## Out of Core Photon-Mapping for Large Buildings [Additionnal figures]

paper1004



Figure 1: Use of CPU during global illumination for the octagon building according to  $MAX\_TMP\_PHOTONS$ . An interval on the abscissa represents 5 seconds and an interval on ordinates represents 5% of CPU use: a. With  $MAX\_TMP\_PHOTONS = 500$ , allocated memory is not sufficient and disks reads and writes reduce CPU efficiency. - b.  $MAX\_TMP\_PHOTONS = 5000$ , CPU is used more efficiently with some remaining falling off. - c.  $MAX\_TMP\_PHOTONS = 10~000$ , disk is much less required and 100% CPU is used most of the time. - d.  $MAX\_TMP\_PHOTONS = 20~000$ , there is almost no difference than with b. disk accesses cannot be further reduced with this method.





Figure 2: Number of photons processed for each room loaded in memory during computations for our octagon building. Peaks correspond to corridors where a high number of photons enter through portals. We represent only the four first steps (after too less photons remain).





Figure 3: Images from the L-Building.



Figure 4: Images from the Z-Building.





Figure 5: Images from our octagon building.



Figure 6: Image from our octagon building.





Figure 7: Images from the Tower\_100 building.





Figure 8: Images from the Tower\_100 building.