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Abstract

3D Face modeling is still one of the biggest challenges in computer graphics. In this paper we present a novel
framework that acquires the 3D shape, texture, pose and illumination of a face from a single photograph. Addition-
ally, we show how we can recreate a face under varying illumination conditions. Or, essentially relight it. Using a
custom-built face scanning system, we have collected 3D face scans and light reflection images of a large and di-
verse group of human subjects . We derive a morphable face model for 3D face shapes and accompanying textures
by transforming the data into a linear vector sub-space. The acquired images of faces under variable illumination
are then used to derive a bilinear illumination model that spans 3D face shape and illumination variations. Using
both models we, in turn, propose a novel fitting framework that estimates the parameters of the morphable model
given a single photograph. Our framework can deal with complex face reflectance and lighting environments in
an efficient and robust manner. In the results section of our paper, we compare our methods to existing ones and
demonstrate its efficacy in reconstructing 3D face models when provided with a single photograph. We also pro-
vide several examples of facial relighting (on 2D images) by performing adequate decomposition of the estimated

illumination using our framework.

Categories and Subject Descriptors (according to ACM CCS): 1.3.7 [Computer Graphics]: Three-Dimensional

Graphics and Realism

1. Introduction

Modeling faces from single photographs has many applica-
tions in computer graphics (computer games, virtual real-
ity, expression synthesis, face replacement, reconstruction
of skin reflectance) and in computer vision (pose and illu-
mination invariant face recognition, face tracking in videos).
It also has many potential applications in human computer
interaction and digital photography. To date, a morphable
face model [BV99] is the most effective way to reconstruct
3D face shape, texture, pose, and illumination from pho-
tographs. A morphable model compactly encapsulates the
space of human faces based on the statistics of measured
face data from a group of human subjects.

The main challenge in the application of a morphable
model for face reconstruction is the formulation of an effi-
cient, robust, and general fitting procedure. In an approach
often called analysis-by-synthesis [BV99], the model and
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rendering parameters are optimized such that the render-
ing of the model yields the closest match to the given in-
put image under the assumption of a suitable image-error
metric. This task is complicated by the complex reflectance
properties of human faces and the unknown types and num-
bers of light sources in the input photographs. Previous work
makes several simplifying assumptions, such as Lambertian
reflectance for faces [AGR96], simple analytic illumination
models (usually Phong) and simple illumination (usually
one ambient and one directional light) [BBPV03,BSVS04].
Unfortunately, these simplifications make it hard to achieve
photorealistic and geometrically accurate face models.

Inspired by recent research in linear illumination sub-
spaces [BJO3,RHO1], we introduce a novel framework to fit
a morphable model to single photographs. Instead of mak-
ing arbitrary assumptions about skin reflectance and the illu-
mination environment we use a bilinear illumination model
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Figure 1: An example of transferring an illumination of a
face in one image to another face in a different image. (left)
Source or reference image. (middle) Target image. (right)
Resulting image. Image sources are from [SBB0O3]

for 3D faces that has been computed from measured data of
faces under varying illumination. During the reconstruction
of a query face, we first estimate the 3D shape, texture, and
pose parameters (initially specified by a user) of the mor-
phable model. Instead of comparing the rendered face to the
input image, we measure the distance of the face in the in-
put image to a projection in the illumination subspace that
is specific to the estimated 3D shape. Using this simplified
cost function, we reconstruct the 3D shape, texture, pose, as
well as the illumination parameters of the bilinear model. We
can then apply the reconstructed illumination to another re-
constructed 3D face for illumination transfer in digital pho-
tography (see Figure 1). In addition, the reconstructed illu-
mination can be further decomposed to estimate the colors
and intensities of the individual light sources that constitute
the lighting environment of the input image. This feature of
our illumination model is exploited to solve a more general
problem of face relighting.

The main contributions of our paper are: (1) a novel
optimization framework based on the illumination sub-
space method for the fitting of morphable face models; (2)
a method to construct a measurement-based illumination
model to deal with arbitrary lighting conditions and complex
reflectance properties of human faces; (3) a novel method
to relight a face in a photograph in an intuitive and flexible
manner using the proposed illumination model.

In Section 2 we describe relevant previous work. In Sec-
tion 3 we describe our system for capturing 3D faces and
reflectance images. In Section 4 we propose our novel op-
timization framework to estimate 3D face and illumination
from single 2D images. Section 5 describes how we con-
struct a bilinear illumination model from real measurements
of many subjects. Section 6 shows some results of single im-
age reconstruction, illumination transfer, and face relighting.

2. Related Work

In this section, we describe related work in morphable mod-
els, illumination subspaces and face relighting.

To fit a morphable model to single images, Blanz and

Vetter [BV99] introduce a cost function based on the dif-
ference between the input image and the rendered image.
They use a stochastic gradient decent algorithm to minimize
that function. In subsequent work with different applica-
tions [BV03,BBPV03,BSVS04], they extend this cost func-
tion to include the distances between the 2D feature points in
the image and the projection of the corresponding 3D feature
points. This extension constraints further the search space of
3D shape and pose during optimization. Related work that
employed morphable models was reported using sparse fea-
ture points [BMVS04] and a set of silhouette images taken
from different viewpoints [LMPMO3]. Our strategy is differ-
ent from these approaches in that we do not use any render-
ing parameters explicitly during optimization. It is purely a
data-driven approach.

Previous work in linear illumination subspaces includes
Georghiades et al. [GBKO1] who use a photometric stereo
approach to reconstruct 3D face geometry and albedo to
generate synthetic images of a subject’s face. In [HHBO3]
a similar technique is used to generate synthetic 2D images
from a morphable model to train a component-based clas-
sifier for face recognition. Basri and Jacobs [BJ03] showed
that an arbitrary illumination of a convex Lambertian ob-
ject can be approximated accurately by a low dimensional
linear subspace spanned by nine harmonic images. These
nine harmonic images can be generated analytically given
surface normals and albedo of the object. Zhang and Sama-
ras [ZS04] combined nine spherical harmonics and mor-
phable model approach to estimate the illumination bases
from a single photograph and applied their method to pose
invariant face recognition.

Similar to our work, Vasilescu and Terzopoulos [VT03]
perform a multilinear analysis to model different factors in
forming facial images explicitly. They perform a higher-
order SVD on the tensor data of 2D images to compute a
space that spans identity, expression, pose, and illumination.
A key distinction of our work is that we explore a bilinear
illumination subspace of human faces using high-resolution
3D geometry, not 2D images, and combine it with the mor-
phable model of Blanz and Vetter [BV99]. Vasilescu and
Terzopoulos [VT04] showed that multilinear analysis is ef-
fective for representing a texture space which incorporates
various viewpoints and illumination conditions.

Though a number of techniques are reported for the prob-
lem of face relighting, we only describe a recent paper that
employs a similar approach. Wen et al. [WLHO3] used radi-
ance environment maps to relight faces in photographs. Af-
ter computing an approximated radiance environment map
using spherical harmonics from a single photograph, the es-
timated lighting condition can be applied from different ori-
entations to relight the input face. To relight a face from arbi-
trary lighting conditions, they modify the estimated nine har-
monic coefficients interactively. However, it is often difficult
to relate the harmonic coefficients directly to the numbers,
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colors and intensities of the individual light sources to ob-
tain the desired illumination effect. We present a method for
face relighting under arbitrary lighting conditions, allowing
users to explicitly control individual light sources.

3. Data Acquisition and Registration

We first describe our custom-built system for capturing 3D
faces and reflectance images. Later, we describe the methods
to register the acquired illumination samples into a common
vector space.

Face scanning dome To create a repository of models, we
acquire high-resolution 3D geometry of faces using a com-
mercial system (from 3QTech) that employs structured-light
to scan the face. The acquired 3D mesh consists of more than
40,000 vertices. We also use a custom-built, dome-structured
device to acquire reflectance images of the face, which is
equipped with 16 digital cameras and 146 directional LED
light sources. Each light source consists of 103 white LEDs
and a diffuser. The 16 cameras are controlled by eight client
PCs and are synchronized with the light sources. We obtain
a photograph of the face from each camera with each light
source turned on in a sequential fashion. This results in 2,336
images of the face illuminated by 146 light sources from 16
different viewpoints.

We use the freely available OpenCV calibration package
to determine spherical and tangential lens distortion parame-
ters. External camera calibration is performed by synchro-
nously acquiring a few hundred images of an LED swept
through the dome center. Nonlinear optimization is used to
optimize for the remaining camera intrinsics and extrinsics.

Registration of illumination samples All 3D face
geometries acquired through our system are rigidly aligned
in a common coordinate system. Then we select 40 feature
points in the facial area of each 3D face and compute point-
to-point correspondence. First, we choose a reference face
and improve the geometry so that it has the desired number
of points in the facial region. For each target face, we warp
the reference face so that it matches the target face in terms
of 40 feature points using scattered data interpolation. Later,
we perform a cylindrical resampling from the warped refer-
ence face to the target face to obtain a corresponding point
in the target face for each point in the warped reference face.
More details can be found in [LMPMO3].

To register the 2D illumination samples of the acquired
face images to the 3D geometry of the subject face we find
the similarity transformation between the coordinate sys-
tems of the dome cameras and the 3D scanning system. To
determine this transformation we use a 3D calibration tar-
get with nine markers and create images of the target using
all 16 cameras. Using the intrinsic and extrinsic calibration
data and the acquired 2D correspondence of those markers,
we can obtain the 3D positions of those markers in the dome
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Figure 2: (Top) Raw reflectance images. (Bottom) A 3D
shape and the registered illumination samples for the cor-
responding images.

coordinate system using non-linear optimization. The objec-
tive function employed here is:

K
. 2
yi = argmin Y [Ix; — Pe(yi) | D
k=1
where K is the number of cameras, Py is a projection matrix
of camera k, X;  is the 2D location of feature point i observed

by camera k, and y; is the i"" 3D feature point.

After obtaining the corresponding feature point z; from
the 3D geometry of the target, we compute the similarity
transformation Q from the coordinate space of the geome-
try acquisition subsystem to the dome coordinate system. A
Procrustes analysis is performed between the point sets y
and z. Using the acquired similarity transform and extrinsic
calibration data of each camera, we know the 2D-3D corre-
spondence between the points on the 3D face and the pixels
on the 2D images from all 16 cameras. The final mapping is
computed by:

Xk = Pi(Q(z:)). )

We apply this transformation to all surface points of the
face geometry and obtain the corresponding illumination
samples from the images captured by all 16 cameras and 146
lighting conditions. Figure 2 shows some raw reflectance im-
ages and registered illumination samples on a common 3D
shape space.

Occlusion filling and albedo estimation  For the non-
observable points from a certain camera viewpoint, we re-
solve or locate the holes using the illumination samples ob-
served from other camera viewpoints. Given the positions of
the holes in camera viewpoint V;, we choose a camera view-
point V; that is near V; but has no holes at those positions.
Then, we perform principal component analysis (PCA) for
all illumination images obtained at view V;. To approximate
the illumination of hole points in V;, we project only the
observed points onto the subspace spanned by the first M
eigenvectors of V; and reconstruct the closest illumination
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in the illumination subspace of V;. This reconstruction in-
cludes valid illumination values in the holes w.r.t viewpoint
Vi.

Finally, to estimate the diffuse texture (albedo) from all
reflectance images, we first compute the average of 146 illu-
mination samples per each visible vertex for each viewpoint.
Then, the samples from the 16 viewpoints at the specific ver-
tex are blended by a weighted average using the cosine of
the angles between the vertex normal and the view vector as
weights.

4. Estimation of 3D Faces Using Illumination Subspace

In this section we describe the morphable model and how
we construct it from a mixture of two different 3D face data-
bases, and present an optimization framework using a dy-
namically generated illumination subspace combined with
the morphable model.

4.1. Morphable Model

To derive a morphable model for 3D shape and texture we
combine data from the USF Human ID database [usf] (134
subjects) and our own database (71 subjects). We first com-
pute the point-to-point correspondence across all scans of
the two databases so that they are all in the common vector
space using the method described in Section 3. After con-
structing a vector s = (x1---xn,y1---YN,21 ---zZn) for each
shape andt = (r - ry,81---&n, b1 - - - by) for each texture,
we perform PCA on all shape vectors S and texture vectors
T separately. Using the first M eigenvectors and model para-
meters o and P, an arbitrary shape and texture can be recon-
structed as following [BV99]:

sfs+Zoc,e,, th—i-ZB,e, 3)
i=1 i=1
where S and T are the average shape and texture across sub-
jects, € and e} are the i eigenvector for shape and texture
respectively.

4.2. Fitting Procedure

Given a photograph of an unknown person, we generate ar-
bitrary shape (o) and texture () coefficients based on the
morphable model. We also estimate an arbitrary pose (ro-
tation and translation) of the face (y) (using 9 initial user-
specified feature points).

Given o and Y (and assuming fixed camera parameters),
we project the geometry of the synthesized face to the im-
age plane of the photograph. Using a simple visibility test
we then acquire the corresponding pixel values of each pro-
jected visible point on to the surface of the face. If this pro-
jection is properly aligned to the input face, the acquired
pixel values comprise the illuminated texture (t) of the face

Update Model

Morphable Model (PCA)

o : shape Llnear Tllumination
B : texture Subspace

v pose —

. Texture Llftlng

Figure 3: An optimization framework using a dynamically
generated illumination subspace.

} Computing Distance

with the specific shape (o) and pose (y) parameters. Now, it
is useful to ask where does one get an illuminated texture.
This is the major departure point from existing methods.

We assume that there exists an illumination subspace, rep-
resented by a matrix B whose columns constitute basis vec-
tors that span a subspace of all possible illumination of the
shape s and texture t of a face. We explain how we construct
this illumination space in Section 5. Here we describe the
overall fitting process.

From Eq.3 s and t can be reconstructed by o and . There-
fore, using the illumination subspace B for a given o and J3,
the distance of the lifted texture (t) to B can be used as a cost
function to find the optimal o, 3, and 7 for the given photo-
graph. By lifted texture, we mean a vector of pixel values of
the input photograph extracted by the projection of the 3D
points of a face with the given shape and pose all of which
have passed the visibility test for self-occlusion. By updat-
ing the model parameters iteratively based on this distance
function, we find the estimate of shape, texture, pose and il-
lumination of the face in the image. Figure 3 describes this
procedure in the form of a flow diagram.

Based on this framework, we formulate a new cost func-
tion for fitting the morphable model to the input image:

f(a7B7Y) = Z ”ic _BcBfouv (4)

c=rgb

where f. is an N x 1 vector obtained by extracting pixel val-
ues (for each channel c separately) from the input image us-
ing the geometric projection of the 3D model template com-
puted by the current o and Y. B¢ is an N X M matrix which
contains M orthonormal bases for the texture-weighted il-
lumination subspace. BL-BCT t. is considered a projection of
the lifted texture t. to the illumination subspace spanned by
the column vectors of B.. A similar distance metric is re-
ported in [BJO3] for the purpose of illumination invariant
face recognition.

The orthonormal bases B¢ of the texture-weighted illu-
mination subspace are computed with the input of current
model parameters o, . The following procedure explains
how we obtain B, using nine harmonic images:

1. Given o,f, compute the geometry and diffuse texture
of the face using the computed morphable model (Sec-
tion 4.1): s and t (See Eq 3).
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2. Compute vertex normals vn from s and the mesh connec-
tivity of the morphable model.

3. Update the first nine harmonic reflectance vectors R as
described in [BJO3] from vn.

4. Build the nine harmonic images B, by element-wise mul-
tiplication of t. with each column vector of R.

5. Perform QR decomposition to obtain the orthonormal
bases B, from B..

We use the downhill simplex method [PFTV88] to optimize
the cost function (Eq 4). It is a non-linear minimization algo-
rithm that requires only cost function evaluations. Although
the simplex method is not very efficient in the number of
function evaluations until convergence [PFTV88], it works
robustly with our problem. It provides a tangible way to deal
with the relatively large range of initialization settings by
adjusting the initial size of simplex. It should be noted that
a gradient-based optimization method such as Levenberg-
Marquardt algorithm can be used. Since the analytic deriv-
atives are not known, we will have to rely on a numerical
procedure to compute the derivatives.

Note that the illumination subspace spanned by nine har-
monic images is one example that can be used together with
our framework. Although this analytical linear subspace is
fast to compute on the fly, it has an inherent limitation on
handling non-Lambertian objects such as human faces. In
the following section we present a measurement based illu-
mination model that works together with this framework.

5. Bilinear Illumination Model

The problem we solve can be formally described as fol-
lows: “Given a statistical model for shape and texture, what
is the most appropriate illumination subspace for the given
shape and texture parameters according to the real illumina-
tion measurements of the samples in the training dataset?”
For this purpose, we use a bilinear illumination model based
on the higher-order SVD or N-mode SVD [LMVO00, VTO03].
Note that we do not use any Lambertian assumptions when
constructing our illumination model. Since our model data-
base (See Section 3) is built from real photographs of human
faces, self-shadowing and specularity is implicitly included
in our model.

We start by decoupling the underlying shape and texture
in our acquired face data. One should observe that a pure
diffuse texture part (albedo) can be separated from facial il-
lumination maps. Much of reflectance and illumination in-
cluding shadows is dependent on the shape (geometry) of a
face assuming similar reflectance properties across different
faces and different parts of a face. By factoring out the dif-
fuse texture, we are now able to capture the subtleties that
arise from specular reflectance and shadowing effects that
come solely from the form of the facial surface. Assuming
that facial texture can be decorrelated with the shape and re-
flectance, we factor out the diffuse texture (albedo) from the
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illumination samples in the following manner:
Wn =1In/th, n=1.N, 5)

where £, is an illumination sample, f, is the diffuse texture at
a 3D point p, with N being the number of 3D mesh points.
We call wy, a texture-free illumination component, which is
different from reflectance since it also includes cast shad-
ows. For the subsequent data analysis we use this shape-
dependent, texture-free illumination component. Similar to
the nine harmonic images [BJ03], the diffuse texture is mul-
tiplied with the reflectance bases to build a texture-weighted
illumination subspace.

We now build a bilinear illumination model using the 3D
shape and lighting conditions as the axes of variation. For
each pair of shape i and lighting condition j, we have N(=
10,006) 3D positions and texture-free illumination compo-
nents ([xyzw] tuples) for 33 subjects. We assemble them as
a lOIlg vector a;j = (xl XNyl YN,Z1 "IN, W1 " 'WN)
with length 4N.

We choose one near-frontal viewpoint with the occlusion
filling procedure described in Section 3 for further analysis.
The size of our data tensor D is 33 X 146 x 4N. D can be
expressed as follows:

D =Cx1Uj x2Uy x3U3, (6)

where X, is a mode-n product defined between a ten-
sor A € RV XX XIv with order N > 2 and a matrix
Ue R Itis an operation that replaces every column
VECLOT @;,...jy_ iy iy € R in A with the column vec-
tor obtained by Ua. The result is a tensor with dimension
I X X dy X e X Iy

A core tensor C € R3*146X4N governs the interaction
between mode matrices U,k = 1..3. Note that, unlike the
sigular value matrix in a traditional matrix SVD, C does
not have diagonal structure but usually is a full matrix. The
mode matrices Uy can be computed by performing SVD
on a matrix D) € gl (DhilirB) which is composed
of all column vectors dj,...;,_,j,,,---i; € R in D, where
Iy = 33,1, = 146,13 = 4N of our tensor data D. U con-
stitutes orthonormal bases of the column space of D .

Using the associative property of the mode-n prod-
uct [LMVO0O0], the last mode matrix can be incorporated in
Z = C x3 Us, resulting in a simplified equation:

DZZXlUl ><2U27 (7)

where U; € R3%3 and U, € R46x146 capture the vari-
ation along the shape and lighting axes, respectively. Z €
RIIXI46X4N o 4verns the interaction between Uy and Us. It
can be computed using the orthonomality of U; with:

Z=Dx, Ul x,UL. ®)

The result is a bilinear model that captures the variation of
3D shape and texture-free illumination. This model provides
us with 146 illumination bases given the coefficient vector



lLee ot al / Fstimation of 3D Faces and Illumination from Single Photographs Using A Bilinear Illumination Model

For illumination

«——— For shape

Identity

Figure 4: Visualization of dividing a core tensor into two
parts and generating a more compact model exploiting the
redundancy of geometry data along the illumination axis

of a person’s face geometry. The number of bases can be
reduced to a lower dimensional space to handle larger num-
bers of training subjects. Similar to traditional matrix SVD,
this compression can be done easily by retaining only the
first M, columns of U;. However unlike the matrix SVD,
this truncation generally does not yield an optimal solution
in the least square sense though it provides a good approxi-
mation [LMVO00].

We reduce the dimension of shape and lighting condi-
tion axis from 33 to 20 and 146 to 30, respectively us-
ing the algorithm described in [VT03]. This yields U; €
R33%20 @, € R146%30_and a core tensor Z with dimensions
of 20 x 30 x 4N. The approximation of D is obtained using:

’D:ZXIfJI Xzﬁz. (9)

Due to the redundancy of the geometry data ([xyz] tu-
ples) along with the lighting conditions of the original data
tensor D, we keep only part of the core tensor Z without
loss of information. We can divide Z into two parts: the
geometry matrix Zs € R20>3N and the illumination tensor
Z, € R2O30XN 7 can be computed using:

Zs=Z xy i), (10)

where ﬁé can be any row vector of U, and Z; is obtained by
keeping only the last N slices along the third dimension of
Z. Figure 4 visualizes this procedure.

In this formulation of data compression, a reconstruction
of geometry and illumination bases of subject i can be com-
puted by:

si =1 Z; (11)

R, = 2 x; i, (12)

where @} represents the i’ row vector of Uy. If we replace
ﬁ’i with a linear combination of the row vectors of Uy, then
the above equations will generate a geometry and illumina-
tion bases for the linearly combined face. By spanning the

reconstructed illumination bases we can represent any linear
combination of all 146 light sources to a reasonable level of
accuracy.

To use this bilinear model together with the fitting frame-
work we described in Section 4.2, we relate the model para-
meters from the external morphable model (see Section 4.1)
to a shape space in the bilinear model and compute the
person-specific illumination subspace through the following
procedure:

1. Given a, B, compute the geometry and diffuse texture of
the face using the morphable model: s and t (See Eq 3).

2. Solve an overdetermined linear system s = ZST(AX with re-
spect to & (See Eq 11).

3. Obtain the illumination bases R by replacing ﬁ’i with &
in Eq 12.

4. Build a texture-weighted illumination bases B. by
element-wise multiplication of t. with each column vec-
tor of R.

5. Perform QR decomposition to obtain the orthonormal
bases B, from By.

Note that in step 3, the linear system can be efficiently solved
by performing QR decomposition of Z off-line in advance.
B is used the same manner as the nine harmonic image
bases we presented in Section 4 along with the cost function
Eq 4. Figure 5 show the first nine texture-weighted illumina-
tion bases obtained using our method for an average shape
and texture (o« = = 0) and compares them to the analytic
nine harmonic images. It is difficult to capture the high fre-
quency components of the face illumination such as specu-
larities and cast shadows using linear analysis with only nine
dimensions. This is the reason we use more than nine bases
upto thirty bases.

6. Results

In this section, we present the results of fitting the morphable
model to single photographs using different methods. We
also describe methods and results for face relighting using
the reconstructed illumination from our illumination model

6.1. Fitting to Single Photographs

In our implementation of the proposed fitting framework,
the cost function Eq 4 is computed using DGELS in LA-
PACK.Using the downhill simplex method as our optimiza-
tion method we iterate several times starting from the pre-
vious fitted parameters and increasing the dimensionality
of the model parameters in each iteration. Thus, we obtain
coarse yet expedient fitting in a lower-dimensional space,
while achieving a more detailed closer fitting in a higher di-
mensional space at a higher computational cost. A typical
fitting process often requires 1 — 3 minutes on a Pentium 4
2GHz PC.

Figure 6 shows the reconstructions of two illuminated 3D
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Figure 5: The illumination bases of 9-D using nine harmonic images (upper row) and our bilinear model (bottom row) for
a certain 3D face model with average shape and texture. Each base is scaled independently to cover the full color range for

purposes of visualization.

Figure 6: Reconstruction of illuminated 3D faces with various optimization methods. Column 1: input images; Column 2:
Using explicit lighting parameters; Column 3-5: Our framework with nine harmonic images (column 3), bilinear model with 9

bases (column 4), and 30 bases (column 5).

faces using different algorithms and different illumination
bases. The left column in Figure 6 shows the input images.
The second column shows results using our implementa-
tion of the morphable model approach by Blanz and Vet-
ter [BV99] with explicit illumination parameters (one ambi-
ent and one diffuse intensity for each channel) and a realiza-
tion of Phong illumination model. The remaining columns
show results obtained from our proposed fitting framework.
The results shown in the third column use nine harmonic
images, whereas the fourth and fifth columns show results
using the bilinear illumination model with 9 bases and 30
basis vectors, respectively.

The input image in the first row is one of the images in
the PIE database [SBBO3], the subject being illuminated by
a single point light source. The input image in the second
row was captured by our scanning system with a mixture of
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two point light sources (one LED and one Halogen light) and
one fluorescent area light source (the subject in the image is
outside our training data samples ). It should be noted that
our fitting framework using the illumination subspace works
robustly well under both harsh illumination and high satura-
tion inducing illumination (as embodied in the images), as
shown in Figure 7.

6.2. Face Relighting

Given a photograph of a face lit by arbitrary complex illumi-
nation, we may want to apply the same illumination on an-
other photograph with a different face and a different light-
ing environment. This problem can be considered to be a
special case of the more general relighting problem. We de-
scribe our efforts towards solving both problems.
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Figure 7: For a harsh illumination environment that induces
image saturation the method by Blanz and Vetter (left) is eas-
ily captured in local minima. Our proposed method (right) is
not hampered by this situation since it does not optimize for
explicit lighting parameters.

6.2.1. INlumination Transfer

We assume that we have two photographs: the source im-
age and the target image to be re-lighted using the source
image. An approximate solution for the problem of illu-
mination transfer can be achieved by leveraging the ability
of our model to reconstruct complex illumination environ-
ments. After fitting the morphable model to both source and
target images, we reconstruct the diffuse textures t; and t;
using the coefficient vectors By and B, respectively (Eq.3).
The texture-free illumination of target face w; is then decou-
pled from the reconstructed texture of target illumination &
as follows:

W[:ft./tt. (]3)

To replicate the illumination from the source image onto the
target face, we apply the source illumination parameters to
the texture-weighted illumination bases of the target face us-
ing a similar procedure:

wy = (BB ;). /ts, (14)

where By, B; is the source and target illumination bases, re-
spectively, and ty is the reconstructed texture of source il-
lumination. Operator ./ indicates element-wise matrix divi-
sion.

Figure 8 shows an example of this procedure. s and t; are
the pixel colors of all vertices on the fitted models shown in
Figure 8(b) and Figure 8(e), respectively. Assuming wy and
w; are close to the real face illumination, the transfer from
source to target can be approximated as follows:

txfer:fb*wy/wh (15)

where {; are the corresponding pixel values of the original
target image. Since we wish to apply this formulation to all
the pixels in the original source image, we first perform in-
terpolation of the projection of wg = wy./w; to fill the en-

(d) ©) ®

Figure 8: Illumination transfer: (a,d) Source and target im-
ages. (b,e) Estimation of illumination. (c) Reflection ratio
image. (f) Resulting image obtained by multiplying the tar-
get image to the reflection ratio image.

tire image plane, resulting W, € RV where H x W is
the image resolution. This generates the reflection ratio im-
age shown in Figure 8(c). The final transfer (Figure 8(f)) is
performed by multiplying each pixel of the original image
(Figure 8(d)) with the corresponding pixel of the reflection
ratio image as shown below:

Image, f,, = Image, ;g0 - * Wy. (16)

6.2.2. Illumination Decomposition

We can exploit further the illumination estimated by our
bilinear illumination model. Using the spherical harmonic
method [BJO3], it is difficult to derive individual light
sources from the estimated illumination coefficients and
thereby limiting the application of relighting. In a similar
work exploiting spherical harmonics [WLHO3], to relight a
face from arbitrary lighting conditions, the authors modify
the estimated nine harmonic coefficients interactively. This
leads to much difficulty in obtaining the desired illumination
as the combination of individual light sources. By contrast,
since our bilinear model is derived from a few hundred (146
to be exact) explicit lighting conditions, we can decompose
the individual light sources using the estimated illumination
bases. We solve the following linear system in terms of x:

BﬁzX = E, (17)

with constraints:

where B € V>3 is the reconstructed texture weighted illu-
mination bases, U, € R30%146 §¢ the mode matrix along the

(© The Eurographics Association 2005.
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illumination axis (Eq.9), t € RNV X1 s the reconstructed illu-

minated texture, and x € R46*! is a weight vector of 146
dome light sources. Eq.17 is a constrained linear least square
problem and can be solved by an optimization method based
on quadratic programming. For each color channel ¢, we ob-
tain X by using B, and t in Eq.17. Each element of the
optimized weight vector x. represents the (relative) inten-
sity of the corresponding physical light source of our face
scanning dome. To reconstruct the illuminated texture un-
der different combination of dome light sources, we simply
generate a new weight vector Xew, replace x in Eq.17 and re-
construct new texture fnew. The next step is straightforward
using the same technique used in illumination transfer. Since
we are using the same face before and after the transfer in
this case, we do not need to compute the texture-free illumi-
nation component with different diffuse textures. Thus, the
corresponding equation of Eq.15 is:

relight = t. *fnew'-/fv (18)
where { is the lifted texture from the original input image.

Figure 9 and Table 1 show this procedure. In Figure 9,
column labeled (a) is an input image to be relighted and
column labeled (b) is the fitting result using bilinear illu-
mination model, which yields t, the reconstructed texture of
the input illumination (Eq.17). Table 1 shows the result of
computing x for each color channel. We applied a suitable
threshold (0.1) to show the effect of significant light sources.
Note the strong contributions from lights numbered 139 and
144 (both of them are located near top in our dome). By set-
ting to zero the intensities in red and green channel respec-
tively, we reconstruct image (c) and (d). Note the changes
in illumination on the subject who retains his essential fea-
tures. Also increasing the intensities for the two light sources
x(82) =[0.3 0.3 0] and x(7) = [0.1 0.1 0.4] (a right and a
bottom light source in our dome), we reconstruct image Fig-
ure 9(e) and Figure 9(f). Using this approach it is easy to
relight a face under arbitrary combinations of densely sam-
pled directional light sources. Figure 10 shows more results
of relighting using another input image. In this example, we
added individual light sources to the original lighting envi-
ronment as dictated by our dome light configuration. Input
images of Figure 9 and Figure 10 were adopted from FRGC
V1.0 database [frg].

7. Conclusions and Future Directions

We presented a novel optimization framework to fit a mor-
phable face model onto photographs. We also presented a
novel bilinear illumination model using higher-order SVD
that describes 3D shape and illumination variations. Com-
bined, these two approaches lead to a simple and general
fitting method with the ability to deal with arbitrary illumi-
nation environments and complex face reflectance. We ap-
plied our new fitting method to the problem of illumination
transfer and face relighting. Our approach for face relighting

(© The Eurographics Association 2005.

Channel | Light No. | Intensity

Red 15 0.28
106 0.21

139 0.31

Green 114 0.18
144 0.37

Blue 95 0.11
125 0.10

144 0.48

Table 1: lllumination decomposition of the input image in
Figure 9.

provides an intuitive and flexible way to change the illumi-
nation of a face in a 2D image.

Currently, we use the reflectance images acquired from
the near-frontal camera to build the bilinear model. Since
face reflectance depends on the viewpoint (it is anisotropic
and specular), we could construct a separate illumination
model for each viewpoint. Then, we could exploit this view-
dependent illumination model in our fitting framework. Dur-
ing optimization when the pose parameter (y) changes, we
could dynamically pick the view-dependent illumination
model that is closest to the given pose parameter. This would
allows us to achieve more accurate reconstructions in even
more challenging lighting environments. A vexing problem
of storage will become even more challenging and will have
to be addressed in earnest.
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