
Eurographics Symposium on Rendering (2006)
Tomas Akenine-Möller and Wolfgang Heidrich (Editors)

Near Optimal Hierarchical Culling:
Performance Driven Use of Hardware Occlusion Queries

Michael Guthe†, Ákos Balázs‡, and Reinhard Klein§

Institute for Computer Science II, Universität Bonn, Germany

Abstract
The most efficient general occlusion culling techniques are based on hardware accelerated occlusion queries.
Although in many cases these techniques can considerably improve performance, they may still reduce efficiency
compared to simple view frustum culling, especially in the case of low depth complexity. This prevented the broad
use of occlusion culling in most commercial applications. In this paper we present a new conservative method
to solve this problem, where the main idea is to use a statistical model describing the occlusion probability for
each occlusion query in order to reduce the number of wasted queries which are the reason for the reduction
in rendering speed. We also describe an abstract parameterized model for the graphics hardware performance.
The parameters are easily measurable at startup and thus the model can be adapted to the graphics hardware in
use. Combining this model with the estimated occlusion probability our method is able to achieve a near optimal
scheduling of the occlusion queries. The implementation of the algorithm is straightforward and it can be easily
integrated in existing real-time rendering packages based on common hierarchical data structures.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Hidden line/surface re-
moval I.3.3 [Computer Graphics]: Display algorithms

1. Introduction

In many graphics applications, such as first-person com-
puter games and architectural walkthroughs, the user navi-
gates through a complex virtual environment. Often the user
can only see a relatively small fraction of the scene. There-
fore, the goal of culling techniques is to quickly determine
a so-called potentially visible set (PVS), which is the visible
fraction of all objects or a superset of it. While the relatively
simple view frustum culling only removes geometry that is
projected outside the viewport, occlusion culling techniques
also try to identify geometry that is occluded and therefore
does not contribute to the final image.

If scenes with high depth complexity are rendered, remov-
ing invisible geometry can significantly increase the render-
ing performance. On the other hand, if the depth complexity
is moderate as in Figure 1 or even lower, most occlusion

† e-mail:guthe@cs.uni-bonn.de
‡ e-mail:edhellon@cs.uni-bonn.de
§ e-mail:rk@cs.uni-bonn.de

Figure 1: Left to right / top down: a) Moderately occluded
view of the power plant model; b) bounding boxes of suc-
cessful (light grey) and wasted (black) occlusion queries us-
ing [BWPP04]; c) our method on a GeForce 5900; d) on a
Radeon 9800. Leaves rendered without query are dark grey.

culling techniques need more time to determine visibility
than what can be saved by not rendering occluded geometry.

c© The Eurographics Association 2006.

http://www.eg.org
http://diglib.eg.org

M. Guthe, Á. Balázs, & R. Klein / Near Optimal Hierarchical Culling

This problem prevented the broad use of occlusion culling
techniques in most consumer applications so far since it of-
ten leads to a significant performance loss in such situations.
The only exception are precomputed visibility methods but
these are restricted to static closed environments and thus
their usability is limited. To come up with a solution that
takes advantage of occlusion culling in case of high depth
complexity and avoids culling in situations with low depth
complexity, an adaptable algorithm is needed.

The most common approach for efficient occlusion culling
with hardware based occlusion queries is to organize the
scene in a spatial hierarchy. For rendering, this hierarchy is
traversed in a front to back manner. During the traversal a
decision has to be made for each node whether to test for
occlusion or not. Current GPUs also allow to perform occlu-
sion queries parallel to the traversal. In this case a second de-
cision is required whether to wait for the result of the query,
or to directly continue traversing. To optimize the rendering
performance, the algorithm has to adapt to the current depth
complexity and graphics hardware for both decisions.

2. Related Work

With the demand for rendering scenes of ever increasing
complexity, there have been a number of visibility culling
methods developed in the last decade. A comprehensive sur-
vey of visibility culling methods was presented by Cohen-
Or et al. [COCSD03]. Another recent survey of Bittner and
Wonka [BW03] discusses visibility culling in a broader con-
text of other visibility problems. According to the domain of
visibility computation, the different methods can be catego-
rized into from-point and from-region visibility algorithms.
From-region algorithms (e.g. cells and portals [TS91]) com-
pute a PVS in an offline preprocessing step, while from-point
algorithms are applied online for each particular viewpoint
(e.g. [GKM93, HMC∗97, ZMHH97, KS01]). While a vari-
ant of hierarchical z-buffers [GKM93] is used inside recent
graphics cards to reduce the internal memory transfer, hard-
ware occlusion queries [NA01] are supported via the graph-
ics API to allow applications to determine how many frag-
ments of a rendering operation pass the z-buffer test. To de-
cide if an object is occluded, the application can render its
bounding box with an occlusion query and without frame
buffer writing. If the number of fragments returned by the
query is zero, the bounding box is not visible and thus the
object is occluded.

2.1. Hardware occlusion queries

The main advantage of hardware occlusion queries is their
generality and the fact that they do not require any pre-
computations. However, due to the required read-back of
information from the graphics card and the long graphics
pipeline, the queries introduce a high latency if the applica-
tion waits for the result. This latency can be hidden by ex-

ploiting the possibility of issuing several occlusion queries in
parallel and using their results later. During traversal two de-
cisions have to be made for each node: first, whether to issue
a query and second, if a query is issued, to wait for the result
before continuing traversal or to traverse the subtree immedi-
ately. If a query is issued for each node of the hierarchy and
the traversal algorithm waits for the results before travers-
ing the subtree, the method degenerates into a breadth-first
traversal, as almost certainly all queries of a level can be is-
sued before the first one is finished and thus many occlusion
queries are performed before anything is rendered. In order
to avoid such problems Bittner et al. [BWPP04] proposed
to use temporal coherence to guide these two decisions. A
query is issued either if the node was not visible in the last
frame or is a leaf node in order to determine its visibility for
the next frame. If a query is issued for a previously invisi-
ble node, traversal of the subtree is delayed until the result is
available. Previously visible leaf nodes are immediately ren-
dered. In this scheme, occlusion queries are only performed
along a front of termination nodes in the hierarchy consisting
of previously invisible inner nodes and visible leaf nodes.

Although a significant speedup was achieved compared to
the naïve approach, two major problems were not solved.
The first problem is that each occlusion query needs some
time, so if too many of them are wasted, the performance is
reduced compared to view frustum culling alone. The main
source of wasted queries is the fact that all visible leaf nodes
need to be queried to determine the visibility state of all
nodes in the hierarchy. In addition, many queries that are per-
formed for inner nodes which were frustum culled in the pre-
vious frame are wasted as well. Assuming that these nodes
are visible is however even worse, since then all of their
leaves would be rendered with an additional query for each.
The second problem is that the performance gain of occlu-
sions is delayed by one frame, since previously visible leaf
nodes are directly rendered and the query results are only
used in the next frame. The first problem was already par-
tially addressed by Staneker et al. [SBS04] who proposed a
method to save queries for objects that are certainly visible.
A variety of software tests, like occupancy maps or software
occlusion tests with reduced resolution, are used to deter-
mine if the object covers screen areas that are still empty.
However, when using current graphics hardware these rela-
tively costly software tests are unfortunately almost always
slower than the hardware occlusion query itself.

2.2. Graphics hardware parametrization

To achieve a given constant frame rate in scenes with highly
varying complexity, several methods to estimate the ren-
dering time have been proposed starting with the work of
Funkhouser and Séquin [FS93]. Considering the fact that
an upper bound of the rendering time is required for a con-
stant frame rate, Wimmer and Wonka [WW03] modified this
method and also adapted it to the characteristics of current

c© The Eurographics Association 2006.

208

M. Guthe, Á. Balázs, & R. Klein / Near Optimal Hierarchical Culling

graphics hardware. Although their method is very efficient
in achieving a constant frame rate, it cannot be used to guide
the decision of whether rendering with occlusion culling is
better than rendering without occlusion culling, as in this
case an approximate time is required rather than an upper
bound. In addition, neither of the above mentioned two al-
gorithms is able to give time estimations for hardware occlu-
sion queries which are different from those for the rendering
of the bounding box.

3. Analytical Models

To achieve a near optimal scheduling of occlusion queries,
both the outcome of each query and the times required for
rendering and for performing the query itself must be es-
timated. This estimation is based on two analytical models
which we derive in the following using the definitions in Ta-
ble 1 and 2 respectively.

3.1. Occlusion probability

For a set of objects {Oi}0≤i<n ordered with increasing dis-
tance from the viewer, we define a probability function
pcov(Oi) that describes the chance of the object Oi to be
completely covered. The probability function is based on
the fraction of screen pixels cscr(Oi) covered by all objects
closer to the viewer than Oi, which is the fraction of pixels
in front of the current object Oi. Note that this function does
not exploit temporal coherence yet, which will be addressed
later. Since the probability estimation should not become the
bottleneck of the algorithm, we derive pcov(Oi) from this
single coverage value and assume Oi to be randomly placed
on the screen. A theoretically better solution would be to use
a grid, but in practice the overhead for this proved to be too
high already at very low grid resolutions. Now let cscr(Oi) be
known, c(Oi) the screen fraction covered by Oi, then the av-
erage fraction of visible pixels of Oi is (1− cscr(Oi))c(Oi).
This gives an expected value for cscr(Oi+1) of

cscr(Oi+1) = cscr(Oi)+(1− cscr(Oi))c(Oi).

Since calculating the exact value of c(Oi) would require an
occlusion query by itself, we use an approximation based on
the fraction of pixels cbb(Oi) covered by the bounding box of
Oi, which can be calculated efficiently. Let Rcov(Oi) be the
average ratio of cbb(Oi) to c(Oi), then we can approximate

c(Oi)≈ Rcov(Oi)cbb(Oi).

Then let Abb(Oi) be the surface area of the bounding box,
d(Oi) the distance between the bounding box of Oi and the
viewer, w and h the width and height of the screen in pix-
els, and θ the vertical field of view. Then the screen fraction
cbb(Oi) covered by the bounding box is approximated by:

cbb ≈

(
1

d(Oi)
√w

h 2tan θ

2

)2
Abb(Oi)

6
.

poccl(Oi) probability of Oi being occluded
pcov(Oi) probability of Oi being covered
cscr(Oi) fraction of pixels covered by all objects clo-

ser to the viewer than Oi
c(Oi) fraction of pixels covered by Oi
cbb(Oi) fraction of pixels covered by the bounding

box of Oi

Table 1: Symbols used for the probability estimation.

To estimate the ratio Rcov(Oi), we assume that Oi is
sphere-like. Given the surface area, the radius of the
sphere is r2 = 1/4π A(Oi). After projection, the covered area
Apro j(Oi) of the object is πr2 = 1/4 A(Oi). If we assume that
the bounding box is viewed from the front, it covers the area
of 1/6 Abb after projection, which means that

Rcov(Oi)≈
3
2

A(Oi)
Abb(Oi)

.

Based on cscr(Oi), we derive a model for the probability
pcov(Oi) that all pixels of Oi are already covered. For this
model we assume that both the pixels covered by Oi and
those covered by O0 to Oi−1 form rectangles with the screen
aspect ratio, as shown in Figure 2.

c (O)bb i

c (O)scr i

c (O)bb i

c (O)scr i

Figure 2: Model used to estimate the coverage probability.

Again, let Oi have a random position on screen leading to

pcov(Oi)=

{(√
cscr(Oi)−

√
cbb(Oi)

)2
: cbb(Oi)<cscr(Oi)

0 : cbb(Oi)≥cscr(Oi)
.

Figure 3 shows how well the estimated probability fits to a
measured distribution for randomly placed objects. The mea-
surement was performed by drawing 10,000 random ellip-
soids distributed in the view frustum. This was repeated 100
times to obtain the average visibility probability. Note that
the noise is due to the low number of samples for some com-
binations of cscr(Oi) and cbb(Oi), as especially large bound-
ing boxes with high screen coverage are rare in this setting.

In addition to the coverage probability pcov(Oi), temporal
coherence is exploited by using the occlusion status of Oi in
the last frame to estimate the occlusion probability poccl(Oi)

c© The Eurographics Association 2006.

209

M. Guthe, Á. Balázs, & R. Klein / Near Optimal Hierarchical Culling

0.0
0.2

0.4
0.6

0.8
1.0

0.0
0.1

0.2
0.3

0.0

0.2

0.4

0.6

0.8

1.0

pcov(Oi)

cscr(Oi) cbb(Oi)

0.0
0.2

0.4
0.6

0.8
1.0

0.0
0.1

0.2
0.3

0.0

0.2

0.4

0.6

0.8

1.0

pcov(Oi)

cscr(Oi) cbb(Oi)

Figure 3: Comparison of estimated and measured pcov(Oi)
against estimated cscr(Oi) and cbb(Oi).

in the current frame. First of all, if Oi was occluded, we as-
sume that it will be occluded again. Second, if Oi was vis-
ible, we need to consider the probability that it will be oc-
cluded for two consecutive frames (pcov(Oi)

2) to exploit co-
herence. In addition, visible objects tend to remain visible
and thus poccl(Oi) will be lower than pcov(Oi). Finally, if Oi
was frustum culled, we cannot exploit coherency so we use
pcov(Oi) directly. Therefore, the occlusion probability is:

poccl(Oi) =


1
2 pcov(Oi)

2 : prev. visible
pcov(Oi) : prev. outside view frustum

1 : prev. occluded

3.2. Render and query time

In addition to po(Oi), the times required for rendering tr(Oi)
and for the query to(Oi) need to be known.

3.2.1. Parameterizing the hardware

The rendering pipeline of today’s hardware is ba-
sically divided into three parallel stages, the setup
stage, the vertex stage and the pixel/fragment stage.
When several parallel rendering calls are issued, the
slowest of these stages determines the performance,
i.e. tr(Oi) = max(ts

r (Oi), tv
r (Oi), t f

r (Oi)). Note that this for-
mula is a combination of the ones used by Funkhouser and
Séquin [FS93] and by Wimmer and Wonka [WW03], since
Funkhouser and Séquin considered the pipelining but of
course not the architectural changes of graphics hardware in
the last decade. Wimmer and Wonka neglected the pipelin-
ing as they required a reliable upper bound for the rendering
time and the introduced overestimation increased the robust-
ness of their method.

To estimate the rendering and occlusion query times, the
time required for each of the three graphics pipeline stages
needs to be estimated. Since tv

r (Oi) depends linearly on
the number of triangles N4(Oi) and t f

r (Oi) linearly on the
number of processed fragments f (Oi), the time required
for processing Oi during these stages can be calculated
from the material dependent times per triangle T4r (m j)
and per fragment T f

r (m j) with tv
r (Oi) = N4(Oi)T

4
r (m j)

and t f
r (Oi) = fo(Oi)T

f
r (m j). For occlusion queries, the es-

timation of tv
o(Oi) is not required, since the bounding vol-

umes have a constant low number of triangles which can
be accounted for within T s

o . Instead of the number of frag-
ments f (Oi) covered by the object, the number of fragments
fbb(Oi) covered by the bounding box of Oi is required to es-
timate t f

o (Oi). As it is also possible to issue a query along
with the rendering itself to use the occlusion status of Oi in
the next frame, the overhead T o

o compared to rendering with-
out a query must also be measured. Table 2 summarizes the
constant characteristic times required for the rendering and
occlusion time estimations.

T s
r (m j) setup time per rendering call

T4r (m j) time per rendered triangle
T f

r (m j) time per shaded fragment
T s

o setup time per occlusion query
T f

o time per fragment during occlusion query
T l

o maximum occlusion query latency
T o

o overhead time for a query during rendering

Table 2: Hardware dependent parameters required for ren-
dering and occlusion time estimation.

While N4(Oi) is constant, f (Oi) and fbb(Oi) change with
every frame. As f (Oi) cannot be calculated exactly without
the rasterization of Oi, we derive it from co(Oi). To account
for the possible overdraw during rasterization, we presume
two fragments per pixel and thus f (Oi) = 2wh · co(Oi) and
fbb(Oi) = wh · cbb(Oi).

3.2.2. Parameter measurement

To measure these characteristic times two triangle meshes
are used: one with a high number of triangles (O+) to de-
termine T4r (m j), and one with a low number (O−) to mea-
sure T s

r (m j) and T f
r (m j). For T4r (m j) and T s

r (m j), O+ and
O− are rendered pixel-sized and for the per fragment per-
formance, O− is rendered filling the whole screen. The setup
and per fragment times for the occlusion query are measured
analogously. These measurements are required for each ma-
terial, but materials can be clustered into groups of similar
shader complexity and thus the total number of such groups
is usually very low in practice.

4. Rendering Algorithm

Since all occlusion culling techniques are based on exploit-
ing spatial coherence, first a hierarchy must be generated
for a given scene. The type of hierarchy depends on the
requirements of the application, e.g. whether the scene is
mainly static or fully dynamic. In our tests we used the p-
HBVO algorithm [MBH∗01] since our models were static.
As required for any hardware occlusion culling technique,
this scene hierarchy is traversed in a front to back order,
while issuing occlusion queries. Note that sorting and tra-
versal do not slow down rendering, since they are performed

c© The Eurographics Association 2006.

210

M. Guthe, Á. Balázs, & R. Klein / Near Optimal Hierarchical Culling

on the otherwise almost idle CPU. In contrast to Bittner et
al. [BWPP04] we consider the characteristics of the graph-
ics hardware and perform a cost/benefit balancing to amor-
tize the cost of wasted queries over time. In addition, we do
not only issue queries for termination nodes, but consider
nodes on all levels of the hierarchy to find the optimal bal-
ance between query time and expected speedup. This also
means that unlike the CHC method multiple queries can be
issued for a subtree in case previous queries did not succeed
but subsequent queries are still reasonable according to the
heuristic. Additionally it also allows using the query result
for a performance gain already in the current frame. Figure 4
shows the pseudo-code for the traversal algorithm.

DistanceQueue.Insert(Root);
while(¬DistanceQueue.Empty() ∨ ¬QueryQueue.Empty())

while(¬QueryQueue.Empty() ∧ FirstQueryFinished())
Node = QueryQueue.Pop();
Node.SetVisible(GetQueryResult(Node));
if(Node.IsVisible())

if(Node.IsLeaf())
SetParentsVisible(Node);

if(Node.WaitForResult())
Process(Node);

else if(¬Node.WaitForResult())
QueryQueue.Remove(Node.Children());
DistanceQueue.Remove(Node.Children());

if(¬DistanceQueue.Empty())
Node = DistanceQueue.Pop();
Node.SetVisible(false);
if(InsideViewFrustum(Node))

if(QueryReasonable(Node))
IssueQuery(Node);
QueryQueue.Insert(Node);
if(¬Node.WaitForResult())

Process(Node);
else

Process(Node);

Process(NodeType Node)
if(Node.IsLeaf())

Render(Node);
else

DistanceQueue.Insert(Node.Children());

Figure 4: Pseudo-code of the traversal method. Differences
to the CHC algorithm are emphasized.

The test whether an occlusion query is reasonable now de-
pends on two factors: a) the performance tradeoff between
query cost and expected benefit (Section 4.1); b) the cost and
benefit of the current node compared to that of its children
(Section 4.2). If a query for an inner node is issued, the query
latency must be considered in the decision whether the child
nodes are added to the traversal queue immediately or only
when the current node is found to be visible (Section 4.3).

4.1. Performance tradeoff

Issuing an occlusion query for a node Hi is clearly not rea-
sonable if rendering the node is faster, i.e. tr(Hi) < to(Hi),
so queries are never issued for such nodes. While nodes that
were previously occluded are always queried, an additional
cost/benefit balancing is performed for nodes that were pre-
viously visible by issuing an occlusion query only after the
node has been rendered without querying for n frames, such
that the cost C(Hi) for the occlusion query is compensated
by the benefit B(Hi) of a possible occlusion. This leads to
the condition, that C(Hi) ≤ nB(Hi). Since the benefit is ac-
cumulated over all levels of the hierarchy while the cost is
per level, the benefit needs to be evenly distributed among all
levels by dividing it with the depth of the hierarchy. Given
the total number of hierarchy nodes Nh, we obtain:

C(Hi) = to(Hi)
B(Hi) = po(Hi)(tr(Hi)− to(Hi))/ log2(Nh +1).

If Hi was removed by the view frustum culling in the last
frame, the estimated processing time te(Hi) including an
occlusion query is te(Hi) = to(Hi) + (1− po(Hi))tr(Hi). If
te(Hi) < tr(Hi), a query is issued, otherwise Hi is treated as
if it was tested and found visible in the current frame.

4.2. Granularity

Let Hj0 , ...,Hjn ∈ S(Hi) be the children of the currently
processed node, Hi. Since during traversal the view frustum
culling and distance calculation are also performed for Hjk ,
tr(Hjk) and to(Hjk) can be estimated as well. We use this pos-
sibility to evaluate if ∑k C(Hjk) < C(Hi) holds, which is the
case for example if there exists at least one k for which Hjk is
view frustum culled or ∑k cbb(Hjk)� cbb(Hi) holds. In this
case no query is issued for Hi since it is cheaper to query the
child nodes. Analogously a query is only issued, if the bene-
fit for the current node is higher than for its children and thus
B(Hi) > ∑kB(Hjk). Now let Nl(Hi) denote the number of
leaves in the subtree for which the root node is Hi. In order to
issue a query for Hi it is also required that T o

o Nl(Hi) > to(Hi)
holds, as otherwise querying the leaf nodes during render-
ing is cheaper. The only exception to the last two rules is,
if there is at least one k for which tr(Hjk) < to(Hjk) holds
meaning that the current node is the last one for which the
complete subtree will be queried. Together with the perfor-
mance tradeoff, these conditions define the test if a query is
reasonable, which is shown in Figure 5 as pseudo-code.

4.3. Latency

Let S(Hi) denote the set of nodes which are the child nodes
of Hi. Due to the latency introduced by the query, a choice
has to be made to either insert S(Hi) into the traversal queue
immediately (and remove them again later if Hi was oc-
cluded), or to only insert them later when Hi is found to be
visible. If S(Hi) are inserted only after the occlusion query

c© The Eurographics Association 2006.

211

M. Guthe, Á. Balázs, & R. Klein / Near Optimal Hierarchical Culling

if((Node.RenderTime() < Node.QueryTime())
∨ (∑ChildChild.Cost() < Node.Cost()))

return false;
if(Node.WasOccluded())

return true;
if(Node.Cost() > Node.FramesSinceLastQry() · Node.Benefit())

return false;
forall Child ∈ Node.Children()

if(Child.RenderTime() < Child.QueryTime())
return true;

if((Node.Benefit() > ∑ChildChild.Benefit())
∧ (T o

o · Node.NumLeaves() > Node.QueryTime()))
return true;

return false;

Figure 5: Pseudo-code of reasonability test.

failed, the one frame delay of the CHC algorithm is elimi-
nated, but the front to back traversal is not maintained any-
more and nodes occluded by S(Hi) can erroneously found to
be visible. If S(Hi) are directly inserted however, the time
spent to process them is wasted if the occlusion query for
Hi succeeds and the effect of the delay is only reduced. We
address this problem slightly differently than the CHC algo-
rithm by directly inserting S(Hi) if Hi was previously visible
or view frustum culled, and only delaying the insertion of
S(Hi) if Hi was previously occluded whereas CHC only in-
serts Hi directly if it was previously visible.

In addition, a synchronization between CPU and GPU is per-
formed in order to minimize both out-of-order and unnec-
essary processing. This can be accomplished by using the
graphics API synchronization (e.g. glFlush()) that waits un-
til the last issued command starts executing if supported by
the driver. If this is not the case – which is identified during
the measurements – another possibility to synchronize is to
calculate the maximum number of possible parallel queries
Nq and assume that the first query is finished when the num-
ber of active queries reaches Nq. Given the maximum query
latency T l

o which is also measured along with the other hard-
ware dependent characteristic times, we obtain:

Nq =

⌈
T l

o
min(T s

o ,T o
o +mini T s

r (mi))

⌉
+1.

If the synchronization is supported by the API, both are used
to minimize the negative effects. Otherwise only the maxi-
mum number of parallel queries is used. The synchroniza-
tion is performed when the algorithm checks if the first query
is already finished. The test based on Nq is free, while the
API provided one is only used when it is reasonably fast and
thus the cost of the CPU/GPU synchronization is negligible.

5. Results

We have integrated our method into a simple OpenGL-based
scene graph and performed benchmark tests on four different

scene types shown in Figure 6 – the vertex transform limited
Power Plant model, the fragment shading limited Vienna,
the low depth complexity Dragon model, and the moderate
depth complexity C-Class model – with different graphics
cards and quality settings.

Figure 6: Models used for measurements.

Table 3 shows the number of triangles and hierarchy nodes
for all models. Since the Dragon and some objects in the
Power Plant model consist of several hundred thousand tri-
angles, first all objects are subdivided recursively until each
object contains at most 1,000 triangles also using the p-
HBVO algorithm. This extra subdivision improves the per-
formance of all methods.

Power Plant Vienna Dragon C-Class
#triangles 12,748,510 892,920 871,414 1,861,466
#nodes 38,867 20,021 2,535 5,775

Table 3: Model statistics.

5.1. Overall performance comparison

Table 4 shows the average and minimum frame rates
achieved when using view frustum culling only (VFC), co-
herent hierarchical culling (CHC) [BWPP04], the proposed
method (NOHC) and the theoretically optimal algorithm that
only queries occluded nodes for which issuing a query is
faster than simply rendering them. In addition, a node is
not queried if querying the children is faster. Comparing
to this theoretical algorithm gives the overhead required for
the wasted queries using the CHC algorithm and thus shows
how much it is reduced with our approach. The results in Ta-
ble 4 were obtained using the latest (as of April 2006) drivers
both for ATI and nVidia cards. In addition to using different
graphics cards, we also tested the method using two driver
performance/quality settings, where the maximum perfor-
mance setting means no anti-aliasing, no anisotropic filter-
ing and only bilinear texture filtering (no mip-mapping) and
the high quality setting refers to maximum anti-aliasing,

c© The Eurographics Association 2006.

212

M. Guthe, Á. Balázs, & R. Klein / Near Optimal Hierarchical Culling

Radeon 9800XT GeForce 5900Ultra GeForce 7800GTX
method performance quality performance quality performance quality

Power Plant
VFC 16.52/143.45 19.96/2580.62 12.51/152.86 18.88/224.16 6.28/103.09 7.86/128.21
CHC 7.07/ 41.53 10.64/ 135.27 6.29/ 46.91 11.21/ 86.27 2.64/ 22.73 3.98/ 36.90
NOHC 6.87/ 34.22 10.37/ 92.01 4.84/ 40.01 9.45/ 69.48 1.88/ 22.03 3.11/ 35.59
optimum 6.31/ 23.97 8.71/ 81.21 3.77/ 27.41 7.01/ 47.24 1.59/ 20.04 2.62/ 25.51

Vienna
VFC 26.65/86.62 26.68/86.72 16.31/60.26 21.80/63.62 8.90/39.37 11.91/39.53
CHC 8.67/66.86 10.12/78.90 5.74/62.95 11.66/64.92 2.40/29.67 5.51/35.34
NOHC 7.67/53.75 9.67/59.15 3.37/45.83 9.21/51.12 1.84/26.32 4.07/26.60
optimum 7.35/41.44 8.95/48.91 2.98/29.96 7.85/40.23 1.60/17.30 3.92/18.66

Dragon
VFC 10.05/10.13 10.26/10.71 12.13/12.35 13.33/14.07 7.12/7.25 7.15/7.31
CHC 8.79/11.38 9.12/11.68 11.42/14.83 12.43/14.95 6.24/7.53 6.81/7.62
NOHC 6.94/ 8.24 7.20/ 9.12 8.17/10.04 9.59/11.63 3.59/4.36 3.86/4.60
optimum 6.15/ 7.81 7.01/ 8.92 7.59/ 9.38 8.97/11.04 3.43/4.30 3.72/4.53

C-Class
VFC 26.32/27.31 26.93/28.88 31.81/33.27 32.97/34.15 18.62/19.55 18.83/19.65
CHC 15.17/17.66 15.66/18.04 19.63/22.98 24.43/28.02 10.74/11.64 13.37/14.29
NOHC 12.96/14.08 13.47/15.56 15.27/17.11 16.35/19.05 6.75/ 7.42 6.95/ 7.95
optimum 10.47/11.92 11.94/13.65 12.94/14.38 15.41/17.04 5.84/ 6.57 6.37/ 6.96

Table 4: Comparison of average/maximum frame time in milliseconds for different culling techniques, graphics cards, and
driver performance/quality settings.

maximum anisotropic filtering and trilinear texture filter-
ing between mip-map levels. From this comparison it is al-
ready visible that the proposed method reduces the maxi-
mum frame time compared to state-of-the-art culling tech-
niques, independently of the used graphics hardware, qual-
ity setting and type of model. Note that in cases when the
CHC algorithm is close to the optimum (e.g. the Power Plant
model on the GeForce 7800GTX card) the improvement is
minor. However, when the overhead introduced by the CHC
method is high (e.g. on the GeForce 5900Ultra card), the
improvement is significant. In addition to the reduced max-
imum frame time, the average frame time is also improved.
Here the improvement however depends on the temporal co-
herence of occlusions and is thus more distinct for the Vi-
enna, Dragon, and C-Class models – since they are more or
less closed surfaces – than for the Power Plant model.

5.2. Detailed analysis

Since the shortcomings of the CHC method are most appar-
ent on the GeForce 5900 with high performance settings, we
analyze this configuration more extensively. Figure 7 shows
a frame time comparison for a part of the Vienna walk-
through with high depth complexity. In this case view frus-
tum culling would trivially perform much worse than occlu-
sion culling, therefore comparison to view frustum culling is
omitted. The overhead due to failed occlusion queries is sig-
nificantly reduced compared to the CHC algorithm, almost
doubling the performance on average. The spikes around the
8th sec and 16th sec are due to sudden viewpoint changes,
which obviously do not influence the optimal algorithm.

0

1

2

3

4

5

6

7

8

9

0 5 10 15 20
time (sec)

fra
m

e
tim

e
(m

s)

CHC

NOHC

opt.

Figure 7: Frame time comparison for the Vienna model with
high depth complexity on a GeForce 5900Ultra at maximum
performance driver settings.

In low depth complexity situations however, occlusion
culling might degrade performance so comparison to view
frustum culling is important. Figure 8 shows a comparison
during a period of low depth complexity in the middle of the
Vienna walkthrough. In contrast to the CHC algorithm the
performance of the proposed method is always superior to
view frustum culling alone. This shows how well our method
adapts to these worst case situations while also improving
both the average and best case performance.

On the other hand, the graph also shows the limitations of the
approach due to inaccurate estimation of the occlusion prob-
ability. When the probability is estimated too high (e.g. from
the 34.5th sec to the 35th sec in the Vienna walkthrough),
still some unnecessary queries are issued and the improve-

c© The Eurographics Association 2006.

213

M. Guthe, Á. Balázs, & R. Klein / Near Optimal Hierarchical Culling

0

10

20

30

40

50

60

29 30 31 32 33 34 35 36 37 38 39
time (sec)

fra
m

e
tim

e
(m

s)

VFC
CHC
NOHC
opt.

Figure 8: Frame time comparison for the Vienna model with
low depth complexity on a GeForce 5900Ultra at maximum
performance driver settings.

ment over the CHC algorithm is reduced. When the proba-
bility is estimated too low, the rendering time only gradually
approaches the optimum (e.g. shortly after the 38th sec in the
Vienna walkthrough). The second effect is however less no-
ticeable, if the temporal and spatial coherence of occlusions
is high. Therefore, it does not degrade the performance for
the Dragon and C-Class model. In general, even if the as-
sumptions made for the analytical models do not hold in a
particular situation, the method still performs at least on par
with (and usually better than) view frustum culling and prac-
tically always has a much smaller overhead than the CHC
algorithm.

6. Conclusion and Future Work

We have presented a method to optimize the scheduling
of hardware occlusion queries with respect to the perfor-
mance characteristics of the currently used graphics hard-
ware. It is very flexible and can be easily integrated into
existing real-time rendering packages using arbitrary, appli-
cation dependent scene hierarchies and bounding volumes.
We have experimentally verified that it is superior to state-
of-the-art techniques under various test conditions. Even in
low depth complexity situations, where previous approaches
could introduce a significant overhead compared to view
frustum culling, the presented method performs at least as
good as view frustum culling. This means that the intro-
duced method removes the main obstacle for the general
use of hardware occlusion queries. The major potential in
improving the method lies in developing more accurate, yet
not much more complex, analytical models for the occlusion
probability and the rendering/query time estimation, e.g. that
recalibrate themselves during rendering. We have also ob-
served during measurements that moderately increasing the
number of triangles of the bounding volumes does not affect
the query time. Therefore, tighter bounding volumes (e.g. k-
dops) could also be used from which all hardware acceler-
ated occlusion culling methods would benefit.

Acknowledgements

We would like to thank Michael Wimmer (TU Vienna) for
providing us with the original CHC implementation, the Vi-
enna model, the walkthrough paths used for the Vienna and
Power Plant models and many fruitful discussions. In addi-
tion we thank the UNC Walkthrough Group for the Power
Plant model, the Stanford 3D Scanning Repository for the
Dragon model, DaimlerChrysler AG for the C-Class model
and the anonymous reviewers for many helpful comments.

References

[BW03] BITTNER J., WONKA P.: Visibility in computer graph-
ics. Environment and Planning B: Planning and Design 30, 5
(September 2003), 729–756.

[BWPP04] BITTNER J., WIMMER M., PIRINGER H., PUR-
GATHOFER W.: Coherent hierarchical culling: Hardware oc-
clusion queries made useful. Computer Graphics Forum (Eu-
rographics 2004) 23, 3 (September 2004), 615–624.

[COCSD03] COHEN-OR D., CHRYSANTHOU Y., SILVA C. T.,
DURAND F.: A survey of visibility for walkthrough applications.
IEEE Trans. Vis. Comput. Graph. 9, 3 (2003), 412–431.

[FS93] FUNKHOUSER T. A., SÉQUIN C. H.: Adaptive display
algorithm for interactive frame rates during visualization of com-
plex virtual environments. Computer Graphics (Proceedings of
SIGGRAPH 93) 27, 2 (1993), 247–254.

[GKM93] GREENE N., KASS M., MILLER G.: Hierarchical
Zbuffer visibility. Computer Graphics (Proceedings of SIG-
GRAPH 93) 27, 2 (1993), 231–238.

[HMC∗97] HUDSON T., MANOCHA D., COHEN J., LIN M.,
HOFF K., ZHANG H.: Accelerated occlusion culling using
shadow frusta. In Proceedings of the Thirteenth ACM Sympo-
sium on Computational Geometry (1997), pp. 1–10.

[KS01] KLOSOWSKI J. T., SILVA. C. T.: Efficient conservative
visibility culling using the prioritized-layered projection algo-
rithm. IEEE Transactions on Visualization and Computer Graph-
ics 7, 4 (2001), 365–379.

[MBH∗01] MEISSNER M., BARTZ D., HÜTTNER T., MÜLLER

G., EINIGHAMMER J.: Generation of Decomposition Hierar-
chies for Efficient Occlusion Culling of Large Polygonal Models.
In Vision, Modeling, and Visualization (2001), pp. 225–232.

[NA01] NVIDIA, ATI: ARB occlusion query. http://oss.sgi.com/
projects/ogl-sample/registry/ARB/occlusion_query.txt, 2001.

[SBS04] STANEKER D., BARTZ D., STRASSER W.: Occlusion
Culling in OpenSG PLUS. Computers & Graphics 28, 1 (2004),
87–92.

[TS91] TELLER S. J., SÉQUIN C. H.: Visibility preprocessing
for interactive walkthroughs. Computer Graphics (Proceedings
of SIGGRAPH 91) 25, 2 (1991), 61–69.

[WW03] WIMMER M., WONKA P.: Rendering time estimation
for real-time rendering. In Rendering Techniques (Proceedings
of Eurographics Workshop on Rendering) (2003), pp. 118–129.

[ZMHH97] ZHANG H., MANOCHA D., HUDSON T., HOFF III
K. E.: Visibility culling using hierarchical occlusion maps. In
ACM SIGGRAPH 97 (1997), pp. 77–88.

c© The Eurographics Association 2006.

214

