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Abstract

We describe an importance sampling method to generate samples based on the product of a BRDF and an envi-

ronment map or large light source. The method works by creating a hierarchical partition of the light source based

on the BRDF function for each primary (eye) ray in a ray tracer. This partition, along with a summed area table

of the light source, form an approximation to the product function that is suitable for importance sampling. The

partition is used to guide a sample warping algorithm to transform a uniform distribution of points so that they ap-

proximate the product distribution. The technique is unbiased, requires little precomputation, and we demonstrate

that it works well for a variety of BRDF types. Further, we present an adaptive method which allocates varying

numbers of samples to different image pixels to reduce shadow artifacts.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-dimensional Graph-
ics and Realism

1. Introduction

Increasingly, image based lighting is being used for render-
ing. Image based lighting offers a number of advantages over
simple lighting techniques such as directional or point lights.
Spatially varying image based lighting provides a more re-
alistic lighting environment, so images rendered with it of-
ten have a more realistic appearance. Using light probes as
lighting allows virtual objects to be rendered as if they were
actually located in the imaged location. This technique is
employed often in movies, where rendered objects need to
be seamlessly integrated into live action shots.

1.1. Importance Sampling for Direct Lighting

The problem that this paper addresses is how to solve the
direct lighting equation. In a ray tracing context, to solve for
direct lighting each primary ray must evaluate the integral:

L(x→Ψ) =

∫

Ωx

Le(x←−Θ) fr(Ψ↔ x↔Θ)|cosθ |dΘ. (1)

In this equation, x is the point hit by the primary ray, Le

represents the incoming radiance at point x, fr is the BRDF
function, and θ is the angle between the surface normal at x

and the outgoing direction, Θ.

Monte Carlo Integration. A common approach to evalu-
ate the direct lighting equation is to use Monte Carlo integra-

tion, which replaces the continuous integral with the average
of N Monte Carlo samples:

L(x→Ψ)≈
1

N

N

∑
j=1

Le(x←−Θ j) fr(Ψ↔ x↔Θ j)|cosθ j|

p (Θ j)
. (2)

Importance sampling attempts to minimize the variance of
the above expression by choosing a sampling distribution to
make the terms of the sum as constant as possible.

Light source and BRDF sampling. Many importance
sampling techniques for direct lighting concentrate on ei-
ther sampling the light source or the BRDF. For example,
Burke [Bur04] described two methods to distribute sam-
ples according to the brightness of an environment map,
based on cdf inversion and the alias method. Other research
[KK03, ARBJ03, ODJ04] has tackled direct lighting from
environment maps by approximating the illumination with
a set of point lights (sampling directions). More recently,
Debevec [Deb05] presented a simple technique to gener-
ate point lights to approximate environment lighting using
a summed area table of the environment map. Our algorithm
also uses a summed area table, but we are able to approxi-
mate the product distribution, not just the incident light term.

Methods that generate samples based solely on illu-
mination do not work well for highly specular surfaces.
In many situations it is more efficient to sample accord-
ing to the BRDF function rather than the incident illu-
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mination. Some analytical BRDFs can be directly impor-
tance sampled, including the Blinn model [Bli77], the Ward
model [War92], the Lafortune model [LFTG97], and the
Ashikhmin model [AS00]. Besides analytical BRDFs, im-
portance sampling can be employed with sampled BRDFs.
Lawrence, Rusinkiewicz and Ramamoorthi [LRR04] de-
scribed a factored, tabular representation for BRDFs that is
both compact and amenable to importance sampling.

Sampling a product distribution. Sampling according to
one of the terms of the lighting equation can reduce variance,
but it is more advantageous to generate samples based on
all of the terms, rather than just one. Multiple importance
sampling (MIS) [VG95] can sample the BRDF and lighting
simultaneously, but the resulting distribution is more akin to
the average of the terms rather than the product. Ideally, an
importance sampling algorithm should be able to generate
samples according to the product distribution.

Burke, Ghosh and Heidrich [BGH05] described a tech-
nique called bidirectional importance sampling (BIS) that
can sample the product of an environment map and the
BRDF, based on rejection sampling. The rejection sampling
can be costly, however, and requires an unknown number
of tries to produce samples from the product distribution.
A second form of BIS that can produce samples in a deter-
ministic amount of time replaces rejection sampling with re-
sampling, but the resulting samples are only approximately
distributed according to the product. Talbot, Cline and Eg-
bert [TCE05] generalized this second form of BIS, placing
it into the more general category of resampled importance
sampling (RIS). Resampling methods can also be costly,
however, since they rely on taking a large number of ten-
tative samples, most of which will be discarded.

Recently, Clarberg et al. [CJAMJ05] presented an algo-
rithm called Wavelet Importance Sampling (WaIS) that sam-
ples products of wavelet functions. Their algorithm uses a
property of wavelets that allows a wavelet product to be eval-
uated in a top-down fashion, and they introduced a warping
technique that transforms a uniform distribution of points to
the product distribution using the wavelet product as a guide.
WaIS produces very impressive results, but has a number
of shortcomings that make it impractical in some situations.
WaIS requires all BRDFs in the scene to be resampled as
wavelets, which may be impractical for scenes with large
numbers of BRDFs. Also, WaIS requires the wavelet func-
tions to share a common coordinate system. In the case of
environment maps, they accomplish this by storing a sepa-
rate wavelet decomposition for each possible orientation of
the environment map. Our two stage importance sampling
algorithm can be thought of as a variant of WaIS that does
not require a wavelet product to drive the sample warping.
Instead, we use a hierarchical partitioning of the environ-
ment map similar to the probability trees described by Mc-
Cool and Harwood [MH97].

1.2. Two Stage Importance Sampling

This section gives an overview of our new algorithm to per-
form importance sampling for direct lighting. The algorithm
proceeds in two stages, so we call it two stage importance

sampling, or just two stage sampling. The first stage creates
an approximation to the product of the BRDF and the envi-
ronment map suitable for importance sampling. The approx-
imate product consists of (1) a summed area table of the en-
vironment map, times the cosine of the angle of inclination
to compensate for foreshortening at the poles, along with (2)
a hierarchical partition of the environment map annotated
with BRDF values at the region corners. The second stage of
the algorithm uses the summed area table and environment
map partition to warp a set of uniformly distributed points
so that they approximate the product distribution (BRDF ×
incident light). Both the hierarchical partitioning of the en-
vironment map and the sample warping are performed for
each primary ray in a ray tracer. Figure 1 gives high level
pseudocode for two stage importance sampling.

Two Stage Importance Sampling

Create a summed area table of the light source.
For each primary ray

1. Create an approximation to the product of the
BRDF and the light source.

2. Warp a set of uniformly-distributed samples to
to approximate the product distribution.

Figure 1: Two stage importance sampling algorithm.

Benefits of the new approach. Two stage importance
sampling offers a number of benefits over existing tech-
niques to sample according to the product distribution, such
as RIS and WaIS. It requires very little precomputation, just
a summed area table of the environment map. Furthermore,
two stage sampling can work with both sampled and analyt-
ical BRDFs, and since BRDFs do not need any preprocess-
ing, it can handle scenes with many BRDFs. Two stage sam-
pling does not even require the ability to importance sample
the BRDF function. All that is needed are the BRDF peaks.
Since two stage sampling does not use rejection sampling
or resampling, it preserves the stratification of an input sam-
pling pattern better than algorithms that discard some of their
samples, such as RIS. Finally, two stage sampling does not
require the terms in the product to have the same coordinate
system, so our algorithm could easily be adapted for other
large light sources besides spherical environment maps.

2. Partitioning the Light Source

This section describes how to create a hierarchical partition-
ing of an environment map based on the BRDF function.

2.1. Environment Map Encoding

As a preprocessing step, we create a copy of the environment
map as a summed area table [Cro84]. This allows rectangu-
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lar regions within the map to be summed with just four table
look-ups. Creating the summed area table typically requires
less than 1 second. In our implementation, the summed area
table stores the luminance of all of the static terms in the
product (terms that are constant within the coordinate sys-
tem of the environment map). For a spherical environment
map in latitude, longitude format, we store the value in the
environment map times the cosine of the angle of inclina-
tion, which compensates for the foreshortening that occurs
near the map poles. This is the same encoding suggested by
Debevec [Deb05]. To maintain precision, the summed area
table is stored as 64 bit floating point values.

2.2. Partitioning the Environment Map

Two stage importance sampling relies on a piece-wise linear
approximation of the BRDF and all of the terms of the prod-
uct that are not included in the summed area table. This ap-
proximation is created independently for each primary ray.
In the case of a spherical environment map, the terms not
included in the summed area table are the BRDF and cosine
from equation 1: fr(Ψ↔ x↔Θ) |cosθ |. For brevity, we will
refer to this value simply as f .

Our algorithm approximates the product function by par-
titioning the environment map into disjoint regions using an
axis-aligned BSP tree. Nodes in the BSP hierarchy repre-
sent rectangular regions in the environment map, and each
node stores the value of f at its four corners. Consequently,
the approximation to the product becomes the product of the
values stored in the summed area table and the bilinear inter-
polation of f from the leaf nodes of the BSP tree. Figure 2
shows one of these leaf nodes. Note that although the values
of f are interpolated across the region, the values stored in
the summed area table are represented exactly.

f00 f10

f01 f11

(x0, y0)

(x1, y1)

Figure 2: Example region R, labeled with min and max ex-

tents along with f values at the corners.

Creating the root node. The first step in partitioning the
light source is to create a root node that will encompass all
non-zero parts of the product function. One obvious choice
would be to include the entire environment map as the root.
However, we can easily find a smaller rectangle that en-
compasses all parts of the environment map that are in the
same hemisphere as the surface normal. Assuming that the
pixel coordinates of the normal in the environment map are
(xn,yn), and w and h are the width and height of the en-
vironment map in pixels, the bounds of this rectangle are
(0, max(0, yn−h/2)) and (w, min(h, yn +h/2)).

After creating the root node, we make an initial parti-
tion by subdividing at two locations. First, we subdivide
the root node at the normal location, (xn,yn), and half
the width of the environment map away from the normal,
((xn +w/2)%w, yn). Subdividing at ((xn +w/2)%w, yn) as
well as the normal has the benefit that the cosθ term of the
product is monotonic in all of the resulting regions. Since the
hierarchy is a binary tree, we split at a particular location by
first horizontally splitting the leaf node containing the po-
sition, and then vertically splitting both of the new nodes
created by the first split. Figure 3 shows the initial partition.

(xn,yn)

(0, max(0, yn-h /2))

(min(h, yn+h /2), 0)

((xn+w /2)%w, yn)

Figure 3: Initial partition of the environment map. Two ini-

tial splits divide the root node into six regions, and include

the peak of the cosθ term in f as one of the region corners.

Subdividing at the BRDF peaks. After the initial parti-
tion of the environment map has been made, we subdivide
the leaf nodes at the peaks of the BRDF. The peak locations
that we use for different BRDF types are as follows:

• The Lambertian model does not need any other peaks
besides the normal direction.

• The Oren-Nayar model [ON94] was designed to simu-
late retro-reflection, so we add the incident direction as a
peak for this model.

• The Phong model [Pho75] and Blinn microfacet model

[Bli77] have a glossy lobe centered around the reflection
vector, so we add the reflection vector as a peak for these
models.

• The Lafortune model [LFTG97] consists of a number of
generalized cosine lobes, each of which has a well-defined
peak location. The peaks of the lobes are found by trans-
forming the incident direction to the local shading coordi-
nate system. The transformed incident direction can then
be directly scaled based on the lobe parameters to produce
the lobe peaks.

• The Ashikhmin anisotropic model [AS00] produces a
long, thin specular lobe that traces out a cone of direc-
tions, rather than being centered around a single point.
For this BRDF, we first add the reflection vector as a peak,
since this is the brightest point on the BRDF. In addition,
we add nine peaks along the cone of directions traced out
by the specular lobe, if the anisotropy is large enough.
In our implementation, we add the extra nine peaks of if
nu/nv or nv/nu is greater than 3, where nu and nv are the
anisotropy parameters of the BRDF. Figure 4 shows the
local surface geometry for the Ashikhmin model where
nu < nv. In the case where nu < nv, the specular lobe of the
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r = (ru, rv, rn)

u

v

n

Figure 4: The specular lobe of the Ashikhmin model

stretches over a cone of directions rather than being cen-

tered around a single peak direction.

BRDF stretches out into a cone of directions aligned with
the u axis of the local coordinate system, which includes
the reflection vector as the brightest point. We define nine
“peak directions” to represent this conical lobe as follows:
As in figure 4, let (u,v,n) be the local coordinate system
of the surface, and let (ru,rv,rn) be the reflection vector
defined in the local coordinate system. If nu < nv, the nine
peaks, peak0 . . . peak8, are defined by

peaki =

(

ru, cos
πi

8

√

r2
v + r2

n , sin
πi

8

√

r2
v + r2

n

)

,

If nv < nu, the conical specular lobe is aligned with the v
axis rather than the u, and the nine peaks are defined by

peaki =

(

cos
πi

8

√

r2
u + r2

n , rv, sin
πi

8

√

r2
u + r2

n

)

.

Peaks for more general reflection models. For multi-
component reflection models, we use all of the peaks defined
by the components. For unknown or measured BRDFs, we
start with the reflection and retro-reflection vectors and then
importance sample the BRDF to find additional “peaks”. In
our implementation, we sample the BRDF N/4 times, where
N is the number of samples to be taken. Each of the BRDF
samples is then added as a new peak if the value of f at the
sample location is greater than the average of f at the corners
of the leaf node that the sample falls in.

Splitting region neighbors. Whenever a region is split,
we check the neighboring regions that border the split loca-
tion to see if they should be split as well. In particular, if
the two corners of the neighbor region that are adjacent to
the split have f values which sum to less than fsplit , then

f00 f10

f01 f11

(x0, y0)

(x1, y1)

fsplit 

(xsplit, y0)

R

Figure 5: Cascading region splits. In the diagram, the re-

gion below region R has just been split horizontally at loca-

tion xsplit . The region splitting algorithm cascades this split

into region R if fsplit > f00 + f10.

we cascade the split into the neighbor region. For example,
suppose that the region directly below region R in Figure 5
was split horizontally at location xsplit , with x0 < xsplit < x1.
Then if the value of f at (xsplit ,y0) is greater than f00 + f10,
we split region R horizontally at location xsplit as well. Note
that in a spherical environment map the x axis wraps around,
so that regions on the leftmost part of the environment map
are neighbors of regions on the rightmost part. This extra
splitting helps in the case of specular BRDF lobes that are
not axis-aligned.

Subdividing based on split potential. At this point, we
have a hierarchy that includes the peaks of the BRDF as re-
gion corners, but it still may not be a good approximation of
the product. We can improve the approximation by splitting
some of the regions that do not fit the product well.

For a region R with corners (x0,y0) and (x1,y1), and f val-
ues f00 . . . f11 (refer to Figure 5), we define a heuristic called
the “split potential” that determines which region should be
split to improve the product approximation the most. We
base our heuristic on the idea that large and bright regions,
and regions in which f varies a lot should be split first. More
formally, we define the split potential, psplit(R), as

psplit(R) = σ f (R) sum(R) area(R), (3)

where sum(R) is the sum of the environment map over region
R, area(R) is the area of the region, and σ f (R) is the standard
deviation of the f values at the corners of R:

σ f (R) = 1
2

√

( f00− fave)2 +( f10− fave)2 +( f01− fave)2 +( f11− fave)2.

Our strategy is to perform a fixed number of node splits after
creating the initial hierarchy, the same as the number of sam-
ples that will be taken, always splitting the leaf node with
the highest split potential. This has the effect that each addi-
tional sample improves the sampling distribution, so that the
convergence rate increases as more samples are added. Once
again, whenever a region is split, its neighbors are checked
to see if they should be split as well.

Split direction. In addition to deciding which region to
split, the algorithm must decide whether to split the region
along the x or y axis. One possibility would be to always split
the region along the longest dimension, but we have found
it better to choose the split axis based on the values of f as
well as the axis lengths. Referring to Figure 5, a region will
be split in the x direction if

(

( f10− f00)
2 +( f11− f01)

2
)

(x1− x0) >
(

( f01− f00)
2 +( f11− f10)

2
)

(y1− y0).
(4)

Otherwise, the region will be split in the y direction.

Calculating region weights. As part of the sample warp-
ing algorithm, each region in the hierarchy must have an
approximation to its contribution to the total product inte-
gral, which we call the region weight. For a leaf region L the
weight is given by

weight(L) = sum(L) ( f00 + f10 + f01 + f11)/4. (5)
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For a non-leaf region R, the weight is obtained by summing
the weights of its children. As a convenience for the warping
algorithm, we store two other values in non-leaf nodes in the
hierarchy – the probability of choosing child A, prob(A,R),
and the fraction of the area that is taken up by child A,
areaFraction(A,R):

prob(A,R) = weight(A)/weight(R) (6)

areaFraction(A,R) = area(A)/area(R). (7)

Figure 6 gives pseudocode for the partitioning algorithm and
shows example partitions for different BRDF types.

Environment map partitioning algorithm

For each primary ray
Create the root node (Fig. 3).
Split the root at (xn,yn) and ((xn +w/2)%w, yn).
Split leaves at BRDF peaks (and neighbors as needed).
For i = 1 to # of samples per primary ray

Find leaf node, R, that maximizes psplit (eq. 3).
Split R along the axis specified by equation 4.
Split neighbors of R as needed (Fig. 5).

Calculate sampling weights for all regions (eq. 5 6 7).

Figure 6: Environment map partitioning algorithm and ex-

ample partitions. The left images show the product of a

highly diffuse Oren-Nayar BRDF in the Eucalyptus Grove

environment (top), and the approximation made by the par-

titioning algorithm (bottom). The right images show a more

specular BRDF that uses the Blinn microfacet model in

Galileo’s Tomb. In both cases, the partitioning algorithm

produces a good approximation to the product. Note par-

ticularly how the split potential heuristic “homes in” on the

specular lobe of the Blinn BRDF.

3. Hierarchical Warping (revisited)

This section describes the warping algorithm that forms the
second stage of two stage importance sampling. Our warping
algorithm is based on the technique presented by Clarberg et
al. [CJAMJ05] to transform a uniform distribution of points
to the product distribution. The main difference between our
algorithm and the one presented by Clarberg et al. is that in
our algorithm warping is controlled by the environment map

{{

20% 80%

} }30%70% } }30%70%
% area % area

% samples % samples

{ {

20% 80%

R R

A BA B

Figure 7: One step of the sample warping algorithm. Here,

an environment map region R has two children, with the left

child, A, shown in gray, and the right child, B, shown in

white. The samples allocated to R are originally distributed

evenly (left image), but the sample warping stretches 20% of

the samples to cover the child A, and the remaining 80% of

the samples are squeezed to fit into child B (right image).

partition described in section 2 rather than a wavelet prod-
uct. Of course, this means that our algorithm only approxi-
mates the product distribution, but it also means that our al-
gorithm requires minimal precomputation and storage (just
a summed area table of the environment map). Also, since
two stage importance sampling does not rely on a discrete
sampling of the BRDF, it can work directly with analytical
or sampled BRDFs in their native formats. Other differences
include the fact that we warp one sample at a time rather
than groups of samples, and the fact that regions do not al-
ways divide exactly in half in the environment map partition.

As an illustration of how the sample warping works, con-
sider figure 7. The figure depicts a region, R, of the environ-
ment map that has two children. The left child of the region,
A, shown in gray, contains 70% of the area of R, and the right
child, B, shown in white, contains 30% of the area of R. Now,
suppose that the algorithm wants to create a distribution that
puts 20% of the samples in child A, and 80% of the samples
in child B. The warping starts with a uniform distribution of
samples, as shown in the left image. It then stretches the left-
most 20% of the samples to cover 70% of the area of R, and
squeezes the remaining 80% of the samples to fit into 30%
of the area, as shown in the right image. This process can
then be repeated on A and B, and so on, to create any desired
sampling distribution.

As previously stated, our warping algorithm guides the
sample warping with the environment map partition de-
scribed in section 2. The warping starts at the root node of
the environment map partition with a sample (s, t) that is
uniformly distributed in [0,1)2 and a probability that is set
to the area of the environment map divided by the area of the
root node. The algorithm next decides which child of the root
that the sample belongs to based on the value of prob(A,R)
stored in the root node. It then warps s or t depending on
the split axis, and updates the probability for the sample. For
simplicity, assume that the root is split on the x axis, so that
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s should be warped. If s ≤ prob(A,R), then s is warped by
dividing by prob(A,R), transforming it into the local coor-
dinate system of child region A. If s > prob(A,R), s is set to
(s− prob(A,R))/(1− prob(A,R)), transforming it into the
local coordinate system of child B. The sample probability
is updated in a similar manner. If s≤ prob(A,R), the sample
probability is multiplied by prob(A,R)/areaFraction(A,R),
and if s > prob(A,R), the sample probability is multi-
plied by (1− prob(A,R))/(1−areaFraction(A,R)), reflect-
ing the change in probability density in the two child regions.

This warping process repeats on the chosen child node,
and so on. Once the leaf level of the hierarchy is reached, a
second warping routine takes over, warping the sample down
to the pixel level in like manner, constructing virtual envi-
ronment map regions below the leaf level to do the warping.
Figures 13 and 14 in appendix A give code for the two sam-
ple warping routines. After a sample has been warped, it can
be used directly to define a Monte Carlo sample for equa-
tion 2. Since the warping routine keeps track of the proba-
bility with which the sample direction was generated, Monte
Carlo estimates made in this manner are unbiased.

4. Convergence to the Product Distribution

A note about our error metric. To test convergence we are
using an error metric called the “coefficient of variation”,
which is defined as the standard deviation divided by the
mean, σ/µ (RMSE / mean pixel value). Since this value is a
scalar multiple of σ , it is just as valid a statistical measure as
using σ or σ2 directly. However, it also provides an intuitive
metric for how much visual noise exists within an image.
Based on our observations, a good rule of thumb seems to
be that an image (with Gaussian noise spread evenly over
the image plane) will be nearly flawless visually if σ/µ is
less than about 0.01.

Pseudo-random number sequences. For all sampling
methods in all of the experiments in the paper, we used Ham-
mersley point sets that were randomly shifted to avoid corre-
lation artifacts (called a Cranley-Patterson rotation [KK02,
CP76]). The Hammersley point set has several properties
that make it well suited for our application. First, it can cre-
ate point sets of arbitrary size, not just powers of 2 or n×m.
Second, it consistently produced the lowest error of the sam-
pling methods that we tried, including random and jittered
point sets, and scrambled (0,2)-sequences.

Convergence of two stage sampling. To get a feel for
how quickly two stage sampling converges to the product
distribution, we rendered a number of spheres with differ-
ent BRDFs using two stage importance sampling and multi-
ple importance sampling in the Galileo’s Tomb environment.
Figure 8 shows the results of these experiments for three dif-
ferent BRDFs. Not only does our algorithm have a lower er-
ror than MIS for these examples, but the rate of convergence
is much better as well. For example, two stage importance

Blinn Ashikhmin Lafortune

0.01

0.1

1

10

0 8 16 24 32 40 48 56 64
# Samples

Blinn
Ashikhmin
Lafortune

s/m

Figure 8: Convergence of our algorithm (solid markers) vs.

multiple importance sampling (hollow markers) for differ-

ent BRDF types. The “Blinn” scene uses the Blinn micro-

facet model with a roughness of 0.02. “Ashikhmin” uses the

Ashikhmin anisotropic model with u and v roughnesses of

0.001 and 1.0, respectively. Finally, "Lafortune" is a fit of

the Lafortune model to measured skin reflectance.

0.01

0.1

1

0 8 16 24 32 40 48 56 64

# Samples

Blinn
Ashikhmin
Lafortune

Convergence of Different Peak Finding Methods

s/m

Figure 9: Convergence of two stage sampling for differ-

ent peak finding methods: sampling the BRDF distribution

to find peak directions (hollow markers), and explicit enu-

meration of BRDF peaks as described in section 2.2 (solid

markers).

sampling converges at a rate of N−1.17 for the Blinn scene,
N−0.93 for Ashikhmin, and N−0.98 for Lafortune. Compare
this to MIS, which converges according to N−0.64, N−0.70

and N−0.77 for the same scenes, a much slower rate. Our
algorithm is able to achieve such high convergence rates be-
cause increasing the number of samples actually improves
the sampling distribution.
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Convergence for different peak finding methods. Fig-
ure 8 demonstrates the convergence of two stage sampling
when the BRDF peak directions are known. However, peak
directions may not be easily computed for some reflection
models, such as sampled BRDFs. In section 2.2, we advo-
cated BRDF importance sampling as an alternative method
to find peak directions when they are not easily computed
otherwise. To test the effectiveness of this alternate proce-
dure, we re-rendered the scenes from figure 8 using BRDF
sampling to find the peak directions. To make the compari-
son fair, we did not include the reflection or retro-reflection
vectors as initial peaks, since the Blinn and Ashikhmin
model both have strong peaks around the reflection vector.
Figure 9 plots the results of using BRDF sampling to find
peaks (hollow markers) alongside the results from figure 8
for comparison. As can be seen in the figure, the Lafor-
tune scene performs almost identically for both peak find-
ing methods. The Blinn scene starts out a little worse with
the alternate peak finding method, but quickly overtakes
the performance of the standard peak finding method. The
Ashikhmin scene, on the other hand, does not perform as
well with the alternate peak finding method, likely because
of the complexity of the conical specular lobe, but it still out-
performs MIS by a wide margin. These results suggest that
BRDF importance sampling can be an effective general peak
finding method for many BRDF types.

5. Variable Samples

Section 4 describes the performance of two stage importance
sampling in the absence of shadows. However, most scenes
contain shadows and other features that pose difficulties for
a Monte Carlo sampler. Penumbra regions are particularly
prone to noise. A desirable goal would be to assign differ-
ent numbers of samples to different parts of the image to
distribute noise more or less evenly over the entire image
plane.

We achieve this goal by allocating more samples to pixels
that are likely to have a high variance, and less samples to
pixels likely to have a low variance. To do this, we need an
estimate of the standard deviation of samples for the current
pixel, σp, and the average standard deviation over all pix-
els, σave. We obtain σave in a preprocessing step, computing
the average standard deviation for a small random subset of
the pixels in the image (1024 in our implementation). σp is
computed as a running average over previous samples. It’s
value is set to zero initially, and after a pixel (primary ray)
has been processed, the value is updated using the formula

σnew
p = 0.75σp + 0.25σpixel (8)

where σpixel is the sample variance of the pixel just pro-
cessed. This process is similar to the variance tracking
method used for efficiency optimized Russian roulette in
bidirectional path tracing [VG94], except that we are using
the value for a different purpose.
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Figure 10: Fixed and variable sampling rates. The left col-

umn of images shows renderings made with different sam-

pling strategies in the Galileo’s Tomb environment, and the

right column shows error in green and the number of sam-

ples allocated to different pixels in red (see color plate). All

renderings use about 16 samples per pixel on average. Fixed

rate sampling concentrates errors in the penumbra regions

of the image (σ/µ = 0.0446, 25.5 sec.). Variable sampling

spreads the error more evenly, and overall error is reduced

(σ/µ = 0.0409, 25.9 sec.). Note how samples concentrate

in the high error regions. Finally, re-rendering the few pixels

that significantly overshoot their variance estimates gets rid

of most of the highest error pixels (σ/µ = 0.0366, 27.3 sec.).

At this point, we need to determine a number of samples
to use for the next pixel. To make the sample allocation ro-
bust, the number of samples for a pixel is always set to at
least half of what it would be in the fixed case. For the other
half of the samples, the algorithm must decide how many to
allocate to each pixel based on σp. We could use the vari-
ance analysis results from Mitchell [Mit96] or Kollig and
Keller [Mit96] as a guide to determine how many samples to
allocate to different pixels, but this would lead to a different
expression for each input sequence type. Instead, we make
the rather crude assumption that the standard deviation will
decrease as N−1, and allocate the second half of the samples
accordingly. Thus, the number of samples that we allocate to
a pixel is

M =
N

2

(

1+
σp

σave

)

, (9)

where N is the average number of samples that should be al-
located to each pixel. Reallocating samples in this way tends
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to decrease statistical error slightly, but perceptual error is re-
duced much more, since the sample reallocation spreads the
error more or less evenly over the image plane. Allocating
variable samples as just described does not introduce bias
since information from the current pixel does not influence
the variance estimate, σp [KA91].

A problem that can occur when using variable samples
is that the variance estimate, σp, may not be accurate. This
can happen at object edges, for instance. Our solution is to
re-render those few pixels (about 5%) in which the actual
variance within the pixel is much greater than the estimate.
Specifically, if σpixel > σp +σave, we reset σp to σpixel , and
render the pixel again. Although this step adds a slight bias
to the solution, it is quite adept at eliminating most of the
highest error pixels. Figure 10 shows a scene rendered with
fixed and variable numbers of samples.

6. Results

We have implemented two stage importance sampling as an
extension to the PBRT [PH04] rendering system. PBRT sup-
ports a variety of analytical BRDF models which we used
to validate our algorithm, including the Blinn, Ashikhmin,
Lafortune and Oren-Nayar models.

Comparison with other robust sampling algorithms.

Figure 12 compares our two stage sampling algorithm to
multiple importance sampling (MIS), and resampled impor-
tance sampling (RIS). For RIS, we use multiple importance
sampling to generate 2 tentative samples per accepted sam-
ple. The number of tentative samples per accepted sample
in our study, 2, was chosen by trial and error to maximize
image quality vs. render time. Burke, Ghosh and Heidrich
[BGH05] were able to quickly generate dozens of tentative
samples per accepted sample using the Phong model. We
have found the expense of generating samples for arbitrary
BRDFs and evaluating them without visibility in PBRT to be
comparatively large, about 1/3 the cost of shadow queries.
This is more in line with the results reported by Talbot, Cline
and Egbert [TCE05].

We do not presently have an implementation of wavelet
importance sampling to directly compare with our algo-
rithm, but we can simulate WaIS using our algorithm by
greatly increasing the number of region splits in the envi-
ronment map. The resulting probability distribution comes
very close to the actual product distribution, and thus mim-
ics WaIS quite well. WaIS render times were approximated
simply by copying the timing results from MIS. Note that
the timing results do not include the substantial startup costs
of WaIS. As can be seen in the table of images, two stage im-
portance sampling displays a lot of noise at very low sample
counts, but it quickly converges. Although we cannot expect
to surpass the convergence rate of WaIS, our algorithm does
start to become competitive with it in terms of quality per
number of samples after just a few dozen samples per pixel,
without the long preprocessing times needed for WaIS.

Figure 11: Scene with a spatially varying specular ex-

ponent. This scene literally contains hundreds of different

BRDF shapes. The scene was rendered with 4 primary rays

per pixel and 32 two stage samples per primary ray at a res-

olution of 1024×512. Render time was 895 seconds.

Scenes with large numbers of BRDFs. Figure 11 shows
a scene in which the specular roughness parameter is con-
trolled by a texture map. This scene would be impractical
for WaIS because each surface point potentially has a BRDF
with a different shape. By contrast, two stage importance
sampling has no difficulties with the scene because it does
not need to preprocess BRDFs.

7. Conclusions and Future Work

In this paper we have presented a new importance sam-
pling technique for direct lighting called two stage impor-

tance sampling. The technique is unbiased, and we showed
that it works well for scenes with complex BRDFs and spa-
tially varying environment map lighting. We showed that
two stage importance sampling outperforms multiple impor-
tance sampling (MIS) and resampled importance sampling
(RIS) in a number of rendering contexts, and that the new
algorithm compares favorably with wavelet importance sam-
pling in terms of quality per number of samples at fairly low
sample densities, while requiring substantially less precom-
putation. In addition, we described a novel technique to al-
locate variable numbers of samples to different pixels in a
rendered image to reduce noise in shadow areas, and showed
that the new sample allocation technique can decrease statis-
tical and visual error in rendered images.

There is a fairly large overhead associated with partition-
ing the light source, and this limits the number of primary
rays that can be cast per pixel. It would be interesting to cast
a larger number of primary rays, and then use RIS to limit the
number of product approximations that must be evaluated.
Another idea would be to reuse partitions between primary
rays when the BRDF setup is similar enough. Currently, our
product approximation does not account for color informa-
tion because the f values and the summed area table only
store luminances. We could incorporate color into our al-
gorithm by storing a color summed area table and color f

values. Our current implementation uses a very simple rule
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to determine the number of regions to split when partition-
ing the environment map (the number of splits equals the
number of samples). There may be better heuristics for the
number of splits in terms of image quality vs. time. Finally,
we note that while our algorithm to allocate different num-
bers of samples to different pixels is useful, it does not take
directional information into account. As the algorithm now
stands, shadow regions account for the majority of the noise
at sample rates above a few dozen per pixel, so improved
anti-aliasing for shadow regions would be of great benefit.
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Figure 12: Convergence of two stage importance sampling in terms of render time. The chart plots image quality against render

time for multiple importance sampling (MIS), resampled importance sampling with two tentative samples per accepted sample

(RIS 2), our two stage importance sampling algorithm (2 Stage), and a simulated version of wavelet importance sampling

(WaIS). For comparison, we have plotted WaIS against estimated render time (solid diamonds), and using the same timing as

two stage sampling (hollow diamonds). Although WaIS beats our algorithm in terms of quality per unit time (if we don’t count

startup time) this is mainly because WaIS can generate samples more quickly. When we compare using number of samples

instead of render time (hollow diamonds), our algorithm starts out worse, but quickly converges to within a few percent of the

noise level of WaIS. Note also that render times for WaIS do not include preprocessing. A major advantage of our algorithm

over WaIS is that we have extremely low startup time (less than a second), whereas Clarberg et al. [CJAMJ05] reported startup

times of more than an hour for some scenes. The table of images gives a quality comparison for approximately equal render

times.
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Appendix A: Sample warping routines.

void warpSample1(float &s, float &t, float &prob, Region *R,
SummedAreaTable &sumTable)

{
prob = sumTable.width * sumTable.height / (float)R->area();
while (R->hasChildren()) {

if (R->splitAxis == X_AXIS) { // SPLIT ON X AXIS
if (s < R->probA) { // S IS ON MIN X SIDE

s /= R->probA;
prob *= R->probA / R->areaFractionA;
region = R->childA;

} else { // S IS ON MAX X SIDE
s = (s − R->probA) / (1 − R->probA);
prob *= (1 − R->probA) / (1 − R->areaFractionA);
R = R->childB;

}

} else { // SPLIT ON Y AXIS
.
. // Y CASE OMITTED FOR BREVITY
.

}
}
warpSample2(s, t, prob, R->x0, R->y0, R->x1, R->y1,

R->f00, R->f10, R->f01, R->f11, sumTable);
}

Figure 13: Warping Algorithm (part 1). The WarpSample1

routine is called with s and t uniformly distributed in [0,1)2,

and R set to the root node in the hierarchy. When warpSam-

ple1 returns, s and t are still in [0,1)2, but are now approxi-

mately distributed according to the product distribution, and

prob contains the probability that the resulting point was

chosen in terms of solid angle.

void warpSample2(float &s, float &t, float &prob,
int x0, int y0, int x1, int y1,
float f00, float f10, float f10, float f11,
SummedAreaTable &sumTable)

{
float f0mid, f1mid, fmid0, fmid1;
float faveA, faveB, areaFractionA;
float sumA, sumB, probA, cosPhi;
int xmid, ymid;

while ((x1−x0) > 1 || (y1−y0) > 1) {
if (x1−x0 > y1−y0) { // SPLIT ON X AXIS

.

. // X CASE OMITTED FOR BREVITY

.
} else { // SPLIT ON Y AXIS

ymid = (y0+y1)/2;
areaFractionA = (ymid−y0) / (float)(y1−y0);
f0mid = f00 + areaFractionA * (f01−f00);
f1mid = f10 + areaFractionA * (f11−f10);
faveA = f00 + f10 + f0mid + f1mid;
faveB = f0mid + f1mid + f01 + f11;
sumA = sumTable.sum(x0, y0, x1, ymid) * faveA;
sumB = sumTable.sum(x0, ymid, x1, y1) * faveB;
probA = sumA / (sumA+sumB);
if (t < pA) { // T IS ON MIN Y SIDE

t = t / probA;
prob *= probA / areaFractionA;
y1 = ymid;
f01 = f0mid;
f11 = f1mid;

} else { // T IS ON MAX Y SIDE
t = (t − probA) / (1 − probA);
prob *= (1 − probA) / (1 − areaFractionA);
y0 = ymid;
f00 = f0mid;
f10 = f1mid;

}
}

}
// CONVERT S AND T TO GLOBAL COORDINATES
s = (s+x0) / sumTable.width;
t = (t+y0) / sumTable.height;
// CONVERT TO PROBABILITY OVER SOLID ANGLE
cosPhi = cos( PI * (0.5 − t) );
prob *= cosPhi / (2.0 * PI * PI);

}

Figure 14: Warping Algorithm (part 2). The warpSample2

warps (s, t) down to the pixel level. After the warping is

done, s and t are converted to the global coordinate system

of the environment map. prob is also converted from proba-

bility over the area of the environment map to be in terms of

solid angle, multiplying by cosφ/2π2, where φ is the angle

of inclination to point (s, t) in the environment map.
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