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Abstract
A new technique for lighting participating media is suggested. The technique is based on the lattice-Boltzmann
method, which is gaining popularity as alternative to finite-element methods for flow computations, due to its
ease of implementation and ability to handle complex boundary conditions. A relatively simple, grid-based photon
transport model is postulated and then shown to describe, in the limit, a diffusion process. An application to
lighting clouds is provided, where cloud densities are generated by combining two well-established techniques.
Performance of the new lighting technique is not real-time, but the technique is highly parallel and does offer an
ability to easily represent complex scattering events. Sample renderings are included.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism

1. Introduction

Lattice-Boltzmann (LB) methods are computational alterna-
tives to finite-element methods for solving coupled systems
of partial differential equations. The LB methods have re-
cently provided significant successes in modeling fluid flows
and associated transport phenomena [HCD98]. The meth-
ods simulate transport by tracing the evolution of a sin-
gle particle distribution through synchronous updates on a
discrete grid. Although the LB methods deliver stability,
accuracy, and computational efficiency comparable to the
finite-element methods, the advantages lie in ease of im-
plementation, straightforward parallelization, and an abil-
ity to handle inter-facial dynamics and complex boundaries.
LB methods have become quite popular, and an extensive
literature has developed. The reader is directed to any of
[CD98, HCD98, FHP86, GdL98, HSB89] for additional de-
tail.

The purpose of this note is to suggest that LB methods
may be effectively applied to certain lighting problems, in
particular, those requiring accurate representation of multi-
ple, anisotropic scattering, e.g., in lighting participating me-
dia such as clouds, dust, and smoke.
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At the heart of any LB simulation is a lattice, which is
tiled across the space of interest. In two dimensions, hexag-
onal or rectangular grids are most often used. Each node
of the lattice has an associated set of directional densities,
where each density flows toward a specific neighbor node
in the lattice. Thus for a hexagonal lattice, each node will
have six directional densities, and for a rectangular lattice,
each will have eight. Many models incorporate an additional
density, called a “rest density,” that flows from each node
to itself. These are useful in capturing certain multi-step ef-
fects such as visco-elasticity for non-Newtonian fluids. Each
lattice direction has an associated speed at which the den-
sity flows. This is used as a weighting, to ensure an isotropic
base, in cases where the distance between lattice neighbors
is not equal. Thus, all directions in a hexagonal lattice have
equal speeds, but a rectangular lattice has speeds of

√
2 be-

tween diagonal neighbors and unit speeds otherwise. In three
dimensions, a wide variety of lattice configurations are used,
but the most common choice is a rectangular lattice with
neighbors given by the non-corner points of a cube of unit
radius, {−1,0,1}3. This yields a system with 18 neighbor-
ing directions and one rest direction, as illustrated in Figure
1.

All computations in an LB simulation are performed lo-
cally at each lattice point. The density flowing into a point
is redistributed to lattice neighbors using a set of “collision
rules”. The collision rules are most conveniently expressed
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Figure 1: The 18 neighbors used for 3-dimensional lattice
computations, with the 6 neighbors at distance 1 unit (left)
and the 12 neighbors (8 shown) at distance

√
2 (right)

as a fixed matrix, Θ, where entry Θi, j contains the fraction
of flow in direction j that will be diverted to direction i. For
each time step, the redistribution of density at all nodes is
performed synchronously. That is, we can think of the re-
distribution, or update, as comprising two steps. In the first
step, the collision phase, the densities at each lattice point are
locally redistributed to new directions according to the col-
lision matrix. In the second step, the redirected densities at
each site flow to neighboring sites, in their respective post-
collision directions. This two-step, synchronous update se-
quence repeats until the system converges to a steady state.
Initially, the directional densities in the lattice are set to ran-
dom values except at the boundaries. Specific directional
densities are often injected at certain boundaries on each
time step to represent incoming flow. Directional density that
would exit the lattice on any time step is either reflected (to
represent hard boundaries) or captured in a sink to test for
system equilibrium (injected flow = exit flow).

In terms of a matrix operation, the synchronous density
update is simply

Θ~I = ~O (1)

where~I is the vector of current directional densities at a sin-
gle site and ~O is the vector of density flowing out of that site
after the distribution. Note that the components of~I represent
all directional flows at a given site at a given time, whereas
the components of ~O are each sent to a different (neighbor)
site at the next time step. Pseudocode describing the update
of the lattice at each time step is given in Appendix B.

The model formulation expressed by (1) is attractive in its
simplicity and the ease with which intricate boundary con-
ditions, in additional to simple reflection or pass-through,
might be incorporated. The essential difficulty in any appli-
cation of the lattice-Boltzmann technique, and its true lim-
itation, lies in verifying that a nearly trivial update equa-
tion, such as our equation (1), has, as its limiting behavior,
a specific target system of partial differential equations that
describes the system of interest. Our LB approach, which
might be regarded as a computationally-trivial discrete or-

dinates method, will be seen to have an underlying diffu-
sion process that emerges as lattice spacing and time step
approach zero.

The remainder of the paper is organized as follows. In
the next section we describe related work, both in lattice-
Boltzmann modeling applied to graphics and in lighting par-
ticipating media. In section 3 we describe the new LB model
and derive the underlying diffusion process. This is the heart
of the paper, since such derivations represent the only sig-
nificant obstacles to application. In section 4, we apply the
model to lighting clouds, where the cloud density models
are obtained by a novel combination of two previously sug-
gested techniques. Some implementation details and poten-
tial limitations of the approach are provided in section 5.
Conclusions follow in section 6.

2. Related Work

LB methods have been successfully applied in other areas
of computer graphics. Wei et al. [WLMK04] and Li et al.
[LWK03] describe methods for implementing small LB sim-
ulations on graphics hardware for simulations of gases. Har-
ris et al. [HISL03] have used a similar concept, the coupled
map lattice, for hardware simulation of the formation and
evolution of clouds.

Because lattice-Boltzmann methods compete directly
with finite-element methods on many problems domains,
multi-scale LB methods, e.g. [FH98], have been developed
in the same spirit as the multi-grid FE methods.

The process of light scattering in a volume filled with
some medium can be described by the standard volume ra-
diative transfer equation

(~ω ·5+σt)L(~x,~ω) = σs

∫

p(~ω, ~ω′)L(~x, ~ω′)d~ω′ +Q(~x,~ω)

(2)
where ~x is a position in space, ~ω is a spherical direction,
p(~ω, ~ω′) is the phase function, σs is the scattering coeffi-
cient, σa is the absorption coefficient, σt = σs + σa is the
extinction coefficient, and Q(~x,~ω) is the emissive field in the
volume [Arv93]. Over an infinitesimal path, the left side of
Equation 2 represents the attenuation due to both absorption
and scattering as characterized by σt = σa + σs. The right
side represents the amount of light scattered into this path
from outside and emitted from within the path. In the steady
state they must be equal.

Radiative transfer in volumes is a well-studied topic.
Early approaches to the simulation of light scattering in par-
ticipating media assumed that propagating rays encountered
at most one scattering event [EP90, Sak90]. Several tech-
niques have been suggested to capture multiple scattering.
Rushmeier and Torrance [RT87] used a radiosity (finite-
element) technique to model energy exchange between envi-
ronmental zones and hence capture isotropic scattering. Max
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[Max94] and Languénou et al. [LBC94] were able to cap-
ture anisotropic effects by extending the discrete ordinates
method for radiation transfer in which all transfer is lim-
ited to a few discrete directions, chosen for optimal Gaussian
quadrature in integrals over solid angles. A fast approxima-
tion to multiple, anisotropic scattering that uses half-angle
(between light and viewpoint) slicing has recently been sug-
gested by Kniss et al. It is limited to forward scattering.

Analytical models of multiple scattering have invariably
led to diffusion processes. Kajiya and Von Herzen [KH84]
used spherical harmonics to expand both the light intensity
field and the scattering phase function. They obtained a cou-
pled set of partial differential equations in the spherical har-
monic coefficients whose solution would yield intensity at
each spatial coordinate. Stam [Sta95] observed that an ap-
proximate solution was a diffusion process and provided
substantial detail regarding this process, including a sug-
gested multi-grid solution technique. More recently, Jensen
et al. [JMLH01] showed that a simple, two-term approxima-
tion of radiance naturally leads to a diffusion approximation
that is appropriate for a highly scattering medium. We will
see that the simple LB update (1) can also provide a diffusion
process.

3. Transport Model

Our transport model is based upon a discrete representation
of time, space, and direction within a scattering volume. We
evaluate a discrete approximation of equation (2) locally at
each point within the volume. As the size of the time step
and the distance between spatial points in our approximation
approach 0, the approximation will be shown to converge
toward a solution of (2).

Formally, we postulate a three-dimensional photon den-
sity transport in terms of a spatial and temporal Markovian
update on a lattice:

fi(~r +λ~ci, t + τ) = Θi( f (~r, t)), i = 0,1, ..., 18 (3)

where fi(~r, t) is the density arriving at lattice site~r ∈ <3 at
time t in direction ~ci, λ is lattice spacing, τ is a time step,
and Θi is the ith row of the update matrix, Θ, to be specified.
The directions ~ci, i = 0,1,...,18, are all the non-corner lattice
points of a cube of unit radius, {−1,0,1}3. We take ~c0 =
(0,0,0), and ~c1 - ~c6 to be the axis directions.

As with all lattice-Boltzmann models, the advantage of
this approach is the speed, storage, and simplicity of the up-
date (3). The challenge is showing that the limiting behavior
(as λ,τ → 0) is a target differential equation that adequately
describes the system of interest.

Consider first the isotropic case. Our update matrix is
given as follows. For row 0:

Θ0 j =

{

0 j = 0
σa j > 0

(4)

For the axial rows, i = 1, ...,6:

Θi j =







1/12 j = 0
σs/12 j > 0, j 6= i

1−σt +σs/12, j = i
(5)

For the non-axial rows, i = 7, ...,18:

Θi j =







1/24 j = 0
σs/24 j > 0, j 6= i

1−σt +σs/24, j = i
(6)

Directional density f0 is the absorption/emission compo-
nent, and σt ∈ [0,1] is the extinction coefficient of the
medium. As usual, σt = σa + σs, where σa represents ex-
tinction due to absorption and σs represents extinction due
to scattering. The first row of Θ (4) indicates that fraction
σa of incoming density in any direction j > 0 is absorbed
on each (synchronous) update step. The first column ( j = 0
in Equations 5 and 6) indicates that all previously absorbed
density will be emitted uniformly on the next (synchronous)
step, except that we weight axis directions twice as heav-
ily as non-axis directions to ensure isotropic flow in the
case that the scattering coefficient is independent of direc-
tion [CD98]. The remaining non-diagonal entries indicate
that the scattered fraction of the incoming density, σs, is
isotropically distributed to neighboring lattice points. The
diagonal entries account for the transmission of that den-
sity which is not scattered. Note that the matrix is stochas-
tic, i.e., ∑18

i=0 Θi, j = 1, all j. We denote total site density by
ρ(~r, t) = ∑18

i=0 fi(~r, t).

To explore behavior in the limit, it will be useful to work
with increments, and so we rewrite (3) as:

fi(~r +λ~ci, t + τ)− fi(~r, t) = Ωi( f (~r, t)) (7)

where Ω = Θ− I. Expanding the left side of (7) in a Taylor
series, we have:

[(λ~ci,τ) ·∇] fi(~r, t)+
[(λ~ci,τ) ·∇]2

2!
fi(~r, t)+ ... = Ωi( f (~r, t))

(8)
where

∇ = (∂/∂~r,∂/∂t) = (∂/∂x,∂/∂y,∂/∂z,∂/∂t) (9)

For the diffusion behavior we seek, it will be important
for the time step to approach 0 faster than the lattice spacing.
Specifically, we write

t =
t0
ε2 where t0 = o(ε2)

~r =
~r0
ε

where ‖~r0‖ = o(ε)

Then
∂
∂t

= ε2 ∂
∂t0

∂
∂rα

= ε ∂
∂r0α

for α ∈ {x,y,z}
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As is standard practice in lattice-Boltzmann modeling, we
also assume that we can write f (~r, t) as a small perturbation
on this same scale about some local equilibrium, i.e.,

f (~r, t) = f (0)(~r, t)+ ε f (1)(~r, t)+ ε2 f (2)(~r, t)+ ... (10)

where the local equilibrium carries the total density, ρ(~r, t) =

∑18
i=0 f (0)

i (~r, t). Equation (10) is the Chapman-Enskog ex-
pansion from statistical mechanics [CD98], wherein it is
assumed that any flow that is near equilibrium can be ex-
pressed as a perturbation in the so-called Knudsen number,
ε, which represents the mean free path (expected distance be-
tween successive density collisions) in lattice spacing units.

Equation (7) now becomes:
[

[ελ(~ci · ∂
∂~r0

)+ ε2τ ∂
∂t0

]+
[ελ(~ci·

∂
∂~r0

)+ε2τ ∂
∂t0

)]2

2 + ...

]

×

( f (0)
i + ε f (1)

i + ...) = Ωi( f (0) + ε f (1) + ...) (11)

Equating coefficients of ε0 in (11), we obtain:

0 = Ωi( f (0)(~r, t)) (12)

i.e., f (0) is indeed a local equilibrium. In general, a local
equilibrium need not be unique, and the choice can affect the
speed of convergence [KFO99]. Nevertheless, in this case it
turns out that Ω has a one-dimensional null space. We ob-
serve that

v = (σa,1/12, ...,1/12,1/24, ...,1/24)

(where entries 1 - 6 are 1/12) satisfies Ωiv = 0, all i, and so
we must have

f (0)
i = Kvi

where the scaling coefficient, K, is determined by the re-
quirement that ρ = ∑i f (0)

i = K ∑i vi = K(1 + σa). Thus we
have:

f (0)
i (~r, t) =

vi

1+σa
ρ(~r, t) (13)

Similarly, equating coefficients of ε1 in (11), we obtain:

λ(~ci ·
∂

∂~r0
) f (0)

i (~r, t) = Ωi f (1)(~r, t) (14)

that is,

λvi

1+σa
(~ci ·

∂
∂~r0

)ρ(~r, t) = Ωi f (1)(~r, t) (15)

We would like to solve (15) for f (1), but we cannot simply
invert Ω, since it is singular. Nevertheless, we can observe
that any of

(c0α ,c1α , ...,c18α) where α ∈ {x,y,z}

as well as any of

(v0c0α ,v1c1α , ...,v18c18α) where α ∈ {x,y,z}

is an eigenvector of Ω with eigenvalue −σt . Thus, if we write

f (1)
i (~r, t) = Kvi(~ci ·

∂
∂~r0

)ρ(~r, t)

and substitute into (15), we can determine that K =
−λ/((1+σa)σt) and so

f (1)
i (~r, t) =

−λvi

(1+σa)σt
(~ci ·

∂
∂~r0

)ρ(~r, t) (16)

Finally, we need to equate ε2 terms in (11), but here it will
suffice to sum over all directions. We obtain:

18

∑
i=0

[

τ
∂ f (0)

i
∂t0

+λ(~ci ·
∂

∂~r0
) f (1)

i +
λ2

2
(~ci ·

∂
∂~r0

)2 f (0)
i

]

= 0

(17)
Substituting expressions (13) and (16) into equation (17) and
observing that

18

∑
i=0

viciα ciβ = (1/2)δαβ for α,β ∈ {x,y,z}

we obtain

∂ρ
∂t0

− λ2(1/σt −1/2)

2τ(1+σa)

(

∂2ρ
∂r2

0x

+
∂2ρ
∂r2

0y

+
∂2ρ
∂r2

0z

)

= 0 (18)

which is the standard diffusion equation,

∂ρ
∂t0

= D∇2
~r0

ρ (19)

with diffusion coefficient

D =

(

λ2

τ

)

[

(2/σt)−1
4(1+σa)

]

4. Lighting Clouds

To illustrate application of our transport model to light-
ing clouds, we obviously need a cloud density genera-
tor. The most successful density generators in the litera-
ture use a two-stage, macro-structure/micro-structure model
[EMP∗02, KPH∗03, DKY∗00, HL01]. We follow this lead,
but because we want to stay within the realm of physically-
based modeling, we employ a variation on these approaches.
For the macroscopic structure, we use the model of Miyazaki
et al. [MYDN01], which can be regarded as an approxima-
tion of the momentum and energy equations for fluid flow
at the Navier-Stokes level. We then treat the shape outputs
of this model as masks for humidity seeding in the percola-
tion model of Nagel and Raschke [NR92]. The most com-
pelling argument in favor of the Nagel-Raschke model is
the excellent agreement with real clouds in fractal analy-
sis. To retain this characteristic, we avoid explicit Gaussian
smoothing of the binary, percolation model output in com-
puting density at grid nodes. Instead, we first expand the tar-
get density grid (of size N3, where, for the examples shown,
N = 128) by a factor of K in each dimension. Because the
Nagel-Raschke model can be implemented with efficient bit
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Figure 2: Sample cloud rendering with isotropic scattering
(g = 0.0) and single scattering albedo 0.9.

operators and storage, this does not lead to inordinate storage
requirements. The binary output is then averaged over each
cube of edge dimension K to provide a real density with res-
olution 1/K3 at each of the original N3 sites. In the examples
shown, we used K = 5.

To provide for anisotropic, non-homogeneous scattering,
we modify the entries of Θ. First, because Θi, j controls scat-
tering from direction ~c j into direction ~ci, we scale σs in Θi, j
by

pi, j

∑18
j=1 pi, j/18

where pi, j is a discrete version of the the Henyey-Greenstein
phase function [HG40],

pi, j =
1−g2

(1−2g~ni · ~n j +g2)3/2

Here ~ni is the normalized direction, ~ci, and g ∈ [−1,1] is
a parameter that allows for the anisotropic scattering. Note
that g > 0 provides forward scattering, g < 0 provides back-
ward scattering, and g = 0 returns us to the isotropic case.
To provide density-dependence, the σ values in each entry
of Θ are scaled by the density of the scattering medium at
the lattice point before applying the update (7). Note that a
density of zero at a lattice site yields a simple pass-through
of photon density.

For rendering, the directional densities at each grid loca-
tion are summed to represent the illuminate at the location.
We then march rays through the volume to form images as in
[KH84]. Note that the display could, instead, be made direc-
tionally dependent by resolving the viewing direction into
the minimal grid-directional positive components and using
only those fi(~r, t). In Figure 2 we show a sample rendering
with a single scattering albedo (σs/σt ) of 0.9, a per-lattice-

Figure 3: Sample cloud rendering with forward scattering
(g = 0.85) and single scattering albedo 0.9.

site extinction coefficient σt = 0.25, and isotropic scatter-
ing (g = 0). In Figure 3 we show the same cloud density
from the same viewpoint with significant forward scattering
(g = 0.85).

With this method, it is easy to simulate non-homogeneous
materials. Figure 4 shows an example of a rainbow gra-
dient applied to σs over a cloud shaped like the Stanford
Bunny (www-graphics.stanford.edu/data/3Dscanrep/). The
cloud density was generated by applying the percolation
model to the Bunny interior. With this figure surface effects
are not considered, so the resulting simulation is not directly
comparable to current subsurface scattering techniques.

5. Details and Limitations

At the beginning of each time step, photon density corre-
sponding to light entering the system must be added to the
boundary nodes of the lattice. Such boundary conditions are
handled by resolving the illumination source (sun) direction
into a minimal collection of grid-directional, positive com-
ponents at each boundary site. For this step we use a proce-
dure, similar to Gram-Schmidt orthogonalization, wherein
we repeatedly select, from those lattice directions not yet se-
lected, that grid direction having the largest dot product with
the remaining light direction and then subtract that contri-
bution from the remaining light direction. Pseudocode for
this operation is listed in Appendix A. For those selected lat-
tice directions that point interior to the grid, directional flow
( fi(~r, t)) is fixed at a constant value on each time step. Grid
outflow is captured in a sink to test for equilibrium, but it is
otherwise unused. We note that it could be sampled to imple-
ment shadows cast by the cloud density on surfaces external
to the grid.

In many LB simulations, the boundaries of the lattice are
periodic. Thus, as density flows out one side, it flows back in

c© The Eurographics Association 2004.



Geist, Rasche, Westall, Schalkoff / Lattice-Boltzmann Lighting

Figure 4: Bunny-shaped cloud with anisotropic scattering
(g = 0.25) and a wavelength dependent σs smoothly varying
with position.
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Figure 5: The total density in the lattice at each time step
for the 128x128x128 lattice shown in Figure 2

the other. For many applications, it is appropriate to obstruct
some of the boundaries with some sort of barrier or wall and
modify the collision rules at such sites to include reflection
or absorption. For simulations of light through participating
media, these methods do not relate to the physical processes
being simulated. Instead, we allow density to freely flow out
of the boundaries of the lattice. Since we always inject den-
sity from a light source at the beginning of each time step,
the system eventually converges to a steady state, as long as
the eigenvalues of Ω are ∈ (−2,0).

While we have used this procedure for simulations in-
volving external light sources, there is nothing preventing us
from simulating emissive media. For an emissive medium,
photon density would be added at appropriate lattice points
at each time step.

By experiment, convergence generally requires a number
of iterations of (7) equal to twice the longest dimension of
the grid. This can be seen in Figure 5 where the total density
in the lattice is plotted for each time step with a 1283 lattice.

Our method does not provide the real-time performance
seen by other approaches [HL01, KPH∗03], but the quality
of the images, the simplicity of the algorithm (7), and the
ability to handle complex scattering events make it attractive.
To estimate the performance available through paralleliza-
tion, we implemented a single-channel, N = 128 model on
a 64-processor Beowulf-class cluster with 1.6GHz Pentium
IV processors and 100Mb Ethernet links. In this implemen-
tation, the algorithm required 0.093 seconds per iteration
of (7), and thus approximately 24 seconds to convergence,
which is not unreasonable for a system with more than two
million nodes. The single CPU time was 6.15 seconds per
iteration. Note that the speedup was slightly super-linear.

A disadvantage of this method is the amount of storage
required to hold the lattice. We need to represent N3 sites,
each with 19 directional densities (floats). If N is as large
as 256, this can be extensive, although space requirements
can be partitioned among multiple computational nodes in
a straightforward manner. A few conventional PCs would
suffice for a very large model.

Work is progressing on multi-resolution LB methods,
such as [FH98], in order to help lower the resource usage
of the simulation.

The current simulation does not take into account any in-
teraction between light and surfaces. This limits the class of
objects modeled to participating media such as clouds, dust
and smoke. An extension to include interaction with surfaces
and BRDF-based boundary conditions would be both an in-
teresting and useful exercise and might allow for the simula-
tion of subsurface scattering in complex, non-homogeneous
media such as skin.

6. Conclusions

We have suggested a new technique, based on a lattice-
Boltzmann method, for lighting participating media. Al-
though the technique does not deliver real-time performance,
it does offer a very simple implementation, high-quality im-
ages, an ability to capture complex scattering events, and an
underlying analytic (diffusion process) model. The essential
obstacle to any application of the lattice-Boltzmann tech-
nique lies in verifying that a discrete system of relatively
simple, synchronous updates has, as its limiting behavior,
a specific target system of partial differential equations that
describe the system of interest. We have applied this tech-
nique to a model of photon transport and provided this veri-
fication.

The ease with which lattice-Boltzmann methods can han-
dle complex boundary conditions suggests that applications
to modeling subsurface scattering may be available.
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Appendix A: Resolving Directions

This section presents pseudocode for resolving a light direc-
tion,~L, with intensity 1, into a lattice of 18 directional den-
sities. This does not include the “rest density” which does
not have an associated direction. The parameter ~f stores the
resulting light in terms of lattice directions.

void light_to_latt(~L, ~f) {
int i, j, dirs[18];
// Normalized light intensity
float intens = 1.0;
float latt_dirs[] = {1, 0, 0, -1, ...};

for (i=0; i<18; i++) dirs[i] = i;

// Sort lattice dirs on dot product
// with the light direction, in
// desc order; store idxs in dirs
sort_by_dp(dirs, ~L, latt_dirs);

for (i=0; i<18; i++) {
// If 0 intensity remains, stop
if (intens < ε) break;
dp = dot(latt_dirs[dirs[i]], ~L);
~f[dirs[i]] = min(dp,intens);
intens -= dp;

}
}

Appendix B: Lattice Updates

Here we present pseudocode for the main lattice update step,
where directional densities are scattered and distributed to
neighboring locations. Θ is the matrix describing the redis-
tribution of density (see Equations 3-5 for the isotropic case)

void update(node *src, node *dst,
float **Θ) {

int i, out, in, neigh;
float new_dense[19];

// Inject new light density on the
// borders of the lattice
inject_light(src);

// Distribute density locally
// according to the collision rules
for (i=0, i<# nodes; i++) {
for (in=0; in<19; in++)

new_dense[in] = 0;

for (in=0; in<19; i++) {
for (out=0; out<19; out++) {
new_dense[out] +=

src[i].dir[in]*Θ[in][out];
}

}

for (in=0; in<19; in++)
src[i].dir[in] = new_dense[in];

}

// Now flow density to neighbors
for (i=0, i<# nodes; i++) {
for (in=0; in<19; in++) {

// Compute the index of the
// node at i in the in direction
neigh = compute_neighbor (i, in);

if (neigh is a valid index)
dst[neigh].dir[in]

= src[i].dir[in];
}

}
}
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