparel for our experiments,
a dress and a skirt. A priori known is the pattern matrix M
which contains a color label for each dot in the pattern. We
identify the outline of the individual cloth panels (three for
the dress and two for the skirt, Fig. 3) in the pattern ma-
trix manually and identify also the boundary dots adjacent to
the seams. Panel boundaries are interactively identified only
once per garment. The algorithm proposed in [SSK∗05] la-
bels the features obtained in the image processing step with
their indices i, j in the pattern matrix M. In a first step, a
seed dot with its 3x3 neighborhood and adjacent dots are
found by region growing. The direction of search is directed
by the local principal directions u,v of the pattern lattice. The
obtained indices i, j yield the texture coordinates for the fea-
ture dots. Details of the algorithm and the construction of the
color code can be found in [SSK∗05]. The original feature
labeling algorithm is a robust single-frame method which
does not use tracking history. Its performance deteriorates
at oblique surface angles and requires also that a seed with a
3x3 neighborhood can be identified for each connected tex-
ture component in the image. In order to increase the num-
ber of recognized features we apply a feature tracker to fill
in missing features after labeling [LK81, Int01]. We track
the features known from labeling with image patches and
set the patch size to the mean distance of neighboring fea-
tures. In order to handle feature occlusions between a pair
of images, we run the tracker forward in time and track the
obtained position backward. As occlusion test, we compute
the deviation from the original feature position. If it is below
some threshold (1 pixel in our experiments), the feature was
tracked successfully and is added to the list of recognized
features. Feature tracking is applied to the whole video se-
quence forward and backward in time in order to take feature
occlusions and disocclusions into account.

6. Texture Coordinate Interpolation

Our garments consist of several panels (Fig. 3). Texture in-
terpolation is done separately for every panel so our method
is also applicable to several pieces of clothing at the same
time. In the following we assume that we have no tears in the
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Figure 3: Our dress has three panels: one front panel and
two back panels (top). The skirt has a front and a back panel
(bottom).

fabric, i.e. the panels are continuous. In views where several
panels are visible in the image, we have to find the seams be-
tween the panels in order to determine the panel segments.
We determine the visible seams in the image by identify-
ing dots at the panel boundaries which are a priori known
from the pattern matrix. As additional information we know
which boundary dots of different panels are adjacent to each
other at the seams. The boundary dots lie inside the panel,
not on the seam and do not define a smooth boundary due to
the discrete nature of the pattern. A smooth boundary poly-
line is obtained by interpolating a new seam point between
each pair of adjacent boundary dots. We use membrane in-
terpolation ∆ f = 0 where ∆ is the Laplacian operator and
fix the position of the boundary dots. In order to obtain a
smooth polyline, we use a weighted Laplacian stencil in the
corresponding linear system which assigns a higher weight
to neighboring seam points. The seam points define an esti-
mate of the panel seam which cannot be determined from the
images directly (Fig. 4). The seam polylines are used to cut
out a mask for each visible panel from the foreground mask.

Our goal is a temporally smooth parametrization of the
garment region with texture coordinates. Near the silhou-
ettes, the feature trajectories are not stable enough (due to
failure of detection and occlusions). Smoothing individual
trajectories would not be helpful in this case. Therefore we
integrate the smoothing into the interpolation function. Ra-
dial Basis Functions (RBF) are commonly used for scat-
tered data interpolation problems like reconstructing sur-
faces from point clouds [CBC∗01]. A trivariate scalar RBF

Figure 4: Boundary dots (white) and interpolated seam
boundary (red) necessary for texture replacement of sepa-
rate garment panels.

is defined by a set of centers ci ∈ R
3 and weights wi ∈ R

as [CBC∗01]

f (x) = p(x)+∑
i

wi ·φ(x− ci) (1)

where φ is the basis function and p(x) is a polynomial of low
degree. Since basis functions with local support do not pro-
vide the same degree of extrapolation and hole filling capa-
bilities as functions of global support [CBC∗01], we use the
global basis function φ(x) = ‖x‖ where ‖ �‖ is the Euclidean
norm, and a linear polynomial p. The resulting surface is a
biharmonic thin-plate spline. For interpolating texture coor-
dinates (uv)T ∈ R

2 we use a vector-valued RBF

f(x) = p(x)+∑
i

wi ·φ(x− ci) (2)

with f : R
3 →R

2 and wi ∈R
2, p∈R

2 are vectors. f is defined
in spatiotemporal 3D space (x,y, t) for temporally smooth
texture interpolation. This means we have to add a time co-
ordinate to the obtained feature positions x, y. The difference
tn+1 − tn of adjacent video frames is set to the mean dis-
tance of neighboring features in frame n in order to make the
method adaptive to feature scale. We now use RBF approxi-
mation (also known as spline smoothing [Wah90, CBC∗01])
by solving

(

Φ−8NπρI P
PT 0

)(

wi
qi

)

=

(

f
0

)

(3)

where Φi j = φ(ci−cj), Pi j = p j(ci) for the polynomial basis
{p1, p2, p3} = {1,x,y}. The qi are polynomial coefficients,
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N is the number of centers and I is the identity matrix. ρ is
a parameter that determines the trade-off between smooth-
ness of the surface and fidelity to the data. This parameter is
found empirically. We use ρ = 0.005 for all examples (the
smallest amount of smoothing which leads to reasonable re-
sults). The resulting matrix is dense due to the global na-
ture of φ and can be solved directly for our problem size of
N ≤ 1000 centers. RBF approximation is used for overlap-
ping time windows of three video frames to ensure temporal
smoothness. The texture coordinates are interpolated for ev-
ery pixel in the foreground mask of the middle frame. Larger
time windows do not improve the results significantly.

7. Shading Maps

The goal of the shading algorithm is to remove the re-
flectance contribution of the color dots from the luminance
images I while preserving shading effects. We interpolate
the dot regions with smooth thin-plate splines in order to
get a homogeneous shading map. The dot pixels identified
by adaptive thresholding from Section 4 are used as input
for shading map computation. We assume here that the dot
edges have a higher contrast than shadow edges on the gar-
ment which is the case in practice. The detected dots are di-
lated with a circle-shaped morphological structure element
[GW02] in order to remove the dots reliably (Fig. 5b). The
inverse image yields a mask which is multiplied with the im-
age I. We interpolate the deleted dot regions (Fig. 5c) by us-
ing a surface reconstruction method for height fields [Ter88].
An approximating thin-plate surface is fitted to the lumi-
nance values of the dark garment background.

This is done my minimizing the energy functional

E =

∫∫

Ω

α(x,y)
2

(I − J)2 +(J2
xx +2J2

xy + J2
yy)dxdy (4)

where J is the thin-plate surface interpolant, Ω is a bounding
box of the segmented garment region and α(x,y) a weight
term for the interpolation constraint. We set α = 0 in dot
regions (interpolation) and α = 0.1 for the remaining pix-
els (approximation) which results in homogeneous shading
maps. The corresponding Euler-Lagrange equation is

α(I − J)+∆2J = 0 (5)

where ∆2 denotes the Bilaplacian operator. Eq. 5 is dis-
cretized with finite elements on the pixel grid and uses a 5x5
stencil for the Bilaplacian. A bounding box of the foreground
mask is computed and Eq. 5 is solved on this rectangle. At
the bounding box borders not all 24 neighbors might exist so
we recompute the stencil for the existing neighbors [Ter88].
This leads to a sparse linear system Ax = b where the num-
ber of variables equals the number of reconstructed pixels.
We solve it in MATLAB with a Cholesky-based solver for
systems up to n = 400.000 variables. The single-frame shad-
ing maps show temporal fluctuations. Therefore we filter the
shading maps with a temporal Gaussian filter per pixel (win-
dow size 3-5 frames). In order to get an accurate result for

fast image motion, we build pixel correspondences between
different frames by using the feature correspondences ob-
tained during feature tracking. The features deliver a sparse
set of flow vectors (we compute forward flow to the next
frame and backward flow to the previous frame). This set is
interpolated per pixel by fitting a 2D thin-plate smoothing
spline [Wah90] with α = 10. The obtained flow fields are
used as spatial offsets during temporal filtering.

The obtained shading maps are applied to the new texture
during rendering by multiplication per-texel. For the texture
lookup we use bilinear interpolation. We adapt the maps to
a higher albedo by rescaling. The maps are rescaled by di-
viding with a reference white value which is obtained by
recording a reference image with maximum brightness of the
fabric. Note that this is correct for fabric with Lambertian re-
flectance only. Fortunately, our fabric is close to Lambertian.
Our tracking method does not handle non-Lambertian fab-
rics very well as specularities would compromise the color
recognition algorithm. As final step we apply a gamma cor-
rection to the rendered images.

8. Results

We record our sequences with an Imperx 1004C vision cam-
era (1004x1004 pixels) at 25 frames per second with raw
output in order to avoid compression artifacts. We put the
camera on a tripod. However, our method is not limited to
static camera position and works just as well for hand-held
camera sequences. The camera is color-calibrated with a ref-
erence color checker and a linear regression model in or-
der to obtain a good separation of the garments’ dot col-
ors for feature classification. For the garments we use a
cotton fabric with a custom-printed color pattern using a
medium gray tone as background. A high-brightness con-
trast between the color dots and background is needed for
robust feature recognition (adaptive thresholding), whereas
the shading algorithm needs a reasonably bright fabric, so
we meet both requirements with a medium gray tone. The
dot spacing is 3.2 cm and the diameter is 2.1 cm which is a
compromise between high sampling rate of the surface and
sufficient dot size in the image when capturing a whole per-
son. Digital printing makes it easy to design such a pattern
and send it to a company specialized on fabric printing. The
garments are manufactured by a professional tailor for the
recorded subject.

All experiments are performed on a Pentium IV 3.2 GHz
with 2 GB RAM. The average computation time for the au-
tomatic processing steps (Fig. 2) in our unoptimized MAT-
LAB implementation for a 1004x1004 video frame is 60 sec-
onds (45 seconds for the shading map). Selected algorithms
are implemented in C++: labeling, RBF evaluation, bilinear
texture lookup and optical flow. Fig. 6 shows the accuracy
of our texture interpolation algorithm. The corners of the
overlayed checkerboard texture lie on the geometric centers
of the color dots, although we need to smooth the texture
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(a) (b) (c) (d)

Figure 5: Input image (a), detected dots (b), removed dots (c), and shading map (d). Although the input contains strong shadow
edges, the interpolation results are satisfactorily close to the input frame (a). The video reveals a faint shadow from a secondary
light source.

Figure 6: Accuracy of texture distortion visualized as over-
layed checkerboard texture.

Figure 7: Shadows are preserved in our renderings. They
appear softer because we regularize the solution. The
shadow contrast is higher than in Fig. 5d because the shad-
ing map is rescaled during rendering.

maps. At the garment borders, the parameterization is less
accurate because fewer features are detected (Fig. 6, right
example). The temporal smoothness of the interpolation can
be assessed in the accompanying video. We obtain realistic
shading maps which preserve shadows and the shading of

cloth folds (Fig. 5, 7, 8, 9, 10, 11). While our pattern can-
not capture fine folds, the shading maps contain this infor-
mation. The catwalk sequence shows also the robustness of
feature recognition against lighting changes (the garment is
rather dark in the beginning of the sequence). Two sequences
show fast jumping motion to validate the feature tracking
ability.

One limitation of our method is that video segmentation
still requires user interaction. This is a notoriously difficult
problem (e.g. due to shadows adjacent to the garment bor-
ders) where most automatic approaches require manual cor-
rection for an accurate result. Segmentation is not the main
focus of our work. Our RBF model handles discontinuities
at self-occlusions only in an approximate way (the discon-
tinuities are smoothed). For very loose garments the results
might not be visually satisfactory in this case. In our experi-
ments self-occlusion due to folding is barely observable be-
cause the dots are quite far apart. Self-occlusions between
different garment panels however (e.g. between two legs for
trousers) are not a problem as the RBF fitting is done sepa-
rately for every panel. In our experience the texture compres-
sion effect at discontinuities is not very noticeable. Our tex-
ture maps require spatiotemporal smoothing at the garment
borders because feature detection is affected by foreshort-
ening, especially when the overall feature size is small (full
person capture). This is an inevitable drawback of a monoc-
ular method. Still, our proposed method is able to replace
the fabric texture with realistic deformation and lighting for
a wide range of real-world scenes. It can robustly deal with
deformation, fast motion, lighting changes and feature oc-
clusion.

9. Conclusion and Future Work

We have presented a system for automatic texture replace-
ment of color-coded garments. Visually convincing replace-
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Figure 8: Replacement results with different patterns.

ment results are obtained by using 3D spatiotemporal RBF
approximation. We also show that our shading maps can
capture small details at cloth folds. A single-view method
is more challenging than a multi-view approach but opens
up new applications. Currently, the performance bottleneck
in our implementation is the computation of the shading
maps. Using faster solvers (e.g. multigrid) would improve
our system’s time and memory consumption. Changing the
reflectance properties of the fabric and relighting are also in-
teresting topics for future research.
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