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Abstract

We present a novel relighting approach that does not assume that the illumination is known or controllable. In-

stead, we estimate the illumination and texture from given multi-view images captured under a single illumination

setting, given the object shape. We rely on the viewpoint-dependence of surface reflectance to resolve the usual

texture-illumination ambiguity. The task of obtaining the illumination and texture models is formulated as the de-

composition of the observed surface radiance tensor into the product of a light transport tensor, and illumination

and texture matrices. We estimate both the illumination and texture at the same time by solving a system of bilinear

equations. To reduce estimation error due to imperfect input surface geometry, we also perform a multi-scale dis-

crete search on the specular surface normal. Our results on synthetic and real data indicate that we can estimate

the illumination, the diffuse as well as the specular components of the surface texture map (up to a global scaling

ambiguity). Our approach allows more flexibilities in rendering novel images, such as view changing, and light

and texture editing.

Categories and Subject Descriptors (according to ACM CCS): I.2.10 [Artificial Intelligence]: Vision and Scene

Understanding; I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism

1. Introduction

The images of a scene under varying illuminations and from

different viewpoints are highly interrelated, which makes it

possible to predict the object’s appearances from new view-

points or under different illuminations. To achieve this, im-

age based rendering and image based re-lighting techniques

(e.g. [LH96,GGSC96,WGT∗05,DHT∗00]) usually require a

dense sampling of viewpoints and/or illumination directions.

Image based modeling methods (e.g. [YDMH99, LKG∗03,

RH01, NZI01, NZI05]), on the other hand, attempt to esti-

mate parametric models of the scene appearance. Though

these methods require less input data, simultaneous estima-

tion of the illumination and texture maps from known geom-

etry and multi-view images is believed to be ambiguous, as

noted in [RH01]. Two commonly adopted solutions to this

† The support of the National Science Foundation under grant NSF

IBN 04-22073 is gratefully acknowledged. Tianli Yu is now with the

Embedded Imaging Systems Group in Motorola Labs.

Figure 1: By analyzing multi-view images of the fish, and

the Van Gogh statue, captured under a fixed unknown illu-

mination (left), we are able to extract the diffuse/specular

texture of these objects as well as the environmental illumi-

nation map. These results help us perform advanced scene

manipulations such as inserting the fish into the Van Gogh

scene (right).
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problem are to assume that the illumination is known or to

control it suitably [HS05,LKG∗03,YDMH99]. In real appli-

cations, e.g. in outdoor scenes, neither solution is feasible.

In this paper, we point out that the ambiguity in estimat-

ing the texture and illumination from multi-view images ex-

ists only for diffuse materials. By exploiting the viewpoint-

dependent portion of the object’s surface reflectance, one

can achieve the effect of varying illumination by just varying

viewpoint. We show that by separating the specular radiance

from the object appearance and using a parametric specu-

lar reflectance model, we can estimate the environment il-

lumination, surface diffuse/specular albedo map, and bump

(surface normal) map from multi-view images taken under a

single, unknown illumination setting.

The major contributions of our paper are:

1. We propose a tensor factorization framework where the

illumination and spatially varying textures can be solved

for via a bilinear factorization given the object shape and

the basis BRDFs.

2. We show that observations of the specular component

from multiple viewpoints suffice to solve for both illu-

mination and texture maps (up to a global scaling ambi-

guity). Therefore, we do not need to know, measure (e.g.,

using a light probe) or manipulate the illumination.

3. We propose a normal map search method during the illu-

mination and texture estimation to handle the imperfect

geometric input.

4. We demonstrate the application of our estimated results

in different rendering tasks such as view change, illumi-

nation and texture editing.

This paper is organized as follows. Sec. 2 gives a review of

previous work. Sec. 3 formulates the estimation problem as

a bilinear tensor factorization. Sec. 4 presents our estimation

algorithm. Sec. 5 gives the experimental results on synthetic

and real datasets and their applications in various rendering

tasks. Sec. 6 presents the conclusions and future work.

2. Previous Work

Image Based Rendering (IBR)/Re-Lighting (IBRL).

Light field rendering (LFR)/lumigraph [LH96, GGSC96]

have made IBR a great success in computer graphics. Later

improvements such as Eigen-texture [NSI99], Surface Light

Field Compression [WAA∗00] and Light Field Mapping

(LFM) [CBCG02] use more accurate geometric information

and more efficient compression techniques. These methods

can create images from novel views. But unlike the method

we present in this paper, it is not possible to modify the

texture or illumination of the scene. Image based relight-

ing [WGT∗05, DHT∗00], on the other hand, uses images

captured under different illuminations to synthesize images

of novel lighting. But the requirement of illumination control

is restrictive and not always possible. Furthermore, most of

these methods use linear interpolation to generate novel im-

ages and therefore need very dense sampling of viewpoints

and/or illumination directions. By exploiting both texture

and illumination coherency between different viewpoints,

our work requires fewer input images for synthesis than pre-

vious methods such as the Lumigraph [GGSC96], where

only texture coherency is considered.

Data Driven BRDF/BTF Modeling. Data driven models

have also been used in reflectance modeling of surface with

complex textures. Matusik et al. use densely acquired re-

flectance data to estimate the Bidirectional Reflectance Dis-

tribution Function (BRDF) [MPBM03]. Tensor factorization

methods have been used for 6-Dimensional Bidirectional

Texture Function (BTF) modeling [VT04,WWS∗05]. These

models serve as a compact representation of densely sam-

pled images for efficient rendering. An image under novel

illumination and from a new viewpoint can be generated

directly by interpolation in the compact subspace. In these

methods, illumination is both known and controlled, and it

is very difficult to modify the texture after the capturing.

Parametric Reflectance Modeling under Controlled Il-

lumination. Instead of massive data driven models, para-

metric models are also used for surface reflectance mod-

eling. One major method is based on the manipulation of

illumination. Lensch et al. [LKG∗03] extract the spatially

varying BRDF parameters of a surface with known geometry

and controlled illumination. The extracted BRDF parameters

are then used to refine the surface normals. Using a similar

setup, photometric stereo methods [HS05, Geo03] also try

to estimate the surface reflectance along with shape/normal

estimation. The effects of changing illumination can also be

achieved by rotating the object for fixed lighting and view-

point [SWI97,ZCHS03]. By controlling the illumination set-

tings, the texture-illumination ambiguity can be removed

even for a purely diffuse object. However, compared to our

method, these methods are restricted to a highly controlled

environment, and they can only deal with static objects un-

less very special hardware is used [WGT∗05].

Parametric Reflectance Modeling from Multiple

Views. Instead of varying the illumination, one can also

vary the viewpoint to solve the same problem. The advan-

tage of using such a multi-view method is that it does not

require the control of lighting. Yu et al. [YDMH99] esti-

mate the diffuse albedo map and a piecewise constant spec-

ular map from known geometry and point light sources us-

ing an inverse global illumination model. Ramamoorthi and

Hanrahan [RH01] propose a signal-processing framework

and discuss the feasibility of solving various photometric

reconstruction problems in a multi-view setup. They focus

mainly on objects with homogeneous BRDFs. To overcome

the illumination-texture ambiguity, they also assume knowl-

edge of illumination when solving for spatially varying sur-

face texture maps. Nishino et al. [NZI01, NZI05] solve the

illumination, a homogeneous specular BRDF and a diffuse
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texture map by first applying blind deconvolution on the

specular component. Although their method can also syn-

thesize relighted scene based on the images under a sin-

gle illumination setting, they assume homogeneous specular

BRDF and restrict light to be point sources. In contrast, our

method focused on resolving the illumination-texture ambi-

guity where a spatially varying specular albedo map can be

recovered together with an arbitrary illumination map repre-

sented in frequency domain.

Illumination Estimation. A mirror sphere is the standard

tool to acquire illumination. Besides that, many methods use

an object with a uniform or piecewise constant albedo. These

include the methods that use diffuse and specular reflection

to estimate multiple directional sources [ZK02], and spheri-

cal harmonic decomposition of the illumination [RH01]. In-

tensity variations due to shadows of a known shape on a uni-

form or known textured surface are also used to estimate illu-

mination [SSI03, LLLS03]. Our method, on the other hand,

can work on objects with arbitrary, unknown texture, as long

as there are view-dependent surface radiance variations.

Precomputed Radiance Transfer. PRT, which pre-

computes most of the non-linear light transport so that fast

rendering is possible, is also closely related to our work

[SKS02,SLS05,NRH04]. Our method uses a decomposition

of the surface radiance similar to the one used in PRT, but

our goal is the reverse process, namely to estimate the re-

flectance and illumination from the images.

3. Problem Formulation: Bilinear Decomposition of the

Surface Radiance Tensor

In this section, we present the basic formulation of the prob-

lem, and explain its relationship to other existing methods.

The observed object appearance is the combined effect of

environmental illumination, surface geometry, BRDF and

texture. Given the surface geometry, the radiance of the

object surface from different viewpoints and under differ-

ent illumination settings can be arranged into a 3D tensor

R∈ℜ
P×J×L, where the three dimensions, P,J,L correspond

to the surface location, viewpoint and illumination setting †.

We formulate the illumination and texture estimation prob-

lem as the decomposition of the Surface Radiance Tensor

into three components, corresponding to the illumination,

the light transport (the joint effect of basis BRDFs and sur-

face geometry), and the texture albedo.

3.1. Radiance Tensor Formation Model

Similar to the work on pre-computed radiance transfer

[SKS02,SLS05,NRH04], we divide the transformation from

† Each of these three dimensions actually has two degrees-of-

freedom. Therefore, the surface radiance tensor also represents a

6-D function that is similar to the Non-local Reflectance Field intro-

duced in [DHT∗00].

incident light to the surface radiance R into linear and non-

linear parts. Linear components of the incident light first

pass through different non-linear light transport processes.

The results are linearly weighted by the surface texture to

obtain the surface radiance. Mathematically, R can be writ-

ten as a product of three tensors:

R = A×1 B×2 H (1)

where BP×P is the albedo matrix, and HL×K is the illumi-

nation matrix, and A∈ℜ
P×J×K is the light transport tensor

(LTT) ‡(See Fig. 2 for two practical examples).

To simplify the problem, we assume the illumination is

distant so that it can be represented as a 2D spherical func-

tion. This function can be decomposed, for example, using

spherical harmonics or wavelet bases. We assume the object

is composed of a base material modulated by an albedo map

(texture), so the LTT A is fully specified by the object ge-

ometry and the base material’s BRDF. We model the surface

texture as formed by the triangles in the object’s mesh, each

having a constant albedo. The light transport tensor records

the contribution of each illumination component to each sur-

face triangle. Note that the albedo matrix B becomes a diago-

nal matrix if we assume no inter-reflection between different

triangles.

We can enrich our model’s expressiveness by using a lin-

ear combination of basis materials. Each basis material i has

its own LTT Ai and the corresponding diagonal albedo ma-

trix Bi. The radiance tensor can then be written as:

R = ∑
i

Ai ×1 Bi ×2 H (2)

Again, each light transport tensor Ai in (2) is known, given

the object geometry and the basis BRDFs. The unknowns

are the multiple albedo maps Bi and the illumination matrix

H.

In this paper, we use two basis materials, the diffuse and

specular materials. We also ignore any inter-reflections so

that Bi is diagonal. The difference between our approach

and that of Lensch et al. [LKG∗03] in handling spatially

varying materials is that the basis material is shared by the

entire surface in our formulation and the spatial variations

are introduced by linear albedo maps. This allows the fac-

torization of illumination matrix and albedo matrix simulta-

neously. Lensch et al. use more complex surface reflectance

models and rely on clustering and illumination manipulation

to solve for multiple materials.

In the rest of the paper, Sec. 3.3 discusses the condition-

ing of solving both illumination and texture given R and the

diffuse and specular LTTs. Sec. 4.1 discusses how to numer-

ically approximate these LTTs. Note that although the dif-

fuse BRDF has no parameters, the specular BRDF usually

‡ For occluded surface point the corresponding entry in LTT is

zero, meaning no light is transported to that viewpoint.
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Figure 2: Comparison of (a) varying illumination (photometric) methods, and (b) our method (multi-view with unknown illu-

mination) in terms of surface radiance tensor decomposition. Red contours indicate unknowns.

has additional parameters that are unknown. These parame-

ters are estimated using another non-linear optimization as

described in Sec. 4.3.

3.2. Varying Illumination vs. Varying Viewpoints

As discussed previously, photometric methods (calibrated or

uncalibrated) such as [LKG∗03, HS05, Geo03] manipulate

the illumination so that different transported illuminations

are multiplied with the texture albedo in order to separate the

two (Fig. 2 (a)). The advantage of controlled illumination is

that it can resolve texture-illumination ambiguity even for

pure diffuse material. However, manipulating illumination

requires a highly controlled environment.

Given the Light Transport Tensor, we separate the texture

albedo and illumination by observing the object from differ-

ent viewpoints. In order to obtain non-constant transported

illumination as in photometric methods, the LTT should have

non-constant values in the viewpoint dimension. Due to this

constraint, we cannot solve for both lighting and texture in

purely diffuse scenes − the well-known texture-illumination

ambiguity [RH01]. However, for specular objects, we can

decompose the observed surface radiance into texture albedo

and illumination matrix from images of a SINGLE UN-

KNOWN illumination setting. This method gives us greater

flexibility since the illumination no longer needs to be con-

trolled or measured even for textured surfaces.

3.3. Bilinear Factorization

Eq.(1) blends together the two sets of unknowns using the

light transport tensor A, which, given the observed surface

radiance tensor R, results in an over-determined system of

bilinear equations. There is no closed form solution to the

least squares problem of such an over-determined bilinear

system, but the normal equations of this system can be de-

rived and solved iteratively [CT97]. This is equivalent to it-

erating between fixing one set of parameters (illumination H

or texture albedo B) and solving a linear least squares prob-

lem for the other.

The stability/convergence of the bilinear factorization de-

pends on the structure of the light transport tensor. First,

there is a global scaling ambiguity between the illumina-

tion H and the texture albedo B. This can be resolved by

normalizing the DC component of the illumination to 1 §.

After the normalization, since the diffuse LTT Ad does not

vary along the viewpoint dimension, observations from dif-

ferent viewing directions does not bring enough independent

equations to constrain the unknowns and the factorization is

ill-conditioned. However, for purely specular materials, As

has linearly independent entries along the viewpoint dimen-

sion. Observing a specular objects from different directions

does give us extra equations to solve both texture albedo

and illumination. For an object with mixed diffuse and spec-

ular reflectance, one can in principle solve for the diffuse

and specular albedo, as well as the illumination using the

same iterative approach (we will refer to this as the direct

method). But in practice, because of the sparse sampling of

viewpoints, we will show that it is more stable to remove

the under-constrained diffuse component before solving the

bilinear system. Diffuse texture can be solved for later after

illumination has been estimated.

4. Illumination and Texture Estimation Algorithm

Based on the above formulation, we propose a multi-

view texture map and illumination estimation algorithm. A

schematic of our algorithm is shown in Fig. 3 (a). Our input

is a set of calibrated images of the object and its 3D shape.

The diffuse color of each triangle is first computed as the

median of its radiance observed from different viewpoints¶.

§ Our paper handles each color channel separately, so this normal-

ization sets the average color of estimated illumination to white
¶ The reason for choosing median value instead of minimum value

as the diffuse component is to reduce the noise from geometric er-
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Figure 3: (a) Flow diagram of the illumination and re-

flectance estimation algorithm. (b) Details of the Specular

Component Analysis module. Dashed arrows represent the

initialization.

It is subtracted from the surface radiance tensor to obtain the

specular radiance tensor. Based on the object geometry and

the basis BRDF, we are able to compute the specular LTT.

The illumination and specular albedo map are first solved for

in the specular component analysis. We also perform special

non-linear optimization to adjust the specular bump map and

specular BRDF parameter σ. The estimated illumination is

then used to solve for the diffuse albedo map.

4.1. Compute the Light Transport Tensor

The light transport tensor encodes all the non-linear factors

in the light transport. Significant effort has been made to

find fast and accurate ways to compute the light transport

tensor [SKS02, SLS05, NRH04]. We use spherical harmon-

ics to decompose the environment illumination, which gives

us a compact band limited representation. The spherical il-

lumination L(Θ) can be written as a linear combination of

spherical harmonic basis:

L(Θ) =
NH

∑
m=0

m

∑
n=−m

hmnYmn(Θ) (3)

rors in the real dataset. When projected to the input images, a sur-

face triangle with geometric errors might be mapped to the radiances

from different parts of the object in different views. The minimum

values of these radiances sometimes contain artifacts and are less

robust than the median value.

n
e

l

r

Figure 4: The viewing direction ~e, surface normal ~n, light

direction~l and the reflected viewing direction~r.

where NH is the highest order of harmonic series we use,

hmn are the spherical harmonic coefficients and Ymn are the

real basis functions [Wei]. To simplify notation we will iden-

tify the basis functions using a single index k, so L(Θ) =

∑
K
k=0 hkYk.

For diffuse material, the light transport is view indepen-

dent and can be computed using the lambertian law:

Ad(p, j,k) =
1

π

Z
Γ

s(Θl)Yk(Θl)(~l ·~np)dΘl (4)

where Γ is the upper hemisphere about the surface normal of

point p, and s(Θ) is the shadow function specifying whether

p is in shadow with respect to the light incident from direc-

tion Θ.

For specular BRDF, we use a gaussian filtered mirror

model. The specular reflection is computed by first filtering

the illumination function L(Θ) with a circular gaussian filter

and then reflecting it:

As(p, j,k) =
1

4πσ2

Z
Γ

exp

(

−
Φlr

2σ2

)

Yk(Θl)s(Θl)dΘl (5)

where Φlr is the angle between the light direction~l and the

reflected viewing direction ~rp j , as illustrated in Fig. 4. σ

is similar to the roughness parameter in Torrance-Sparrow

model that controls the blurry effects of the BRDF to the il-

lumination. Note that this model does not handle the Fresnel

effects so the errors near the grazing viewing angle will be

larger.

The shadow function s(Θ) is completely determined by

the object geometry. We evaluate this function on a uniform

grid of directions placed on the unit sphere. We use discrete

integral approximation to compute the diffuse and specular

light transport tensor based on these sampling directions.

4.2. Specular Component Analysis

The Specular Component Analysis module implements the

bilinear factorization algorithm discussed in Sec. 3.3, where

two linear system solvers are alternated to solve both illu-

mination and specular albedo map. Since we use the spec-

ular reflection to estimate the illumination, we require the

reflection to be observable in the input images. Similarly,

for a surface point to have non-zero specular albedo, spec-

ular reflection has to be observed from that point in at least
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Compute the target function 
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Select the candidate that 
minimize the target function

Radius small enough?

Adjust the surface normal, 
reduce the search radius 
by a constant factor

No

Yes

Original Surface Normal

Optimal Surface Normal

Figure 5: Discrete normal map search algorithm and the

hexagon normal search pattern (right).

one input image. These requirements are easier to be met

when the number of light sources and viewpoints increases.

To handle the geometric errors from the input shape (camera

calibration error, shape to camera registration error, and lack

of geometric details) and the unknown σ parameter in the

specular basis BRDF, we add a discrete normal map search

and an 1D σ search into the algorithm (Fig.3 (b)).

To compensate for the geometric error, we perform a

multi-scale greedy search in the neighborhood of the normal

computed from the input shape to reduce the sum of squared

residue of the bilinear system in Eq. (1) ‖. The search algo-

rithm is outlined in Fig. 5. During the discrete normal map

search, both the albedo map and illumination are fixed. The

estimated surface normal can be used as a specular bump

map to compute the LTT for the subsequent albedo and illu-

mination solver until a new bump map search is performed.

Each bump map search always starts from the same normal

computed from the input shape, which will prevent the nor-

mal map from diverging far away from the original shape as

the number of iterations increases.

For the unknown σ parameter in the specular basis BRDF,

we perform a 1-D golden section search to find an optimal

value. A sequence of σ values are generated according to

the golden section rules and for each σ the tensor factoriza-

tion residue is computed (after the normal map search, the

illumination and albedo estimation are finished). The value

that minimizes the residue is selected as the optimal σ. Note

that previous research [RH01] indicates that estimating σ

and illumination at the same time is not well-conditioned.

Nishino et al. [NZI01, NZI05] rely on strong regularizations

to resolve this illumination-BRDF ambiguity, which restricts

the light to be point sources and no shadowing effects. One

source of information that can be used to constraint the il-

lumination is the sharp shadow. Our LTT incorporates the

‖ This does not solve all the problems though, since the geometric

errors also give inaccurate correspondences between images, which

cannot be compensated by adjusting the surface normal.

Figure 6: Light probe data used for synthesis (left) and two

of the 24 synthesized images of the earth data set.

self-shadow information from object geometry which can be

used to disambiguate the illumination and BRDF. But even

if the scene does not have any shadow and the estimation

problem is not well-conditioned, golden section search will

converge to some intermediate value and will not diverge.

4.3. Other Implementation Details

We use OpenGL to compute the shadow function in 1164

sampling directions. For each direction, we render the sur-

face mesh orthographically onto a plane perpendicular to

that direction. The shadow function is set to 1 for all the visi-

ble triangles in that direction, and 0 for the rest. To represent

illumination, we use spherical harmonics up to the 10th or-

der, which results in an 121× 1 illumination matrix H.

The iterative algorithm in the specular component anal-

ysis is initialized by a constant specular albedo for all the

triangles and surface normal equal to the original normal

from the input shape. The search range of σ is set to be

large enough to include the typical values used in our exper-

iments. Due to the diagonal structure of the albedo matrix,

the surface albedo, given the illumination, can be solved for

independently at each surface location. On the other hand, il-

lumination, given the surface albedo, needs to be solved for

using equations (constraints) from all surface points.

We implement our algorithm in a mixed matlab and c++

program. To represent the texture and geometric details, the

input geometry is subdivided to have around 200-300K tri-

angles. For each σ value we perform 4 iterations in the spec-

ular component analysis. It takes about 12 hours for the

program to search a ten value σ sequence and estimate all

other unknowns (on a P4 2.8Ghz computer with 1 GB mem-

ory). Given the pre-computed shadow function, the render-

ing takes about 1-2 minute/frame.

5. Experimental Results

We perform experiments on one synthetic dataset and two

real datasets. We also demonstrate the application of our es-

timated results in generating novel images.

5.1. Estimation Results

We use a synthetic experiment to show that we can solve

for both texture and illumination unknowns from only multi-
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(a) (b)

Figure 7: Estimated illumination (top, in longitude [0,2π]
- latitude [0,π] plot) and specular texture (bottom) for the

earth data set. (a) Estimated results . (b) Ground truth. (The

illumination is filtered by the same phone BRDF and DC is

normalized to 1.) The root mean square error (RMSE) for

estimated illumination is 0.0026 (DC normalized to 1) and

the RMSE for estimated specular texture is 0.032.

view specular radiance given the basis light transport. We

render 24 different images of the sphere with a pure specu-

lar BRDF modulated by a texture map of the earth using the

Phong model (Fig. 6). The Phong exponent used in render-

ing is 10 for the entire sphere and the illumination is a set of

40 directional sources obtained by clustering the light probe

data. ∗∗ These light sources are converted to white color dur-

ing rendering because we cannot recover the global scaling

factor between different color channel.

Since we have the perfect geometry and sphere doesn’t

have any shadow, we don’t perform σ parameter or nor-

mal search on this data set and only use the perfect mirror

light transport model. The estimated illumination is there-

fore the combined effect of the actual illumination and the

Phong BRDF. Fig. 7(a) and (b) show the texture map and

illumination along with the ground truth illumination (af-

ter it is filtered by the same Phong BRDF and normalized

to have unit DC component) and the ground truth specular

texture map. The estimated illumination closely matches the

filtered ground truth illumination, and the estimated albedo

map correctly shows the texture variation with the exception

of some blur. This is mostly due to the truncation errors in

the spherical harmonic expansion of the illumination, and

the surface granularity we chose in the estimation. This ex-

periment shows that given the basis light transport, we can

extract the arbitrary specular texture map and illumination

up to a global scaling ambiguity.

In the second experiment, we use the fish data set captured

∗∗ http://www.debevec.org/Probes/.

Figure 8: Three of the 30 input images of the Fish data set.

Figure 9: Structured light scanned fish model (left) and the

estimated diffuse color.

by Wood et al. [WAA∗00] with structured light scanned ge-

ometric shape ††. We select 30 input images evenly dis-

tributed around the fish out of the original more than 600

images (Fig. 8) ‡‡.

We separate the diffuse and specular component by us-

ing the median color method mentioned earlier. Fig. 9 shows

the fish shape we use and the separated diffuse color, where

specular highlights are correctly removed. Fig. 11 compares

the estimation result of (a) directly solving the bilinear sys-

tem for diffuse and specular albedo (the direct method) , (b)

solving for the specular albedo after specular texture separa-

tion, and (c) the specular texture separation algorithm with

bump map optimization. The direct method shows texture

overfitting problem on the tail and the fish head area, where

strong specularities occur (Fig. 11(a)). Specular texture sep-

aration helps regularize the texture solution so the diffuse

texture becomes more uniform (Fig. 11(b)). With specular

bump map optimization, those fine details not captured in

the input shape (e.g., the fish scales) can be modeled and the

specular texture become more smooth (Fig. 11(c)). Fig. 11

also shows the synthesized images by different estimation

algorithms for one input view. The direct method shows ar-

tifacts in some region. The diffuse-specular separation helps

to remove these artifacts, and the bump map optimization

helps to fit the correct highlight region. Overall, the esti-

mation algorithm correctly decomposes the surface radiance

†† We perform additional camera-object registration refinement

based on the object silhouettes to improve the camera calibration

accuracy of the original dataset.
‡‡ Due the low intensity of the original images, all the images of

the fish data set under original illumination are scaled by a factor of

1.5 for display purpose.
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Figure 10: Original fish shape (left) compared with the es-

timated bump map (right); geometric details not modeled by

the input shape are recovered.

into illumination and diffuse/specular albedo. The estimated

illumination map shows two strong clusters of light which

correspond to the two point light sources used for capturing.

The estimated specular map also shows correct spatial vari-

ation of the texture, e.g. the golden lines on the fish. Note

that due to this light configuration, part of the fish is under

complete shadow and we cannot recover any texture infor-

mation from those parts. The synthesized images appear to

be a little blurry than the original image, which is largely due

to the calibration and geometric registration error. Since our

algorithm estimates the surface albedo by combining infor-

mation from different viewpoints, any mis-correspondence

between different input images can result in blurriness. In

Fig. 11(c), we can find some bright yellow specular region

on the fish body near the tail. That’s the estimation error due

to the inter-reflection from the tail. In our algorithm it is mis-

taken as a very bright specular albedo. Fig. 10 compares the

estimated specular bump map with the original shape. Geo-

metric details not modeled in the input shape are recovered.

We also measure the Root-Mean-Squared-Error (RMSE) of

synthesized images compared with the 30 input images. The

average RMSE is 0.0465 on a scale of [0, 1].

We also apply our algorithm to the Van Gogh data set

[CBCG02]. Fig. 12 (a) shows two of the 30 input images §§.

Fig. 12 (b) shows the estimated illumination, diffuse and

specular albedo map, and bump map. The estimated illumi-

nation shows four light spots in the upper hemisphere (left

part in the figure), and the reflections from the white desktop.

Strictly speaking, the white reflections are not distant illumi-

nation to the object, so estimates in that region are noisier.

The inter-reflection on the statue makes the diffuse estimate

appears brighter especially in the shadowed regions (e.g. sur-

face areas facing downwards). Ideally, the specular albedo

map should be uniform, but the actual estimated results are

quite noisy, which suggests these extra degrees-of-freedom

(the per-triangle specular albedo) are used to compensate the

various errors in calibration, geometric registration and light

§§ Original Van Gogh data set used in [CBCG02] has more than

300 images.

transport models. Fig 12 (d) plots the RMSE for the synthe-

sized result in all the 30 input images and 22 novel images.

5.2. Applications in Rendering

Due to the limit amount of data available (only images un-

der a single illumination setting), our goal is not to recover

physically accurate surface reflectance properties, but a de-

composition consistent with the input data given the light

transport models. This decomposition can be used to gener-

ate novel images in many rendering tasks, such as synthesiz-

ing novel views of the object, relighting the object in a new

environment, or changing the material of the object.

For example, Fig. 13 (a) shows the synthesized image for

the fish data set from a novel viewpoint. Fig. 13(b) shows the

result of modifying the diffuse material in a part of the fish.

In Fig. 13 (c) we render the fish model after rotating the illu-

mination, and under a new illumination captured by a light

probe. Fig. 13 (d) shows the rendered Van Gogh model in a

novel view compared with the ground truth image. Fig. 13

(e, f) demonstrate the effect of light editing. We can change

individual light sources in the illumination map to differ-

ent colors. Note that only part of the highlight area changes

color. Fig. 13 (g) shows synthesized images under illumi-

nation from the Fish data set and under a new illumination

captured by a light probe.

Under our tensor factorization framework, we expect the

accuracy of estimation to improve with more light transport

tensors (LTT) or input data from different illumination.

6. Conclusions and Future Work

In this paper, we have considered the problem of simulta-

neously estimating the illumination, diffuse/specular texture

map, and bump map from multi-view images under a fixed

illumination. We show that view dependent light transport

can be used to resolve the texture-illumination ambiguity.

The illumination and the texture albedos are estimated by

iteratively solving a bilinear system of equations. Our algo-

rithm also performs non-linear optimizations of the specular

bump map and the BRDF parameter. Experimental results

show that our algorithm can be used to estimate both the

texture map and illumination, and also refines the surface ge-

ometry. The estimated result can be used to render the object

for novel views, novel illumination and after texture change.

Following are some possible directions for further work.

The estimated bump map can be integrated back into the

geometric model to recover more consistent shape details.

More complex light transport model than the current diffuse-

specular model can be used, but this should be done without

making the estimation ill-conditioned. Inter-reflection be-

tween object parts can be modeled if the albedo matrix has

non-zero off-diagonal entries. We are also working on the

theoretical proof on the exact conditions of ambiguity in the

bilinear factorization.
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(a) (b) (c)

Figure 11: Estimated diffuse albedo (top left), specular albedo (top right), environment illumination (bottom left), and synthe-

sized image from an input view (bottom right) for (a) direct method (RMSE = 0.0548), (b) specular texture separation method

(RMSE = 0.0441), and (c) specular texture separation with bump map optimization (RMSE = 0.0331). The ground truth image

is shown in Fig. 8 right.
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Figure 12: (a) Two of the 30 input images of the Van Gogh data set. (b) Estimated illumination, diffuse albedo, and specular

albedo. (c) Estimated specular bump map compared with the original surface shape (right). (d) RMSE of the synthesized images

in all 30 input views, (blue line, average RMSE = 0.0507) and 22 novel views (red line, average RMSE = 0.0619).

References

[CBCG02] CHEN W.-C., BOUGUET J.-Y., CHU M. H.,

GRZESZCZUK R.: Light field mapping: efficient repre-

sentation and hardware rendering of surface light fields.

ACM Trans. Graph. 21, 3 (2002), 447–456.

[CT97] COHEN S., TOMASI C.: Systems of Bilinear

Equations. Tech. rep., Stanford, CA, USA, 1997.

[DHT∗00] DEBEVEC P., HAWKINS T., TCHOU C.,

DUIKER H.-P., SAROKIN W., SAGAR M.: Acquiring the

reflectance field of a human face. In SIGGRAPH ’00:

Proceedings of the 27th Annual Conference on Computer

Graphics and Interactive Techniques (2000), pp. 145–

156.

[Geo03] GEORGHIADES A.: Incorporating the torrance

and sparrow model of reflectance in uncalibrated pho-

tometric stereo. In Proceedings of the 9th IEEE Inter-

national Conference on Computer Vision (2003), vol. 2,

pp. 816–823.

[GGSC96] GORTLER S. J., GRZESZCZUK R., SZELISKI

R., COHEN M. F.: The lumigraph. In SIGGRAPH

’96: Proceedings of the 23rd annual conference on Com-

puter graphics and interactive techniques (New York, NY,

USA, 1996), ACM Press, pp. 43–54.

[HS05] HERTZMANN A., SEITZ S. M.: Example-based

photometric stereo: Shape reconstruction with general,

varying BRDFs. IEEE Trans. PAMI 27, 8 (2005), 1254–

1264.

[LH96] LEVOY M., HANRAHAN P.: Light field rendering.

In SIGGRAPH ’96: Proceedings of the 23rd annual con-

ference on Computer graphics and interactive techniques

(New York, NY, USA, 1996), ACM Press, pp. 31–42.

[LKG∗03] LENSCH H. P. A., KAUTZ J., GOESELE M.,

HEIDRICH W., SEIDEL H.-P.: Image-based reconstruc-

tion of spatial appearance and geometric detail. ACM

Trans. Graph. 22, 2 (2003), 234–257.

[LLLS03] LI Y., LIN S., LU H., SHUM H.-Y.: Multiple-

cue illumination estimation in textured scenes. In Pro-

ceedings of the 9th IEEE International Conference on

Computer Vision (Washington, DC, USA, 2003), p. 1366.

[MPBM03] MATUSIK W., PFISTER H., BRAND M.,

c© The Eurographics Association 2006.

49



Tianli Yu et al. / Sparse Lumigraph Relighting by Illumination and Reflectance Estimation from Multi-View Images

MCMILLAN L.: A data-driven reflectance model. ACM

Trans. Graph. 22, 3 (2003), 759–769.

[NRH04] NG R., RAMAMOORTHI R., HANRAHAN P.:

Triple product wavelet integrals for all-frequency relight-

ing. ACM Trans. Graph. 23, 3 (2004), 477–487.

[NSI99] NISHINO K., SATO Y., IKEUCHI K.: Eigen-

texture method: appearance compression based on 3d

model. In Proceedings of IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR’99) (1999),

pp. 618–624.

[NZI01] NISHINO K., ZHANG Z., IKEUCHI K.: Deter-

mining reflectance parameters and illumination distribu-

tion from a sparse set of images for view-dependent image

synthesis. In Proceedings of International Conference on

Computer Vision (ICCV 2001) (2001), pp. 599–606.

[NZI05] NISHINO K., ZHANG Z., IKEUCHI K.: Re-

rendering from a Sparse Set of Images. Tech. Rep. DU-

CS-05-12, Department of Computer Science, Drexel Uni-

versity, 2005.

[RH01] RAMAMOORTHI R., HANRAHAN P.: A signal-

processing framework for inverse rendering. In Proceed-

ings of SIGGRAPH (2001), pp. 117–128.

[SKS02] SLOAN P.-P., KAUTZ J., SNYDER J.: Precom-

puted radiance transfer for real-time rendering in dy-

namic, low-frequency lighting environments. In SIG-

GRAPH ’02: Proceedings of the 29th annual conference

on Computer graphics and interactive techniques (New

York, NY, USA, 2002), ACM Press, pp. 527–536.

[SLS05] SLOAN P.-P., LUNA B., SNYDER J.: Local,

deformable precomputed radiance transfer. ACM Trans.

Graph. 24, 3 (2005), 1216–1224.

[SSI03] SATO I., SATO Y., IKEUCHI K.: Illumination

from shadows. IEEE Trans. Pattern Anal. Mach. Intell.

25, 3 (2003), 290–300.

[SWI97] SATO Y., WHEELER M., IKEUCHI K.: Object

shape and reflectance modeling from observation. In

Computer Graphics Proceedings, Annual Conference Se-

ries (1997), pp. 379–388.

[VT04] VASILESCU M., TERZOPOULOS D.: Tensortex-

tures: Multilinear image-based rendering. ACM Transac-

tions on Graphics 23, 3 (2004), 334–340.

[WAA∗00] WOOD D. N., AZUMA D. I., ALDINGER K.,

CURLESS B., DUCHAMP T., SALESIN D. H., STUET-

ZLE W.: Surface light fields for 3D photography. In SIG-

GRAPH ’00: Proceedings of the 27th Annual Conference

on Computer Graphics and Interactive Techniques (New

York, NY, 2000), pp. 287–296.

[Wei] WEISSTEIN E. W.: MathWorld–A Wolfram Web Re-

source. MathWorld.

[WGT∗05] WENGER A., GARDNER A., TCHOU C.,

UNGER J., HAWKINS T., DEBEVEC P.: Performance

relighting and reflectance transformation with time-

multiplexed illumination. ACM Trans. Graph. 24, 3

(2005), 756–764.

[WWS∗05] WANG H., WU Q., SHI L., YU Y., AHUJA

N.: Out-of-core tensor approximation of multi-

dimensional matrices of visual data. ACM Trans. Graph.

24, 3 (2005), 527–535.

[YDMH99] YU Y., DEBEVEC P., MALIK J., HAWKINS

T.: Inverse global illumination: Recovering reflectance

models of real scenes from photographs. In Proceedings

of SIGGRAPH (1999), pp. 215–224.

[ZCHS03] ZHANG L., CURLESS B., HERTZMANN A.,

SEITZ S. M.: Shape and motion under varying illumina-

tion: Unifying structure from motion, photometric stereo,

and multi-view stereo. In The 9th IEEE International

Conference on Computer Vision (Oct. 2003), pp. 618–

625.

[ZK02] ZHOU W., KAMBHAMETTU C.: Estimation of il-

luminant direction and intensity of multiple light sources.

In Proceedings of the 7th European Conference on Com-

puter Vision-Part IV (2002), pp. 206–220.

c© The Eurographics Association 2006.

50




