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Abstract
We present a system for interactively capturing, constructing, and rendering surface light fields by incrementally
building a low rank approximation to the surface light field. Each image is incorporated into the lighting model as
it is captured, providing the user with real-time feedback. This feedback enables the user to preview the lighting
model and direct the image acquisition towards undersampled areas of the object. We also provide a novel data-
driven quality heuristic to aid the user in identifying undersampled regions. Our system is an order of magnitude
faster than previous systems, and reduces the time necessary to capture the images and construct a surface light
field from hours to minutes.

Categories and Subject Descriptors (according to ACM CCS): I.4.1 [Digitization and Image Capture]: Reflectance

1. Introduction

Collecting the numerous images needed for the construction
of surface light fields is a time-consuming and tedious pro-
cess. Since the result can be viewed only after a lengthy post-
process is complete, it can be difficult to determine when
the light field is sufficiently sampled. It is not enough to
uniformly sample the hemisphere, as this may miss high-
frequency information such as highlights. Often, uncertainty
about the sampling density leads users to capture many more
images than necessary in order to guarantee adequate cover-
age. If undersampling artifacts are visible in the result, more
images must be acquired and the entire factorization post-
process must be repeated. These data-acquisition problems
can be traced to the lack of feedback during the image cap-
ture process, as humans are quite adept at recognizing under-
sampling errors. An incremental algorithm provides the user
with feedback as the lighting model is being constructed,
allowing the user to obtain the necessary quality and avoid
taking many extra pictures. Examples of several models can
be seen in Figure 1.

In this paper we present a system for incrementally cap-
turing, constructing, and rendering a surface light field with
fixed illumination conditions and known geometry. Each im-
age is incorporated into the lighting model as it is captured,
providing the user with real-time feedback. This feedback
enables the user to preview the surface light field and di-
rect the image acquisition towards undersampled regions.

Figure 1: A heart figurine, a marble pestle, and a copper
pitcher captured and rendered with our online system.

We also introduce a novel data-driven quality heuristic to
highlight these areas.

We were inspired by Rusinkiewicz [RHHL02], who de-
scribed a system to interactively capture geometry. The user
was incorporated into the processing loop, which enabled
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them to view the sampling and to steer the solution to elimi-
nate holes in the model. Our goal is to make a similarly easy-
to-use system to capture the reflectance properties of an ob-
ject. Our online light-field capture process enables the user
to examine the surface light field as it is being acquired, add
images where necessary, and make the final determination as
to whether the quality is sufficient. A sequence demonstrat-
ing this process is shown in Figure 2.

1.1. Contributions

We believe this paper makes the following contributions to
image-based modeling and rendering.

• A fast, incremental algorithm to construct surface light
fields. Since each image is processed as it is captured, the
storage overhead is low, and new images can be incorpo-
rated at rates of more than one per second.

• An interactive modeling/rendering paradigm. As a new
image is incorporated into the surface light field, the ren-
dering data structures are immediately updated and dis-
played, enabling the user to continually evaluate the light
field quality.

• A data-driven quality heuristic to guide sampling. An er-
ror metric is interactively computed and displayed to aid
in determining which parts of the 4D space are undersam-
pled.

• A structured method for dealing with incomplete data.
Due to occlusion, many surface patches are only partially
visible. Rather than discarding these data, we use the cur-
rent approximation to fill in these holes.

The paper proceeds as follows. We first discuss image-
based modeling methods for capture and display of view-
dependent illumination. We then describe the Online
SVD [Bra03], which is the core of our online approach. The
Online SVD is a fast, memory-efficient algorithm for con-
structing an incremental low-rank singular value decompo-
sition. In Section 4 we present details of the implementation,
followed by results and conclusions.

2. Background

2.1. Surface Modeling

A good overview of the state of the art in material modeling
by image acquisition, and potentially inverse rendering, is
provided by the recent Siggraph course on Material Model-
ing [RM02], and the Eurographics State of the Art Report on
Acquisition, Synthesis and Rendering of Bidirectional Tex-
ture Functions [MMS∗04]. Our system captures the exitant
radiance of an object from images, and is based on BRDF
capture systems [DvGNK99, LFTG97, MWL∗99, DHT∗00]
and view dependent texture maps [LYS01].

Representation of this captured data is crucial for inter-
active rendering. Malzbender et al. [MGW01] fit acquired
data to a bi-quadratic polynomial to estimate a reflectance

Figure 2: This sequence shows the image acquisition pro-
cess. The left frame shows an image from the camera. In
the middle is the reconstruction before this image is incor-
porated, with highlights interpolated from nearby views. The
right image shows the reconstruction after it is incorporated,
with the correct highlights.

field. Lensch et al. [LKG∗01] use the Lafortune [LFTG97]
representation and clustered BRDFs from acquired data
in order to create spatially-varying BRDFs. McAllister et
al. [MLH02] describes a device for scanning 6D spatially
varying BRDFs and methods for fitting the data to a Lafor-
tune representation. Gardner et al. [GTHD03] describe a
BRDF capture device that uses a linear light source (as op-
posed to a point source), which can also estimate surface
normals and a height field.

2.2. Surface Light Fields

Surface light fields [MRP98] represent the exitant radi-
ance under fixed illumination conditions on the surface of
a known geometric model. This parameterization results in
a compact representation that enables the capture and dis-
play of complex, view-dependent illumination of real-world
objects. This category of approaches includes regular pa-
rameterizations of radiance [LH96, GGSC96] as well as
approaches which handle very sparse and scattered sam-
ples [DTM96, DYB98, BBM∗01].

Surface light fields can be represented as the function
f (s, t,θ,φ). The variables s and t represent surface location
on the mesh, and θ and φ represent view directions. This
function describes the exitant radiance at every point on the
surface from every direction. We can discretize this function
over the surface patches and solid angles and represent it as
a matrix. The columns of this matrix are the camera views,
and the rows are the surface locations. Since storing these
full data matrices would be impractical, several techniques
have been developed to compress the data. Factorization ap-
proaches represent the 4D surface light field f (s, t,θ,φ) as a
sum of products of lower-dimensional functions

f (s, t,θ,φ) ≈
rank

∑
r=1

g(s, t)h(θ,φ)

The number of terms r is the rank of the approximation.
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This factorization attempts to decouple the variation in sur-
face texture from the variation in lighting. These functions
can be constructed by using Principal Component Anal-
ysis [WAA∗00, CBCG02, NSI01] or non-linear optimiza-
tion [HMG03, MAA01]. The function parameters can be
stored in texture maps and rendered in real-time [CBCG02].

2.3. Online Methods

Most of the research in image-based modeling has focused
on batch-processing systems. These systems process the set
of images over multiple passes, and consequently require
that the entire set of images be available. For detailed cap-
ture of light fields, this requires significant storage (around
106 data samples [HMG03]). In addition, incorporating ad-
ditional images into these models requires recomputing the
model from the beginning. Formulating surface light field
construction as an online processing approach avoids these
problems by incrementally constructing the model as the im-
ages become available. Matusik [MLP04] used this approach
with a kd-tree basis system to progressively refine a radiance
model from a fixed viewpoint. Schirmacher [SHS99] adap-
tively meshed the uv and st planes of a light field, and used
an error metric along the triangle edges to determine the lo-
cations of new camera positions. Hillesland [HMG03] up-
dated a non-linear solution in an online method, but required
multiple passes over the data.

Our work has a strong machine learning component and
depends on some of the recent algorithms developed in the
context of data mining [Bra03, Row97].

3. Algorithm

The goal of this project is to build an interactive system that
enables the rapid capture of exitant radiance under fixed il-
lumination conditions. The user interacts with the system by
moving a video camera around the object that is being cap-
tured. The video camera is tracked in real-time, and the im-
ages are incorporated into the model and displayed on the
screen. This enables the user to view the surface light field
as it is being constructed and to correct for undersampling
errors. In addition, the user can view the data-driven quality
heuristic as a scalar value for each surface patch, which pro-
vides additional statistics about the reconstruction quality.
The key to this interaction is the method which we describe
in this section, which can incrementally build a compressed
representation of the surface light field.

3.1. Online SVD

Chen et al. [CBCG02] use Principal Component Analy-
sis [GL96] to extract the low-dimensional functions g(s, t)
and h(θ,φ) from the full data matrices. PCA is a power-
ful and widely-used compression technique, but it requires
that the full set of radiance data be available during process-
ing. Since this data is usually extensively resampled to fit the

Figure 3: The Online SVD. A new point c is incorporated
into the existing SVD. The orthogonal component p is com-
puted by projecting onto U. If ‖p‖ is below a threshold, then
we can incorporate this new sample by simply rotating U.
Otherwise, we must increase the rank of the approximation.

columns and rows of the data matrices, this can be a signifi-
cant storage cost.

The Online Singular Value Decomposition [Bra03] en-
ables us to incrementally build a compressed representation
of a surface light field. The Online SVD is an incremen-
tal PCA algorithm [HMM00, CMW∗97] that computes the
principal eigenvectors of a matrix without storing the en-
tire matrix in memory. The results are built up from a series
of simple operations on the output eigenvectors, which are
low-rank approximations to the full matrix. If the rank r is
much smaller than the size of the matrices, this is a consider-
able saving, and reduces the computational complexity from
quadratic to linear [Bra03].

The Online SVD works as follows (see Figure 3). Con-
sider a rank-r PCA

A = USVT

where U ∈ R
m×r , S ∈ R

r×r, and V ∈ R
n×r . As each new

image is captured, it is resampled into a per-vertex column
vector, which represents every pixel in a surface patch from
one camera view. This column of samples c is projected onto
the eigenspace:

j = UT c

The amount that is orthogonal to the eigenspace is given by:

p = c−Uj

The norm of this vector, ‖p‖, is a measure of how dif-
ferent the pixels in this new image are from our current ap-
proximation. If the pixels are similar (that is, ‖p‖ is below
a threshold) we can incorporate this new sample by simply
rotating the existing eigenspaces.

U′ = URU V′ = VRV
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Figure 4: The Mean Squared Error of a reconstructed light
field as a function of the rank. The majority of the light field
is captured after 4-6 terms. For the same number of terms,
the Online SVD has more error than the PCA.

Otherwise, the current rank r of the approximation is in-
sufficient, and we increase the rank to r + 1 and append the
column j to our approximation.

U′ = [U; j]RU V′ = VRV

The rotations are computed by re-diagonalizing the (r +
1)× (r +1) matrix

[

S j
0 ‖p‖

]

→ [RU,RV]

These rotations can be computed in O(r2). Since only the
output matrices U, S, and V are stored, this representation
results in significant storage savings.

3.1.1. Error

Since the Online SVD is constructed incrementally, it tends
to have more error than the PCA for the same rank. Figure 4
shows the error as a function of rank. A rank that is too low
biases the Online SVD computation by forcing it to select
sub-optimal eigenvectors. Brand [Bra03] suggests comput-
ing the Online SVD at twice the actual rank and only using
the largest eigenvalues. This allows the eigenvectors more
degrees of freedom to fit to the incoming data.

3.2. Missing Values

Acquired radiance data is often incomplete because of oc-
clusion. Many systems are forced to discard surface patches
with missing data, or fill in the holes with incorrect values,
such as zeros or mean values. A better approach is to es-
timate the missing data using a process known as imputa-
tion. Imputation uses the current Online SVD estimate of the

Figure 5: The left image shows the bust model constructed
from 282 pictures, and the right image shows the same set of
images using imputation to fill in the missing values. Areas
with missing data have been colored red (they would nor-
mally be black).

light field to fill in missing values [Bra03]. The known sam-
ples are projected onto the current eigenspace, and the un-
known values are estimated by solving the under-determined
system using Linear Least Squares [GL96]. This fills in
the missing values with the nearest plausible values us-
ing the Mahalonobis metric (a metric defined in the scaled
eigenspace) [Bra03].

Figure 5 shows the advantage of imputation for surface
light fields. In practice, we only impute missing values when
at least half of the surface patch is visible in an image. In
addition, we only impute values after 8-10 initial images, to
allow the system to establish a reasonable approximation.

3.3. Data-Driven Quality Heuristic

The Online SVD enables the user to view the light field
model as it is being captured. This visual feedback is help-
ful, but it can still be difficult to recognize undersampling
errors during image acquisition. To aid the user in collect-
ing high-quality radiance information, we developed a data-
driven quality heuristic that uses the information obtained
from the estimate to indicate whether more data are needed.
This is displayed as the user views the model, and provides
additional statistics about the reconstruction quality.

One possible way to do this is to assume a fixed BRDF
and measure the error between this and the collected sam-
ples. This is the approach taken by Lensch [LLSS03], who
used an uncertainty minimization technique to guide image
acquisition. We wanted to avoid this fixed BRDF assumption
in order to capture a wide variety of reflectance properties.

There are two statistics that we want to provide feed-
back about: the variation over the surface, and the variation
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Figure 6: Top: The OpenLF system. Bottom: Our online sys-
tem. The two systems share several components, including
the visibility, resampling, and rendering. We introduce sev-
eral new components to convert light field construction into
an online process.

over the viewing direction. To this end, we developed a per-
triangle scalar quality heuristic that is computed as the com-
bination of two quality functions:

ψ(s, t,θ,φ) = ω
√

ψp(s, t)2 +ψh(θ,φ)2

The surface quality function ψp measures the quality of
the surface approximation by tracking the projection error of
the Online SVD. The projection error is computed as part of
the updating step as the quantity ‖p‖. This value is a measure
of how much the new image differs from our approximation.
This scalar quantity is smoothed using an exponential fall-
off filter.

The hemisphere quality function ψh is a measure of the
sampling density of the hemisphere. The value is computed
by using the areas of the triangles in the Delaunay triangula-
tion of the hemisphere. The Delaunay triangulation, which is
used for interpolation, is described in more detail in Sec. 4.2.

The quality heuristic ψ(s, t,θ,φ) is displayed as a scalar
value at each triangle. We display this value in red in our
system, since it is easily visible from a distance. As the
user moves the tracked camera around the object, the ob-
ject rotates on the screen and the brightness of the heuristic
changes. As images are captured in a region, the heuristic
darkens and the user moves to a different area. As the light
field is being acquired, the user can either view the light
field, the heuristic, or a split-screen view of both. In practice,
we typically view the camera output and tracking informa-
tion on one screen and switch between the heuristic and the
light field on the other.

4. Implementation

We have implemented this system within the framework of
OpenLF [Opeb], an open source light field capture and dis-
play system developed by Intel. In Figure 6, we show a di-
agram of OpenLF and our prototype system. This section
describes the shared elements of the system: visibility, re-
sampling, and rendering.

4.1. Rendering

One of the advantages of the factorization approach to sur-
face light fields is that the functions g(s, t) and h(θ,φ) can be
stored in texture maps and rendered in real-time [CBCG02].
The functions g(s, t) are known as surface maps and h(θ,φ)
are known as view maps.

The surface locations (s, t) are parameterized over the
triangle rings centered at each vertex. Using triangle rings
instead of individual triangles avoids discontinuities at the
edges [CBCG02], but requires that each triangle be repre-
sented by three surface maps (one per vertex v). The camera
locations (θ,φ) are parameterized over the hemisphere above
each vertex.

The rendering algorithm, which is executed on graphics
hardware, requires evaluating the following function:

fv(s, t,θ,φ) =
rank

∑
r=1

3

∑
v=1

β(s, t,v)hr
v(θ,φ)gr

v(s, t)

at each of the triangles. A view vector is computed from the
eye to each of the three vertices of the triangle. These vectors
are projected onto the local basis system, and interpolated
across the triangle. At each fragment, the vectors are normal-
ized and used to look up in the view maps hr

(1,2,3)(θ,φ). The
functions gr

(1,2,3)(s, t) are computed by linearly interpolating
the surface maps across the triangle. The two functions are
multiplied together and weighted by a barycentric function
β(s, t,v) to get the final exitant radiance at this point. Each
term r of the approximation is rendered in one pass and ac-
cumulated in a floating-point frame buffer.

Figure 7: Left: The viewing functions h(θ,φ) are parameter-
ized over the hemipshere and stored in viewmaps. Right: The
surface functions g(r,s) are parameterized over the triangles
and stored in surface maps.
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The surface maps and view maps for all of the triangles
are tiled into larger texture maps, as shown in Figure 7. We
typically use surface maps of size 16x16 and view maps
of size 32x32. All textures are stored in floating point for-
mat, which avoids quantization error and scale/bias artifacts.
This requires more storage than the 8-bit textures used in
OpenLF [Opeb], but the signed representation and high dy-
namic range are important as the principal components can
be either negative or positive.

4.2. Visibility and Resampling

The matrix factorization approach to compression of surface
light fields requires that the image data be resampled from
the input images to fit into the rows and columns of the
data matrices. This resampling occurs in both dimensions;
not only are the camera locations at arbitrary locations in the
hemisphere, but the projected areas of the triangles vary in
each image.

Resampling the images to fill the columns of the data ma-
trix is straightforward. First, the visibility is tested by pro-
jecting the triangle mesh using the camera’s position and
orientation. Visibility is computed on a per-vertex basis by
back-projecting the vertex into the camera. If a triangle ring
is determined to be visible, the colors are sampled from the
input image using bilinear interpolation.

Resampling the camera views to cover the hemisphere is
more complicated. In the OpenLF system, camera locations
are treated as points in a Delaunay triangulation. This tri-
angulation is used to weight each of the camera positions,
which are stored in the texture maps. Our system uses a sim-
ilar approach by building the Delaunay triangulation incre-
mentally. The triangulation is initialized with four points at
the corners of the view map. When a new image is captured,
the camera location is projected onto the vertex basis vectors
and normalized to get a point on the hemisphere. This point
is projected down onto the plane and inserted into the Delau-
nay triangulation. The triangulation is then rendered using
these points as the colors, and the graphics hardware resam-
ples the colors across the hemisphere. The result is stored in
the view map.

4.3. Pose Estimation

In order to project the image samples onto the geometry, the
camera’s position and orientation must be known. Our sys-
tem uses a tracked video camera to capture images of the
object. The camera was calibrated with Bouguet‘s Camera
Calibration Toolbox [Bou], and images are rectified using
Intel‘s Open Source Computer Vision Library [Opea]. To de-
termine the pose of the camera with respect to the object, a
stage was created with fiducials along the border. The 3D
positions of the fiducials are located in the camera’s coordi-
nate system in real-time using the ARToolkit Library [ART].
This library uses image segmentation, corner extraction, and

Figure 8: The buddha model processed using PCA, on left,
and the Online SVD, on the right. Online SVD is an approxi-
mation, and there are some visible artifacts in the chest area.
The PSNR between the images is 33.2dB.

matching techniques for tracking the fiducials. Knowing the
3D position of an imaged fiducial allows the pose of the cam-
era to be computed. When multiple fiducials are present in
an image, the camera pose can be refined by minimizing the
differences between the pose estimates for each fiducial.

5. Results

Our system uses two PCs, one for camera tracking and one
for visibility, resampling, and rendering. The tracking PC, a
1.8GHz Intel Pentium 4, is connected to a Point Grey Re-
search Flea VIDEO camera via a IEEE-1394 interface. This
camera captures 1024× 768 color images at 30 frames per
second. The images and pose estimates are sent over the net-
work to the second PC, a 2.3GHz AMD Athlon64, where
they are incorporated into the matrix factorization and ren-
dered. The geometry of the object is captured as a preprocess
using a Faro digitizing arm. The model is registered with the
camera by sampling the fiducial locations with the same tool.

5.1. Results

One of the advantages of our method is the reduced stor-
age cost, which translates to improved speed of model con-
struction. In our tests, this resulted in an order of magnitude
increase in speed over the OpenLF system. For the buddha
dataset shown in Figure 8, the processing time is reduced
from 67 minutes in OpenLF to 7 minutes in our system. Tim-
ings for several datasets are presented in Figure 9.

As we noted in Sec. 3.1.1, the Online SVD can have more
error than the PCA. We ran several experiments to compare
the quality of the Online SVD to a batch PCA. Using a stored
dataset, the images were fed one at a time through the Online
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SVD solver to mimic the conditions of an incremental con-
struction. Since this was implemented within the OpenLF
framework, we can directly compare the quality of the re-
construction. A side-by side-comparison of two images is
shown in Figure 8.

During image acquisition, the data-driven heuristic pro-
vides visual feedback to the user to highlight undersampled
areas. We have found this works well in practice, but we
are interested in formally evaluating the usefulness of this
heuristic. In lieu of a user study, we developed an automated
experiment to measure the convergence of a surface light
field using the heuristic. Using an archived dataset, we com-
pared random image selection to image selection guided by
the heuristic. To add a new image, the computer calculates
the heuristic from the point-of-view of all of the remaining
images, and selects the image with the highest error. The
results of this experiment are shown in Figure 10. This ex-
periment indicates that the heuristic can accurately predict
which images will contribute the most content to the final
result. Capturing images where the heuristic is large should
likewise enable users to efficiently capture light fields. We
are interested in conducting a user study to evaluate how well
this heuristic information is communicated to the user.

One factor that can affect the quality of incremental ap-
proximations is dependence upon the ordering of data. In
a different experiment, we measured the error over differ-
ent permutations of a light field dataset. The results of this
experiment are shown in Figure 11. For reference, we in-
cluded the ground truth estimate from PCA and a sorted
permutation of the samples. Note that the worst error is
from the sorted permutation. Brand [Bra03] points out that
small, gradual rotations tend to introduce floating-point er-
ror, which causes the eigenvectors to lose orthogonality.
He suggests periodically re-orthogonalizing the matrices us-
ing Gram-Schmidt orthonormalization. In a different pa-

Figure 9: Timing results in seconds for several models. The
bust has 7K triangles, the buddha has 12K triangles, the
star has 5K triangles, the heart has 2.7K triangles, and the
pitcher has 3K triangles.
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Figure 10: Measuring the convergence of surface light field
construction using the data-driven heuristic. Compared to
random selection, the use of the data-driven heuristic dra-
matically speeds convergence. The PSNR of the reconstruc-
tion was compared to a reference PCA implementation at 10
random viewpoints.

per [Bra02], he provides an alternative matrix formulation
that reduces this error.

6. Conclusions

We have presented a method for incremental construction
of surface light fields, which uses the Online SVD to build
a surface light field approximation interactively during the
acquisition stage. This online approach provides real-time
feedback to the user, which enables the user to direct the
image acquisition towards the undersampled areas of the
model. This significantly reduces the acquisition time and
helps build higher quality models. This approach can also
decrease the processing time by an order of magnitude.

To assist the user in the capture process, we present a
novel data-driven heuristic that provides an extra channel of
information. We conducted several experiments to demon-
strate that the data-driven quality heuristic, a tool for provid-
ing feedback to the user during sampling, can significantly
increase the convergence of the reconstruction. Since the or-
der in which the images are acquired affects the Online SVD
solution, we also investigated the errors caused by permuta-
tions of the images.

We believe that incremental construction of surface light
fields is a powerful tool for the capture and rendering of pho-
torealistic models.

7. Future Work

In addition to the incremental construction, there are several
properties of the Online SVD that are very useful for surface
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Figure 11: The total reconstruction error of the Online SVD
from 20 random permutations of the original dataset. The
reference PCA is shown in the lower left corner. A permu-
tation of the SVD where the samples were sorted by norm is
shown in the upper right corner. This indicates that the error
is greatest when the samples are correlated.

light fields. One property that we are interested in explor-
ing is that the Online SVD can be “down-dated” to remove
a previous value from the approximation. This would allow
the user to undo mistakes that occur during the image acqui-
sition process.

The timing results show that it takes about one second to
incorporate a new image into the approximation. We are in-
terested in decreasing this time by implementing the system
on the GPU as in Hillesland [HMG03]. While this is possible
for the visibility and resampling components of the process,
it may be difficult to map the Online SVD matrix operations.

An interesting future approach is evaluating and improv-
ing the data-driven quality heuristic. In the current imple-
mentation, the heuristic is displayed as a scalar value, but it
should be possible to use all of the color channels to convey
more information about the sampling. We would also like to
investigate other quality functions that take into account the
incident light or the reflected light directions. In addition,
we would like to formally show that the quality heuristic can
decrease the number of images required.

Finally, one of the limitations of surface light fields is that
the geometry must be known a priori. In our current system
this forces us into a two-step process — first create a geo-
metric model, then the surface light field. We are interested
in investigating ways to collect geometry and color simul-
taneously. We are also interested in removing the restriction
of fixed lighting and developing an incremental approach for
acquisition of surface reflectance fields.
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