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Abstract
Physically-based reflectance models typically represent light scatteringas a function of surface geometry at the
pixel level. With changes in viewing resolution, the geometry imaged within a pixel can undergo significant varia-
tions that result in changing reflectance characteristics. To address these transformations, we present a multires-
olution reflectance framework based on microfacet normal distributions within a pixel over different scales. Since
these distributions must be efficiently determined with respect to resolution,they are recorded at multiple reso-
lution levels in mipmaps. The main contribution of this work is a real-time mipmap filtering technique for these
distribution-based parameters that not only provides smooth reflectance transitions in scale, but also minimizes
aliasing. With this multiresolution reflectance technique, our system can rapidly and accurately incorporate fine
reflectance detail that is customarily disregarded in multiresolution rendering methods.

Categories and Subject Descriptors(according to ACM CCS): I.3.5 [Computer Graphics]: Physically based modeling

1. Introduction

Various computer graphics techniques have been presented
for rendering objects at different resolutions. For example,
object geometry at different scales has been addressed by
work in multiresolution meshes (e.g., [Hop96]), and color
textures can be rendered at different levels of detail us-
ing mipmaps [Wil83]. These multiresolution representations
serve the purpose of reducing run-time computation by ap-
proximating small-level details in a manner that maintains
accurate appearance.

Although geometry and textures are often modelled at
multiple scales, the reflectance properties of an object are
customarily represented by a fixed bidirectional reflectance
distribution function (BRDF). Reflectance characteristics
such as shading and highlights, however, clearly depend
upon the surface geometry imaged within a pixel, and typi-
cally the geometric characteristics at the pixel level change
with scale, as shown in Fig.1. As the viewer zooms out
from a surface, fine-level geometric elements known as
mesostructure reduce in scale into the pixel domain. Since
changes in resolution can alter geometric characteristics at
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the pixel level as illustrated in Fig.2, reflectance should also
change accordingly.

To address this problem, we propose a technique for real-
time rendering of multiresolution reflectance with respect
to the geometric structure within each pixel. In represent-
ing pixel-level geometry, most physically-based reflectance
models consider a surface to be composed of planar micro-
facets, and their surface normal directions are represented by
a Gaussian distribution [CT81,APS00]. As seen in Fig.2, a
single Gaussian is often inadequate for modeling the more
complex microfacet normal distributions of low resolution
pixels which view a broader surface area, so a Gaussian mix-
ture model (GMM) may be employed to more accurately
convey multi-resolution variations in pixel geometry. Con-
ventional microfacet-based reflectance models can be di-
rectly extended to compute reflectance from GMMs, and in
our implementation, we utilize a combination of extended
Lambertian and Cook-Torrance models [CT81] for the dif-
fuse and specular components of reflectance, respectively.

The principal challenge of employing a multiresolution
reflectance model is in how to efficiently and accurately de-
termine the reflectance parameters at different scales. Since
mesostructure geometry can vary over a surface, these re-
flectance parameters can be spatially variant as well. In ob-
taining GMM parameters at multiple resolutions, it is im-
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(a) (b)
Figure 1: Changing reflectance characteristics of a desert at
different resolutions. (a) Rendering results with our method;
(b) Real photographs captured at similar resolutions.

practical to assemble and process the microfacets of each
pixel at runtime, so we precompute and store them in
mipmaps. However, since reflectance is a non-linear func-
tion of distribution-based GMM parameters, these GMM
mipmaps cannot be trilinearly interpolated like color tex-
tures. Moreover, since reflectance is very sensitive to geo-
metric information, filtering of GMM parameters must be
carefully considered for aliasing to be minimized.

The primary contribution of our work is a method for
constructing and filtering reflectance mipmaps that represent
pixel geometry information. To promote accurate mipmap
interpolation, we propose a Bayesian algorithm for prefilter-
ing normal distributions such that a correspondence of distri-
bution features is obtained. For corresponding features, we
present a rapid filtering technique that capitalizes on hard-
ware mipmapping functions to perform the non-linear fil-
tering needed to optimally interpolate the distribution-based
quantities. Though the formulation of the prefiltering algo-
rithm is somewhat involved, the runtime mipmap interpo-
lation and reflectance computation are simple and straight-
forward to implement. With this method, accurate scale-
dependent reflectance effects with smooth transitions are
rendered at high frame rates with negligible aliasing.

2. Previous Work
Numerous reflectance models have been proposed in com-
puter graphics, and they have generally been designed for
rendering BRDFs at a fixed resolution. Although some
empirical models, such as spherical harmonics [WAT92],
have the flexibility to represent multiresolution reflectance,
we take a physically-based approach and focus on the re-
flectance effects of changing pixel geometry through multi-
ple resolutions.

To account for the effect of pixel geometry on reflectance,
Becker and Max [BM93] tabulate at rendering time the
distribution of unoccluded normals from the projected dis-
placement map in each pixel. For a substantial reduction
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Figure 2: Normal distributions at coarser resolution (top),
and finer resolution (bottom). Distributions within a pixel
change with respect to rendering resolution, which causes
reflectance variations over different scales.

in run-time computation, mipmaps of geometric attributes
have been employed. For a mipmap of bump maps, Toksvig
[Tok04] presents a method for adjusting surface roughness
values over multiple scales based on a simple consistency
measure of surface normal directions. In rendering com-
plex volumetric structures at multiple scales, Neyret [Ney98]
mipmapped intra-pixel geometry that was expressed in terms
of an ellipsoid model of normal distributions.

At coarse resolutions, the geometry within a pixel can be-
come so complicated that a more general model is needed for
accurate representation. More important, the subsampling
of normal distributions that effectively occurs with simpli-
fied models can lead to significant aliasing that is magnified
in rendering due to the sensitivity of reflectance to surface
normals, as illustrated in Fig.4 (a). A high sampling rate
is utilized in a method by Fournier [Fou92], which mod-
els reflectance as a set of seven Phong peaks per texel. In
the mipmap filtering process, Phong peaks from interpolated
texels are scaled and aggregated such that up to 56 peaks
are used in rendering a pixel, which entails a non-trivial ex-
pense in computation. Similar to Fournier’s work, we repre-
sent pixel geometry in terms of a GMM of normal direc-
tions. However, efficient filtering of these highly-sampled
distribution-based parameters poses a challenging problem
that was not addressed in [Fou92]. In this work, we success-
fully interpolate these reflectance mipmaps by using a pro-
posed prefiltering technique for GMM mipmap construction
and by non-linear filtering of the reflectance parameters in
a manner that exploits linear hardware filters. With this ap-
proach, resolution dependencies of reflectance are modeled
accurately and efficiently.

3. Multiresolution Reflectance Model
Microfacet normal distributions are typically represented
by a single Gaussian lobe, which is suitable for micro-
scale surface normal variations referred to as surface rough-
ness [TS67]. At coarser resolutions where surface geometry
perturbs the distribution of normals in a pixel, the single-
Gaussian model becomes less valid, as illustrated in Fig.2.
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For a multiresolution representation, a more general descrip-
tor is needed, so we employ a Gaussian mixture model
(GMM) of normal distributions. GMMs have long been used
for modeling general distributions, and the use of two Gaus-
sians for representing normal distributions has been sug-
gested previously [CT81]. Since a single Gaussian describes
a micro-scale normal distribution at a single point, the distri-
bution for a pixel that encompasses multiple such points can
be expected to have a mixture of Gaussians form

G(n) =
N

∑
i=1

αig(n;µi ,σi),

whereN is the number of Gaussians,g(·) is a Gaussian with
mean normal vectorµi = (µi(x),µi(y)) and univariate stan-
dard deviationσi , andαi are mixture weights. Considering
surface geometry as a height fieldz= f (x,y), a unit normal
n can be represented as a 2D vector in x-y space.

For a GMM distribution of microfacet normals, the Lam-
bertian and Cook-Torrance models can be directly extended
by summing the reflectance values for each individual Gaus-
sian. For the Cook-Torrance component, this sum can be ex-
pressed as

ICT = ρsF(u)
N

∑
i=1

αi

[

g(h,µi ,σi)

µi ·v

]

whereρs is the illumination color,l andv are lighting and
viewing directions defined in the local coordinate frame,
andF(u) is the simplified Fresnel function of the material
[Sch94] with respect tou = max{v · h,0} whereh denotes
the bisector ofl andv. Similarly, the Lambertian component
can be formulated for a sum ofN Gaussians, whose mean
normal vectorsµi are used to represent surface normals:

ILamb= ρd(1−F(u))
N

∑
i=1

αi [µi · l] .

whereρd is the average albedo of the microfacets in a pixel
as determined from a color mipmap. A scale dependent
reflectance function that employs GMMs can then be ex-
pressed as a sum of these two components:

I = ICT + ILamb.

4. Reflectance Mipmaps

For efficient rendering of the scale-dependent reflectance
function, the GMM parameters need to be rapidly deter-
mined. To facilitate this computation, we precompute a re-
flectance mipmap for which the GMM parameters of each
texel are computed according to normal samples drawn from
the finest-resolution surface height field.

In filtering a reflectance mipmap, a GMM̂Θ = {ĝi :=
(α̂i , µ̂i , σ̂i);1≤ i ≤ N} needs to be accurately and efficiently
interpolated from theK GMMs {Θk;1≤ k ≤ K} = {gki :=
(αki,µki,σki);1 ≤ i ≤ N,1 ≤ k ≤ K} of the neighboringK
texels. Although standard graphics hardware provides an ef-
ficient trilinear interpolation function, the distribution-based
GMM parameters are non-linearly related to reflectance, and
therefore cannot be accurately filtered by trilinear interpola-
tion. As noted by [Fou92], K N-modal distributions may be
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Figure 3: Interpolation of unaligned (a) and aligned (b)
GMMs. Gaussian components are numbered to show the
correspondence. Interpolation takes place between Gaus-
sian lobes with same index. While alignment maintains
proper geometric characteristics after interpolation, mis-
alignment results in lost detail and essentially a reduction
in sampling rate.

interpolated by anNK-modal distribution, and allNK com-
ponents should ideally be rendered and summed for accu-
rate computation of reflectance. However, this accumulation
of distribution components dramatically degrades rendering
efficiency.

To address this problem, we propose a GMM preprocess-
ing and filtering technique that accurately and efficiently
computes interpolated GMMs that have the same number
of Gaussian components as the GMMs of mipmap texels.
For each Gaussian component ˆgi of the filtered GMM, we
interpolate corresponding Gaussiansgki,1 ≤ k ≤ K, from
the GMMs of theK neighboring texels. To elevate accuracy,
we present an algorithm that computes mipmap GMMs in
a manner that yields similar means for corresponding Gaus-
siansgki among neighboring texels. For efficiently filtering
this precomputed reflectance mipmap at rendering time, we
describe a technique for optimal non-linear interpolation of
corresponding GMM components that takes advantage of
trilinear filters in standard graphics hardware.

4.1. GMM Alignment
Interpolating a set ofK Gaussians by a single Gaussian can
be accurate only when the centers of these Gaussians are
closely located. To minimize interpolation error, it is there-
fore necessary for neighboring texels to have aligned GMMs
such that corresponding Gaussian components have simi-
lar means. As illustrated in Fig.3, if corresponding Gaus-
sians have means that are distant from one another, the fil-
tered GMM tends to be averaged towards a single lobe,
effectively resulting in a downsampled representation that
causes strong aliasing. To facilitate alignment of GMM com-
ponents among neighboring mipmap texels, we propose a
modification to the Expectation-Maximization (EM) algo-
rithm [DLR77, Bil97] that solves for the texel GMMs in a
manner that favors close alignment of neighboring GMM
components.

With the traditional EM algorithm, the parametersΘ of an
N-Gaussian GMM are computed according to normal sam-
ples X = {n j ;1 ≤ j ≤ M} drawn from the original high-
resolution height field, such that

Θ = argmaxP(X|Θ) = argmaxΠM
j=1

(

ΣN
i=1αig(n j ;µi ,σi)

)

.
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To globally align GMM components of neighboring texels,
we introduce the following prior constraint on GMM param-
etersΘ with respect to the GMM parameters of neighboring
texelsN(Θ) = {Θk;1≤ k≤ K}:

P(Θ|N(Θ)) = ΠK
k=1P(Θ|Θk) = ΠK

k=1ΠN
i=1exp(−αki||µki−µi ||

2)

P(Θ|Θk) is at its largest when the corresponding means
µi ,µki are identical, and maximizing it will favor neighbor-
ing GMMs with similar means for corresponding Gaussian
components. Moreover, the penalty for discrepancies among
Gaussian means||µki −µi ||

2 is scaled byαki, which allows
a larger discrepancy for less important Gaussians with a
smaller mixture weight. In some cases, the computed weight
of a Gaussian component may be zero,αki = 0, when the
Gaussian does not contribute significantly to the GMM and
does not correspond well with the neighboring GMMs. As
such, the GMM parameters can be well defined by the fol-
lowing maximum a posterior (MAP) formula:

Θ = argmaxP(Θ|X) = argmaxP(X|Θ)P(Θ|N(Θ))

= argmax[log(P(X|Θ))+ log(P(Θ|N(Θ)))]

This posterior can be maximized by the Expectation-
Maximization algorithm [Bil97]. For each texel in the
mipmap, we alternately compute the expectation of sample
n j drawn from thei-th Gaussian component

Ezi j = αig(n j ;µi ,σi)/
N

∑
k=1

αkg(n j ;µk,σk),

and the maximization of the GMM parameters

αi =
∑M

j=1 Ezi j
M

σ2
i =

M

∑
j=1

Ezi j
||n j −µi ||

2

M ·d

µi ≈
∑M

j=1 Ezi j n j +c∑K
k=1 αkiµki

∑M
j=1 Ezi j +c∑K

k=1 αki

until the GMM parameters converge. Here,αki,µki are the
GMM parameters of neighboring texelk, d = 2 is the dimen-
sion of the unit normal vector, andc is a constant that mod-
ulates smoothness among corresponding Gaussians, which
we set to 1 for all experiments.

To accelerate convergence, normal samples are clustered
into N groups and each group is used to compute the initial
values ofgi = (αi ,µi ,σi);1≤ i ≤ N. In a mipmap structure,
each texel has 13 neighbors: eight at the same level, one from
the immediate coarser level, and four at the finer level. Be-
cause of this network relationship, all the GMM parameters
should ideally be estimated simultaneously, but this would
result in a complex and expensive optimization. Instead, we
compute the GMM of each texel one by one in scanline or-
der, moving from coarser to finer levels, during which only
those texels whose GMM parameters have been computed
are counted as valid neighbors. Generally, this mipmap pre-
computation step converges quickly, in about 5 minutes for
a 512×512 height field with a 2.8 GHz Pentium IV CPU.

4.2. Interpolation of Aligned GMM Components
With GMMs aligned by the described EM algorithm
and stored in the reflectance mipmap, filtering is per-

   

(a)

   

(b)
Figure 4: A closeup section of the carved silver disk in
Fig. 6 for three consecutive frames. (a) Rendered using the
Toksvig method with a 16-bit floating-point normal mipmap;
(b) Rendered with our method. Our results are more consis-
tent between frames, while the Toksvig method has signif-
icant animation aliasing. In comparison to a ground truth
image that traces 16 rays/pixel with our detailed reflectance
model, the normalized Euclidean color error per pixel is
0.060 for our method and 0.165 for the Toksvig method.

formed among corresponding GMM components. For
the i-th component of a GMM, an interpolated Gaus-
sian g(n, µ̂i , σ̂i) is computed according to samples
drawn from the K corresponding Gaussian distribu-
tionsg(n;µki,σki),k = 1,2, · · · ,K. An optimal interpolation
can be expressed in closed-form as ˆµi = 1

K ∑K
k=1 µki and

σ̂i
2 = 1

K ∑K
k=1

[

σki
2 + ||µki||

2
]

− ˆ||µi ||
2
. Although the

Gaussian mean ˆµi can be directly computed by trilinear in-
terpolation, the variancêσ2 cannot be interpolated linearly.
However, the above closed-form solutions can be expressed
using the the hardware trilinear interpolation functionT(p)
for parameterp, such that optimal non-linear filtering ofσ̂
can nevertheless be efficiently computed in hardware as

µ̂i = T(µi) σ̂i
2 = T(σ2

i + ||µi ||
2)−||µ̂i ||

2.

Taking the GMM mixture coefficientsαi into account, the
above interpolation formulas can be extended to

α̂i = T(αi) µ̂i = T(αiµi)/T(αi)

σ̂i
2 = T(αi(σ2

i + ||µi ||
2))/T(αi)−||µ̂i ||

2

as derived in the Appendix. To facilitate this computation,
the i-th Gaussian is stored in a floating-point texture map as
(αi ,αiµi(x),αiµi(y),αi(σ2

i + ||µi ||
2)), and hardware trilinear

interpolation can directly be used to filter it. Since graph-
ics hardware performs trilinear interpolations in real time,
the distribution-based reflectance mipmaps are interpolated
rapidly enough for real-time rendering. Our current imple-
mentation utilizes mixtures of four Gaussians, where each
Gaussian component is stored as a texture.

5. Results
We implemented our algorithm on a PC with a 2.8 GHz Pen-
tium IV CPU and an nVIDIA 6800 GT graphics card. The
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(a) (b)

(c) (d) (e)

Figure 5: Interpolation of independently computed GMMs
in (a), and aligned GMMs from our method in (b). In (a)
and (b), each black square represents a texel, and the dash
square denotes a pixel area that overlaps parts of four tex-
els. Gaussian components are numbered to show the corre-
spondence, and interpolation takes place between compo-
nents with the same index. Interpolation of (a) generates (c),
which is far from the ground truth normal distribution (d).
Interpolation of (b) generates a distribution (e) closer to (d).

hardware-accelerated rendering is implemented in a single
pass using Pixel Shader 3.0 and Vertex Shader 3.0 with Di-
rectX. In total, 241 instructions are used in the Pixel Shader
among which 4 are texture instructions and 45 instructions
are used for the Vertex Shader.

Toksvig [Tok04] proposed a simple method that utilizes a
single Gaussian with variant deviation to model microfacet
normal distributions at different resolutions. However, sub-
sampling a complex normal distribution by a single Gaus-
sian can lead to significant aliasing. In Fig.4, we compare
aliasing of the method of Toksvig [Tok04] with that of our
method for three consecutive frames from a camera zooming
out. For a clearer contrast between the two methods, we refer
the reader to the accompanying video, in which our method
renders this example at 120 fps while our implementation of
the Toksvig method renders at 125 fps.

In Fig. 5, the importance of GMM alignment is illus-
trated for the metal disk of Fig.6. GMM interpolation results
for aligned GMMs and unaligned, independently computed
GMMs are displayed as microfacet normal histograms in x-
y space. If GMM parameters are computed independently
at each texel, the clarity of surface details is decreased and
aliasing is introduced, as displayed in Fig.6.

The need for multiresolution reflectance is exemplified by
both the desert in Fig.1 and the armor in Fig.8, which con-
sists of many small hemispherical metal scales. At coarser
resolutions, the normal distribution within each pixel broad-
ens, which effectively increases the surface roughness. In the

   

(a) (b) (c)
Figure 6: GMM alignment for filtering. (a) With unaligned
GMM mipmap; (b) Ground truth by multiple ray tracing;
(c) With aligned GMM mipmap, formed by our method for
normal distribution prefiltering. Interpolation of unaligned
GMMs results in significant aliasing and loss of detail.

 

 

Figure 7: Comparison of our result (top) and a result us-
ing Fournier’s method (bottom). In comparison to multi-
ple ray tracing, the color error in terms of normalized Eu-
clidean color distance is 0.041 for our method and 0.123 for
Fournier’s method.

figure, we compare our rendering results, results with a fixed
BRDF represented by our reflectance model at highest reso-
lution, and a ground truth image computed by multiple ray
tracing (16/pixel). Since a fixed BRDF does not account for
changes in pixel geometry at different scales, an incorrect
amount of shine appears at coarse resolutions. Our frame
rates for the desert and armor examples are 45 fps and 107
fps respectively at a 500× 500 screen size, while multiple
ray tracing renders at about 0.01 fps for the armor.

A comparison to Fournier’s method with four Phong
peaks is exhibited in Fig.7, which displays a carved disk
viewed from an oblique angle. A technical difficulty in using
a combination of Phong peaks is its sensitivity in data fitting,
which leads to some rendering artifacts. This example high-
lights the ability of our method to utilize additional hard-
ware mipmap features, such as anisotropic filtering in this
case, which is made possible by its use of hardware trilinear
interpolation functions. Additionally, our method renders an
order of magnitude faster than a hardware implementation
of Fournier’s method, at 120 fps vs. 13 fps for this disk, even
though our method utilizes a more sophisticated reflectance
model. For further comparisons, we refer the reader to the
accompanying video.
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(a) (b) (c) (d)

Figure 8: Golden armor rendered at different resolutions. From a higher resolution (a) to a lower resolution (b), our method
captures changes in reflectance properties, as seen in comparison to aground truth image (c) rendered by multiple ray tracing.
If reflectance variation is ignored and the armor is rendered with a fixed reflectance, overly shiny armor results at a coarse
resolution (d). At the coarse resolution, the normalized Euclidean color error per pixel in comparison to multiple ray tracing is
0.058 for our method and 0.175 for the fixed BRDF.

6. Conclusion
We have presented a real-time technique for multiresolu-
tion rendering of geometry-based reflectance. To handle
distribution-based reflectance parameters needed for model-
ing multiresolution pixel geometry, we presented a method
for mipmap precomputation that computes GMM parame-
ters in a manner that yields accurate filtering and minimal
aliasing. Although reflectance is represented by distribution-
based quantities, we show how linear hardware filters can be
exploited to attain real-time rendering.
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Appendix
To linearly interpolate GMMs{Θk;1 ≤ k ≤ K} according to texel
weights{wk;1 ≤ k ≤ K}, we totally drawN samples from these
GMMs, among whichNk samples come from GMMΘk. Here,
N = ∑K

k=1 Nk and Nk/N = wk. The optimal interpolation ˆgi is fit
to samples drawn from corresponding Gaussians{gki;1≤ k ≤ K}.
The number of samples drawn fromgki is Nkαki. The mean and vari-
ance of these samples areµki andσ2

ki respectively. Therefore,

α̂i =
1

N

K

∑
k=1

Nkαki =
K

∑
k=1

Nk

N
αki =

K

∑
k=1

wkαki = T(αi)

µ̂i =
∑K

k=1(Nkαki)µki

∑K
k=1 Nkαki

=
∑K

k=1
Nk
N αkiµki

∑K
k=1

Nk
N αki

=
∑K

k=1 wk(αkiµki)

∑K
k=1 wkαki

=
T(αiµi)

T(αi)

||µ̂i ||
2 + σ̂i

2 =
∑K

k=1(Nkαki)(||µki||
2 + σ2

ki)

∑K
k=1 Nkαki

=
∑K

k=1
Nk
N αki(||µki||

2 + σ2
ki)

∑K
k=1

Nk
N αki

=
∑K

k=1 wk
(

αki(||µki||
2 + σ2

ki)
)

∑K
k=1 wkαki

=
T

(

αi(||µi ||2 + σ2
i )

)

T(αi)
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