
Feature-Based Textures

G. Ramanarayanan, K. Bala,1† and B. Walter2‡

1 Department of Computer Science 2 Program of Computer Graphics
Cornell University, Ithaca, NY, USA

Abstract

This paper introduces feature-based textures, a new image representation that combines features and samples for
high-quality texture mapping. Features identify boundaries within an image where samples change discontinu-
ously. They can be extracted from vector graphics representations, or explicitly added to raster images to improve
sharpness. Texture lookups are then interpolated from samples while respecting these boundaries. We present re-
sults from a software implementation of this technique demonstrating quality, efficiency and low memory overhead.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Three-Dimensional Graphics and Realism]:
Color, shading, shadowing, and texture

1. Introduction

Texture mapping is a popular and inexpensive technique for
conveying the illusion of scene complexity and increasing
perceived image quality in graphics applications. Texture
maps are fast, simple to use, and remarkably general. How-
ever, they have limited resolution, and thus there is an opti-
mal viewing distance at which textures have the best quality.
Viewing textures from distances farther than optimal creates
aliasing artifacts; MIP-maps [Wil83] are often used to solve
this problem. However, when textures are viewed at closer
than the optimal distance, artifacts still arise due to inad-
equate sampling of the original scene. Interpolation allevi-
ates this problem somewhat but causes excessive blurring.
Increasing the original texture resolution also removes arti-
facts but at the cost of increased texture memory usage.

This paper presents feature-based textures (FBT) — an al-
ternative image representation that explicitly combines fea-
tures and samples. Features are resolution-independent rep-
resentations of high-contrast changes in the texture map.
They enable sharp, high-quality texturing at close viewing
distances, while samples maintain the flexibility of tradi-
tional texture maps.

Figure 1 illustrates how FBTs are created and used. The

† {graman, kb}@cs.cornell.edu
‡ bjw@graphics.cornell.edu

top row shows how an input image and its features are com-
bined to form the FBT. Unusable samples from the input are
automatically discarded. Each FBT texel stores features and
samples. Features are represented as line segments and, for
higher quality, curves. The middle row shows how FBTs are
rendered. As in standard texture mapping, the texture value
at a point p is reconstructed using bilinear interpolation of
nearby texture samples. However, in FBTs, only reachable
samples are used - that is, those on the same side of all fea-
tures as p.

The bottom row of Figure 1 compares FBT rendering with
standard texture mapping using bilinear interpolation. The
FBT captures sharp features of the text and subtle shad-
ing gradations. The output from standard texture mapping is
blurry by comparison. For this example, an FBT of resolu-
tion 230× 256 (416KB) is contrasted against a texture map
of resolution 460 × 512 (690KB). To achieve image qual-
ity comparable to this FBT, the texture map would require
41MB of memory.

The rest of the paper is organized as follows. Section 2
discusses related work, and Section 3 gives an overview of
FBTs. Sections 4 and 5 describe in detail how the FBT is cre-
ated and used in rendering. Section 6 presents results, which
are discussed in Section 7. Finally, we make some conclud-
ing remarks in Section 8.

c© The Eurographics Association 2004.

Eurographics Symposium on Rendering (2004)
A. Keller, H. W. Jensen (Editors)

http://www.eg.org
http://diglib.eg.org

G. Ramanarayanan, K. Bala, & B. Walter / Feature-Based Textures
R

e
s
u
lt
s

FBTStandard texture map

Bilinearly interpolate

only using

reachable samples

R
e
n
d
e
ri
n
g

Find FBT texel

for point

Output image

point

Find region

including point

FBT texelFBT texel

P
re

p
ro

c
e
s
s Eliminate

prefiltered

samples

Features

FBT texel

feature

samples

Image

Figure 1: Feature-based textures. Top row: FBT combines
features and texture samples. Middle row: Sample is recon-
structed by interpolating reachable samples from adjacent
FBT texels. Bottom row: FBT captures sharp features unlike
standard texture mapping.

2. Related Work

The idea of using arbitrary resolution functions to model
graphics is not new. Vector-based image representations
such as Scalable Vector Graphics [SVG] and PostScript
are resolution-independent, and therefore they are heavily
used for printing and illustrations. However, they are not
amenable to point sampling and cannot be used in arbitrary
rendering contexts. Additionally, pure vector-based tech-
niques are somewhat limited in the visual complexity they
can produce. While these formats can include raster images,
in doing so they are again subject to the resolution depen-
dence of the raster representation.

Procedural textures [EMP∗94] completely specify a
resolution-independent texture function that can be directly
sampled and manipulated; these textures are often generated
using mathematical simulations or random noise. While use-
ful for natural phonemena, traditional procedural techniques
are unable to enhance existing images with plausible high-
resolution information, making them unsuitable for image-
based texture mapping.

Image superresolution [HT84, EF97, BS98] aims to gen-
erate a high resolution image from a series of low resolution
inputs that capture the same scene from different viewing
locations. FBTs introduce sharpness by annotating a single

image, but it would be interesting to look at annotation of
multiple images to create a higher quality result.

Feature finding and analysis [DH72, Can87, MBLS01] is
often used in computer vision for a variety of applications,
including stereopsis, shape recognition, and object track-
ing. This has been extended to 3D point-based models as
well [PKG03]. Our goal is different; we explicitly use fea-
tures to improve the quality of the rendered result. The tech-
nique we present is related to anisotropic diffusion [PM90],
which blurs grainy parts of an image but maintains sharp-
ness in discontinuous regions. There is also similar work in
image reconstruction [CGG91, Car88, HC00], but the focus
there is on compression and fundamental image representa-
tions, not a mechanism for sampling in a rendering context.

Autotrace and Potrace [Sel] are excellent tools for tracing
features in images and extracting vector representations. We
have used Potrace to find features in some textures.

There is a substantial body of work in computer graph-
ics on the explicit use of discontinuities in high qual-
ity reconstruction, such as radiosity discontinuity mesh-
ing [Hec92, LTG92], illumination functions [SLD92], and
silhouette clipping [SGHS00]. Recently, there has been in-
terest in new image representations that capture discon-
tinuities for interactive global illumination [BWG03] and
hardware-based shadowing techniques [SCH03].

Our work is most closely related to that of Salisbury et.
al. [SALS96], who use a hybrid image representation with
piecewise linear discontinuities for resolution-independent
pen-and-ink rendering. The FBT representation captures
both lines and curves, and is demonstrated for both vec-
tor graphics and raster images. Because our focus is texture
mapping, we demonstrate support fast point queries and bi-
linear interpolation. Also, our technique does not use NPR
rendering styles to mask artifacts.

3. FBT Overview

Like a standard texture map, an FBT is a two-dimensional
array of texels. However, FBT texels store both features and
samples. Features are discontinuity boundaries that intersect
the texel; samples are values of the function being repre-
sented by the texture. Figure 2 shows some of the ways a
texel can be intersected by features. In the FBTs shown in
this paper, most texels are empty, like Figure 2-(a). Sampling
from empty texels is no more expensive than a standard tex-
ture lookup.

3.1. Features and regions

Features characterize high-contrast changes in the input im-
age; they are represented by connected chains of splines. In
our implementation, we support Bezier curves, ranging from
lines to cubics. We refer to individual splines in a feature as
sub-features.

c© The Eurographics Association 2004.

266

G. Ramanarayanan, K. Bala, & B. Walter / Feature-Based Textures

(a)

R
1

(d)

R
1 R

2
R

3

R
4

R
5 R

6

R
7

R
8 R

9

(c)

R
1

R
2

R
3

R
4

R
5

(b)

R
1

R
2

R
3

Figure 2: Example texels, features, and regions (labeled as
{Ri}). When features come to a T junction (c), or intersect
completely (d), the texel is split (dashed lines) at the inter-
section points, forming horizontal bands that contain no in-
tersections.

Let us assume for now that the features and FBT reso-
lution are both specified (as described in Section 4.1). As
shown in Figure 2, texels are divided into various disjoint
regions by their intersecting features. For compactness, ev-
ery region contains exactly one sample, which we assume is
located at the bottom left of the region. To sample properly,
we need to correctly identify the regions different points are
contained in. Usually this is very easy (Figure 2-(ab)) but
when features intersect the problem is a little harder (Fig-
ure 2-(cd)). We will revisit this issue shortly.

3.2. Rendering an FBT

Texture maps can be queried in various ways. The most ac-
curate and expensive technique is to map the input pixel’s
area into texture space and filter the area to return an an-
tialiased texture value. We use an alternative, cheaper tech-
nique: map a point visible from the pixel into the texture,
and do a lookup using bilinear interpolation. Supersampling
is used to handle antialiasing. Thus FBT texture lookups in-
volve the following operations:

1. Transform the point into texture space point p.
2. Find the FBT texel T that includes p.
3. Find the region R in T that includes p.
4. Look up the sample in R and samples from reachable re-

gions in adjacent texels.
5. Return the bilinearly interpolated texture value.

Steps 1, 2 and 5 are straightforward and similar to stan-
dard texture map operations, whereas steps 3 and 4 are spe-
cific to FBTs. Therefore, the FBT must store just enough
information to do steps 3 and 4 efficiently. Section 4 fully
describes the FBT preprocess that accomplishes this.

Locating the region containing a point

Step 3 involves quickly locating the region that contains a
given point p. A simple test accomplishing this is to see
which side of each feature p lies on. This will work for any
texel that has no intersections, but it may fail in the case
where features intersect each other. For example, in Fig-
ure 2-(d), R2 and R8 are distinct, but they are on the same
side of both features. To handle such situations, the texel is

split horizontally at each feature-feature intersection (indi-
cated by the dashed lines). This forms a series of bands that
do not contain any intersections. Band subdivision is com-
bined with the sidedness test above to determine p’s region.
See Section 4.5 for details.

Finding samples for interpolation

Step 4 involves identifying samples that can be used to com-
pute texture values for a given point in the texture, using
bilinear interpolation. For an empty texel (which contains
exactly one region), bilinear interpolation is performed in
the usual fashion using the single sample of that texel, along
with samples from three adjacent texels. Because the sam-
ple is taken from the lower left corner, the three texels to the
right, above, and diagonally above to the right must contain
usable samples (see Figure 6-(a)).

For points that lie in nonempty texels, bilinear interpo-
lation is performed using samples from the current texel
and possibly also from regions in adjacent texels. A sam-
ple from an adjacent texel is used only if it is reachable
from the current point; otherwise, possibly erroneous inter-
polation would occur across a blocking feature. Section 4.6
explains how reachable samples are identified and interpo-
lated.

4. Creating FBTs

Some preprocessing is required to prepare the FBT data
structure for use in rendering. The exact nature of the prepro-
cessing depends on the kind of input being used to generate
the FBT.

4.1. Input Specification

The input to the FBT preprocess consists of an image, a set
of features, and a user-selected FBT resolution. This infor-
mation is then combined to create a finished FBT.

Finding features: Different types of input are amenable to
different types of feature extraction. Features are identified
either through automated extraction or manual specification,
as discussed below.

• Automatic extraction. Vector-based representations can
be queried directly to return all features. Raster im-
age features can be obtained either by using tracing
programs [Sel], or by applying feature detection algo-
rithms [Can87].

• Manual specification. A user can manually draw features
to match the high contrast changes in the image. The out-
put of automated extraction techniques can also be used to
assist in this process. This user interaction is needed only
once per image, and a library of FBTs can be reused by
applications.

Selecting FBT resolution: Because FBTs represent fea-
tures explicitly, there is some flexibility in choosing texel

c© The Eurographics Association 2004.

267

G. Ramanarayanan, K. Bala, & B. Walter / Feature-Based Textures

resolution. A natural tradeoff exists between texture qual-
ity/efficiency and compactness; different applications have
different demands. For example, an input with gradients
should use more texels to accurately capture shading vari-
ations, while a simple solid-color SVG input only needs a
few texels.

4.2. Feature processing

One of our goals is to have a representation general enough
to reproduce textures with any configuration of features. For
this reason, we compute all feature-texel and feature-feature
intersections, because they all affect the region determina-
tion process. Line intersection is trivial; line-curve intersec-
tion is also relatively straightforward, requiring the use of a
cubic solver. Robust curve-curve intersection is possible us-
ing techniques such as interval-based intersection [Tup01] or
Bezier clipping [SN90].

To accelerate computation involving features, a kd-tree is
constructed over texture space. It can be queried to return
all sub-features in a given bounding box, which accelerates
intersection tests.

4.3. Invalidating prefiltered samples

bilinear interpolation prefiltered samples FBT

Figure 3: Effect of prefiltered samples. Left: image produced
by bilinearly interpolating texture samples from a raster
texture map. Middle: using prefiltered samples in the FBT
causes artifacts. Right: eliminating prefiltered samples in the
FBT produces accurate output.

When constructing an FBT from an image, we treat most
samples as plausible point samples because they are in
smooth regions. However, samples that lie close to features
are often ‘prefiltered’ by the device used to capture them.
For example, most cameras have some transfer function that
filters all incoming light through a pixel (and nearby pixels).
These prefiltered samples cannot act as point samples, so
they may cause rendering artifacts (as in Figure 3, middle).

If the properties of the imaging device are known, sam-
ple invalidation can be decided using a metric similar to
that of [IBG03]. Often, however, the imaging device is not
known, so the user can explicitly specify an invalidation
distance from features. Typically a (∞-norm) distance of 1
pixel unit in the original image suffices; this also applies to
artist-drawn images, where antialiasing typically happens on

a pixel level. Eliminating filtered samples improves recon-
struction during rendering (Figure 3, right)

4.4. Filling holes

The invalidation process described above can create holes -
regions in the texture with no sample. These holes are filled
using information from nearby reachable samples.

In general, since features are composed of chains of
splines, texel regions can have complicated boundaries. To
fill holes we need a way to partition texture space. The con-
strained Delauney triangulation used in [SALS96] is lim-
ited to line segments; to handle curves, we use a trapezoid
decomposition variant [O’R93]. For each texel, we record
the y-coordinates of all feature-texel intersections, feature-
feature intersections, and sub-feature maximum and min-
imum y-values. These coordinates correspond to horizon-
tal lines that split the texel into simple 4-sided sub-regions.
Each sub-region has a flat upper and lower boundary, and
its right and left boundaries are either splines or sides of the
texel. Some care must be taken to handle sub-features that
are horizontal lines. Figure 4 shows the sub-regions {Li}
computed for the texel on the right.

L
1

L
4

L
2

L
3

R
1

R2
L

6

L
5

Figure 4: Intermediate representation for reachability and
hole filling. To form the sub-regions {Li}, a horizontal line
is drawn at the curve’s maximum y value and its intersection
with the middle texel boundary, splitting the right texel into
three bands. The sample in the left texel is copied to the sub-
regions in R2, but it cannot reach anything in R1.

Once the sub-regions are constructed, we build a reacha-
bility graph where the sub-regions are vertices, and adjacent
sub-regions are connected by an edge if the boundary be-
tween them is not blocked by a feature. Holes are then filled
by searching for and copying the closest reachable sample.
We will need the reachability graph later, so we will save it;
however, at this point, we can eliminate sub-regions from the
FBT representation. All sub-regions are collapsed and their
samples merged through area-weighted averaging. Bands re-
main to handle feature intersections; all other texel divisions
along the y-axis are eliminated. For example, in Figure 4, we
merge L1 and L4 into R1, and L2, L3, L5, and L6 into R2.

4.5. Region testing

To perform efficient texture lookup during rendering, a fast
test is needed to determine which texel region a point p lies

c© The Eurographics Association 2004.

268

G. Ramanarayanan, K. Bala, & B. Walter / Feature-Based Textures

in. We have handled feature intersections by forming hori-
zontal bands, which leaves us with rectangular bounding ar-
eas divided by multiple nonintersecting features. Define the
term simple feature to refer to a portion of a feature that splits
a rectangular bounding area into two disjoint regions, which
we arbitrarily term ‘inside’ and ‘outside’. A simple feature
is therefore either a closed loop, or a portion of a feature that
enters and exits the bounding area exactly once.

With closed loops, the traditional method to distinguish
‘inside’ and ‘outside’ is to use an intersection parity test:
cast a ray from p, and check the parity of the number of
intersections with the loop. Odd parity means ‘inside’, and
even parity means ‘outside’. It is natural to shoot a ray in
one of the four directions (x̂,−x̂, ŷ,−ŷ) because of computa-
tional convenience. To make a region determination test for
a simple feature, we could imagine ‘completing’ the feature
by outlining one of the two regions it delimits, forming a
closed loop (bolded in Figure 5), but we would need to keep
track of the extra boundary edges.

It is possible to pick a ray direction such that the test result
of the feature alone is the same as the test result of this closed
loop. Figure 5-(ab) illustrates this principle. In each diagram,
applying the given test to points in shaded/unshaded areas
returns odd/even parity, respectively. In (a), notice how the
closed loop shares a portion of the left boundary. Therefore,
if one considers the parity test against only the simple fea-
ture in the direction −x̂, the area in the middle will have
reversed parity because the ray-boundary intersection was
ignored ((a)-top). However, if we pick a direction that can
never intersect that boundary, the parity test result against the
simple feature will be sufficient; thus x̂ produces the correct
result ((a)-bottom). The example in (b) is similar. In general,
the ray cannot be cast towards a boundary that intersects the
simple feature; any other direction can be chosen.

We can now create a test to distinguish the n + 1 regions
created by n simple features. The semantics of this test will
correspond to a linear search of a sorted array. We examine
the simple features { fi} in order; if the point is inside (less
than) f j , it is in region R j, and if it is outside (greater than)
all n features, it is in region Rn+1. Figure 5-(c) shows how
this works.

We are assuming that all features in the texel or band are
simple. Any partial feature that does not cut the whole area
into two regions either terminates at an intersection point (in
which case bands handle it) or ‘floats’ inside the bounding
area, in which case it is ignored.

4.6. Texture lookup with interpolation

As described in 3.2, we would like to use bilinear interpola-
tion to capture smooth texture shading. In a standard texture
lookup, we bilinearly interpolate the four samples nearest to
the point. Let the texture sample at p be denoted by sp, and

(b)(a)

(c)

R
1 f

1

R
2

R
3

R
4

f
2

f
3

x̂

− x̂

− ŷ

x̂

Figure 5: Region determination with simple features. The
ray casting direction for each feature is indicated by the
arrows. (ab) Top: Testing intersection parity (odd/even =
shaded/unshaded) against the feature alone is not sufficient
if the ray points towards a boundary that the feature inter-
sects. Bottom: Any of the other directions is correct. (c) The
complete region determination test with sorted simple fea-
ture array { fi}.

c2

c1

c3

c4

p

c2

c0
c1

c3

p

c2

c0
c1

c3

p

(a)

p

(b)

p

(c)

p

c4

c5

c0

s = c0 0 s = c1 1

s = c2 2 s = c3 3

s = c0 0 s = c1 0

s = c2 2 s = c3 2

s = c0 4 s = c1 4

s = c2 4 s = c3 3

Figure 6: Bilinear interpolation using neighboring reach-
able samples. Texel representative samples are in the lower
left corners of the texels. If all 4 samples are not available,
existing samples are used instead. (a) Standard texture map-
ping. (b) The right side samples are blocked, so the ones on
the left are copied, preserving the gradient. (c) Only the up-
per right sample can be reached.

let the four nearby samples be {si}, with bilinear interpola-
tion weights {wi}. Then, sp = ∑i wisi.

Standard bilinear interpolation is fine for smooth regions,
but given the complications of variable numbers and shapes
of regions, it is unclear how to explicitly define a general
reconstruction function that is quickly computable, both in
terms of picking appropriate reachable samples and calculat-
ing accurate interpolation weights. We could store four sam-
ples at the corners of each region of a texel, but this would
cause roughly a four-fold increase in memory usage. Our
goal is to interpolate texture values while still storing one
sample per region, like standard texture maps.

We have adopted a practical solution to this problem that
is adequate in many situations. An FBT stores only one sam-
ple per texel region; this sample is associated with the re-
gion’s lower left corner ({ci} in Figure 6). The sample that
is in the lower left corner region of the texel is the represen-

c© The Eurographics Association 2004.

269

G. Ramanarayanan, K. Bala, & B. Walter / Feature-Based Textures

tative sample (c0, c1, c2, c3 in Figure 6). To perform bilinear
interpolation, we use the single sample in the region p maps
to, and all reachable representative samples from neighbor-
ing texels, for a total of 4 possible samples. These samples
are placed at the corners of an imaginary texel and inter-
polated using the resulting weights {wi}. If we don’t have
all 4 samples, we fill the empty spots by reusing the closest
(distance-wise) of the ones we have. See Figure 6 for ex-
amples. In the final FBT, reachability information for each
region is computed using the previously computed reacha-
bility graph and stored in a 1 byte sample availability mask
(2 bits to encode which of the 4 possible samples to use in
each corner).

4.7. FBT Memory usage

To store features, each FBT maintains a global list of 2D
points. Each feature is defined by an array of indices into
this point list, with an index for each sub-feature; each index
uses 2 bytes. Splines are represented by 2 to 4 control points
each.

Each texel stores an array of horizontal bands, which each
store an ordered list of simple features. Each simple fea-
ture stores the following: feature number (2 bytes), start sub-
feature index (2 bytes), end sub-feature index (2 bytes), start
parameter value (1 float) and end parameter value (1 float).
The start and end parameter values are the spline parameter
values indicating when the start/end sub-features enter/exit
the texel. Together, this information is sufficient to find the
chain of sub-features comprising the simple feature. Addi-
tionally, each simple feature uses 2 bits to indicate which
ray direction to use with the feature during intersection par-
ity tests. In total, each simple feature uses 15 bytes. Addi-
tionally, each sample associated with a region stores 4 bytes
(3 bytes for color, and 1 byte encoding the neighboring sam-
ple availability). Given k texel features in a horizontal band,
k×15+(k +1)×4 bytes of data are stored.

5. Rendering FBTs

We now discuss how FBTs support efficient rendering, fo-
cusing on the two steps from Section 3.2 that differ from
standard texture maps. The first step is to identify the region
p falls in, and the second step is to find samples reachable
from p without crossing any features.

Finding the FBT region for a point (Step 3): To find which
region p is in, we examine its y-coordinate to identify the
horizontal band to search. As described earlier, each band
stores an ordered list of simple features against which p is
tested sequentially (Figure 5-c).

Intersecting a ray with sub-features is fast. For a line seg-
ment, the test is straightforward. For curves, the intersection
can be directly computed by solving a cubic, which could
be slow. To eliminate unnecessary cubic solving we first test

the intersection of the ray with the curve convex hull. If the
point is inside, the cubic solver is invoked. If the point is out-
side, the intersection parity test for the curve can be deduced
from the convex hull test.

Finding reachable samples (Step 4): Once the region con-
taining p has been identified, its sample availability mask
encodes which neighboring samples to use for bilinear in-
terpolation. These four samples are then interpolated as de-
scribed in Section 4.6.

6. Results

In this section we present results comparing FBTs to stan-
dard texture mapping, focusing on image quality, memory
usage, and performance issues. The FBT system is imple-
mented in Java, and all results were obtained on a dual 3.06
GHz Pentium Xeon machine with 2 GB RAM. Construct-
ing an FBT from features and samples as a preprocessing
step runs in time proportional mainly to the number of FBT
texels; for the examples we show, this is typically under 30
seconds, and at worst one minute. Unless indicated other-
wise, all images are generated in a raytracing context, using
4 point samples per pixel. During rendering the use of FBTs
imposes no noticeable performance overhead over standard
texture maps.

Two types of inputs were used for this evaluation: SVGs
and raster images. Figure 7 shows some example inputs
along with their associated features. For the stop sign and
yin yang SVGs, the Batik open-source SVG framework
(http://xml.apache.org/batik/) was used to acquire the input
samples and extract features. For the flower, stained-glass,
and wizard skin, we manually annotated the image with line
segments. The banana example was annotated with splines
obtained using Potrace.

The wizard skin example is included primarily to illustrate
potential applications in games; it has only been partially
annotated, so its potentally skewed memory / performance
results are not included in the tables.

6.1. Memory Comparisons

As mentioned earlier, the user can choose the appropriate
FBT resolution for each texture map. To make comparisons
fair, we use standard texture maps that consume strictly more
memory than the corresponding FBT. Table 1 shows the
memory usage for the two SVG examples.

As a point of comparison, a texture map that could achieve
the same quality as the FBT for the zoomed-in viewpoint
shown in Figure 8-(a) would require approximately 41 MB.
Similarly, the zoomed-in stop sign in Figure 9 could be ren-
dered at the same quality as the FBT output if the stop sign
texture map used 3MB.

In the raster image examples, our goal was to annotate

c© The Eurographics Association 2004.

270

G. Ramanarayanan, K. Bala, & B. Walter / Feature-Based Textures

(a) (b)

(f)(e)(d)

(c)

Figure 7: Example inputs and their corresponding features.
(a) and (b) are SVGs; (c), (e), and (f) are raster images an-
notated by hand using line segments; (d) is a raster image
annotated by Potrace using splines.

Example FBT Res. FBT Size Raster Res. Raster Size

Stop sign 16×16 9KB 64×64 12KB

Yin yang 230×256 416KB 460×512 690KB

Table 1: Comparison of resolution and storage size of FBT
vs. standard texture map (stored as packed RGB).

an existing image with extra sharpness and detail, providing
higher quality during magnification. To retain all of the in-
formation in the source images, we constructed an FBT with
the same dimensions. In our experience, the overall size of
an annotated FBT constructed in this way is about twice the
size of the original raster image.

6.2. Quality Comparisons

Figure 8 compares several image reconstruction methods.
The highest-quality rendering, shown in Figure 8-(a), is the
SVG rendering of the image. Figure 8-(b) shows results pro-
duced using the FBT. It can be seen that the FBT correctly

captures the sharp detail and subtle gradients of the SVG,
whereas standard texture mapping (bottom) generates out-
put of lower quality. Given the poor output of nearest neigh-
bor sampling (c), for the rest of the results we only compare
FBTs with bilinear interpolation (d).

Figure 9 shows the stop sign comparison. At high magni-
fication, the FBT faithfully reconstructs the image, while the
standard texture map exhibits significant artifacts.

(a) (b)

(d)(c)

Figure 8: Reconstruction of lower left corner of yin yang ex-
ample using (a) vector-based SVG rendering; (b) 230×256
FBT; (c) 460×512 texture map with nearest neighbor sam-
pling; (d) 460×512 texture map with bilinear interpolation.

Figure 9: Stop sign quality comparison. Left: FBT; Right:
standard texture map.

Figure 10 compares results of FBT rendering versus bilin-
ear interpolation from standard texture maps. While our sys-
tem supports curves fully (as shown by the banana and SVG

c© The Eurographics Association 2004.

271

G. Ramanarayanan, K. Bala, & B. Walter / Feature-Based Textures

examples), one can see from the flower and stained glass ex-
amples that considerable sharpness can be added simply by
using line segments alone, which is advantageous when con-
sidering a GPU implementation of this technique.

Texture mapping a 3D model: In order to demonstrate re-
sults on an actual 3D model, we acquired a skinned, low-
polygon-count wizard from the game Warcraft III R©: Reign
of ChaosTM (Figure 11). This is a particularly appropriate ex-
ample because although the game usually views the model
from afar, the user can zoom in if he chooses, revealing the
quality limitations of the texture. Compare the sharpness of
the runes on the back of the cloak and hood, where we added
features, to the blurriness of the hem of the hood, cloak, and
sleeve, where we did not. Also compare the zoomed-in ren-
derings of the runes.

Figure 10: Comparisons of the stained glass, flower, and
banana. Left: FBT; Right: standard texture map. The stained
glass and flower were annotated by hand strictly using line
segments; the banana was annotated by higher order splines
obtained from Potrace.

6.3. Performance

The FBT representation is designed to mimic a standard tex-
ture map whenever possible, and to fall back on more ex-
pensive computations only near features. Thus, the work re-
quired for a single FBT query is proportional to the com-

Figure 11: Comparisons of wizard model. Left: Antialiased
rendering of model using an FBT skin. Right: zoomed-in
comparison (Top: FBT; Bottom: original raster skin). Art-
work from Warcraft III R©: Reign of ChaosTM provided cour-
tesy of Blizzard Entertainment.

plexity of the target texel. Table 2 shows the breakdown of
texel types in each of the FBT textures presented above, il-
lustrating the tradeoff between FBT size and texel complex-
ity (and therefore lookup speed). We see that more than 99%
of texels have at most 2 regions (except for the artificially
low-resolution stop sign texture).

Image FBT Res. Empty 2 regions 3+ regions

Stop sign 16×16 50.0% 24.6% 25.4%

Yinyang 230×256 92.9% 6.4% 0.7%

Stained glass 256×256 93.7% 6.3% 0.0%

Flower 128×128 97.1% 2.8% 0.1%

Banana 300×175 98.2% 1.8% 0.0%

Table 2: Breakdown of texel occupancy. Empty texels have
no texel features and sample lookups require no extra work
compared to standard texture maps.

To analyze cost, we are interested in the number of ray-
curve intersection tests we have to do, because they are ex-
pensive compared to texel lookups and even convex hull
tests (both of which can be coded very efficiently and are
amenable to GPU implementation). Let clookup be the av-
erage cost to map a given point into the correct band for a
region search, let chull be the cost to test against a curve’s
convex hull, and let ccubic be the cost of a cubic intersection
test. The average cost cq of query q is approximately

cq = clookup + savg(chull + ftest ccubic)

c© The Eurographics Association 2004.

272

G. Ramanarayanan, K. Bala, & B. Walter / Feature-Based Textures

where savg is the average number of curves considered in
each query, and ftest is the fraction of curves actually tested
using the cubic solver, on average. In general, the majority of
texels in an FBT have either one or two regions, so we expect
that savg and ftest will be small; additionally, our convex hull
test will reduce these even further. Table 3 consolidates this
information for our set of inputs. The small values of savg

and especially ftest demonstrate that performance is reason-
able even if ccubic is high.

FBTs are easily incorporated into the edge-and-point ren-
derer (EPR) [BWG03], which was used to make Figure 11.
The EPR creates high-quality renderings from sparse sam-
ples by treating discontinuities as first-class display primi-
tives and using them to control interpolation. FBTs did not
impact the EPR’s interactive performance (8-14 fps).

Image savg ftest cubic tests / query

Stop sign 1.051511 0.0051 0.0054

Stop sign zoom 1.571101 0.0078 0.0124

Yinyang 0.092352 0.0041 0.0004

Yinyang zoom 0.268469 0.0009 0.0024

Banana 0.018809 0.0028 < 0.0001

Banana zoom 0.023328 0.0066 0.0001

Table 3: Higher order curve test data for 500×500 render-
ings of the full example images and zoomed in images shown
in Figures 8, 9, and 10. The stained glass and flower are
not included because they only contain line segments. Zoom-
ing in on complicated regions increases the number of cubic
tests per query, but not significantly.

7. Discussion and Future Work

There are some important issues that arise in the use of
FBTs, which we discuss below. One issue is that not all types
of image discontinuities can be modeled accurately using
sharp features. With vector graphics inputs this is not a prob-
lem, but with raster image inputs, sharp boundaries may look
flat or cut-out. This can potentially be alleviated by introduc-
ing different functions for discontinuity reconstruction.

FBTs currently use point queries as a basic mechanism for
texture lookup; to antialias, we must supersample the FBT
or use a discontinuity-based antialiasing rendering system
such as [BWG03]. Exploring more sophisticated antialias-
ing mechanisms would be interesting. A related problem is
that of texture quality when zooming out. MIP-mapping of
textures using features is an open question that requires in-
vestigation of multi-resolution feature representations. As a
temporary solution, one could simply revert to normal MIP-
maps at a suitable distance from the FBT.

Each FBT texel region stores one representative sample.
Therefore, it is not possible to respect two smooth gradients
across a texel boundary. This could create small blocky ar-
tifacts, but they are typically not noticeable when using a
large enough FBT. Solving this problem robustly is related
to issues with antialiasing, MIP-mapping, and a more gen-
eral reconstruction framework.

Some artifacts can also arise because holes are filled by
copying nearby samples. Even using a local reconstruction
filter, some smearing may be visible under magnification
since we are using distance as a primary criteria in recon-
structing data. Pixel-based texel synthesis can potentially
solve this problem.

A GPU implementation of FBTs raises interesting chal-
lenges in terms of its representation of features because of
our support for curves and variable numbers of features per
texel. We are experimenting with a GPU implementation that
focuses only on line segments and restricts the number of
features per texel to a small number. Table 2 suggests that
this is possible because at reasonable resolutions, most FBTs
texels are either empty or only have a few features. We are
also optimistic about FBTs on the latest architectures (such
as the NV40) which support branching in the pixel shader.
Concurrent with our work, [TC04, Sen04] present fixed-size
image representations that include discontinuities; however,
the goal of maintaining fixed sizes is achieved by sacrificing
some reconstruction quality.

Users of our system commented that the presence of a
few sharp features significantly improved the overall look of
a texture. We believe this is because blurriness is most objec-
tionable when jarring artifacts of bilinear interpolation (stair-
casing / feathering) are observed. If these are eliminated, the
overall blurriness of the texture is less noticeable. User spec-
ification of features works particularly well in this regard.
Detailed studies to evaluate the perceived improvement of
texture quality would be useful.

8. Conclusions

This paper introduces feature-based textures, an image rep-
resentation that combines features and samples for high-
quality texture mapping. The FBT is a compact represen-
tation that permits efficient texture lookups while accurately
preserving features. We have demonstrated the use of FBTs
for rendering a range of images with high quality and a rel-
atively low impact on rendering performance. FBTs have
the potential to substantially improve image quality both in
offline rendering applications and interactive applications,
such as games. The point-sampling interface supported by
FBTs makes them directly applicable to ray tracers and soft-
ware scanline renderers. To further broaden the scope of
FBTs, we would like to investigate a GPU-based implemen-
tation and a more general reconstruction framework.

c© The Eurographics Association 2004.

273

G. Ramanarayanan, K. Bala, & B. Walter / Feature-Based Textures

References

[BS98] BORMAN S., STEVENSON R. L.: Super-
resolution from image sequences - A review. In
Proceedings of the 1998 Midwest Symposium on
Circuits and Systems (Notre Dame, IN, 1998).

[BWG03] BALA K., WALTER B., GREENBERG D.: Com-
bining edges and points for interactive high-
quality rendering. In SIGGRAPH ’03 (July
2003), pp. 631–640.

[Can87] CANNY J.: A computational approach to edge
detection. In RCV87 (1987), pp. 184–203.

[Car88] CARLSSON S.: Sketch based coding of grey
level images. Signal Processing 15, 1 (1988),
57–83.

[CGG91] CUMANI A., GRATTONI P., GUIDUCCI A.:
An edge-based description of color images.
CVGIP: Graph. Models Image Process. 53, 4
(1991), 313–323.

[DH72] DUDA R., HART P.: Use of the Hough trans-
form to detect lines and curves in pictures.
CACM 15, 1 (January 1972), 11–15.

[EF97] ELAD M., FEUER A.: Restoration of a sin-
gle super-resolution image from several blurred,
noisy, and down-sampled measured images.
IEEE Transactions on Image Processing 6, 12
(1997), 1646–1658.

[EMP∗94] EBERT D. S., MUSGRAVE F. K., PEACHEY

D., PERLIN K., WORLEY S.: Texturing and
Modeling: a Procedural Approach. Academic
Press Professional, Inc., 1994.

[HC00] HUNTER A., COHEN J. D.: Uniform fre-
quency images: adding geometry to images to
produce space-efficient textures. In Proceedings
of the Conference on Visualization ’00 (2000),
pp. 243–250.

[Hec92] HECKBERT P.: Discontinuity meshing for ra-
diosity. In 3rd Eurographics Workshop on Ren-
dering (1992), pp. 203–226.

[HT84] HUANG T. S., TSAY R. Y.: Multiple frame
image restoration and registration. Advances
in Computer Vision and Image PRocessing 1
(1984), 317–339.

[IBG03] ISMERT R., BALA K., GREENBERG D.: Detail
synthesis for image-based texturing. In Sym-
posium on Interactive 3D Graphics ’03 (Apr.
2003), pp. 171–176.

[LTG92] LISCHINSKI D., TAMPIERI F., GREENBERG

D. P.: Discontinuity meshing for accurate ra-
diosity. IEEE Comput. Graph. Appl. 12, 6
(1992), 25–39.

[MBLS01] MALIK J., BELONGIE S., LEUNG T. K., SHI

J.: Contour and texture analysis for image seg-
mentation. International Journal of Computer
Vision 43, 1 (2001), 7–27.

[O’R93] O’ROURKE J.: Computational Geometry in C.
Cambridge University Press, 1993.

[PKG03] PAULY M., KEISER R., GROSS M.: Multi-
scale feature extraction on point-sampled sur-
faces. In 14th Eurographics Workshop on Ren-
dering (2003), pp. 281–289.

[PM90] PERONA P., MALIK J.: Scale-space and edge
detection using anisotropic diffusion. IEEE
Transactions on Pattern Analysis and Machine
Intelligence 12, 7 (1990), 629–639.

[SALS96] SALISBURY M., ANDERSON C., LISCHINSKI

D., SALESIN D. H.: Scale-dependent reproduc-
tion of pen-and-ink illustrations. In SIGGRAPH
’96 (July 1996), pp. 461–468.

[SCH03] SEN P., CAMMARANO M., HANRAHAN P.:
Silhouette shadow maps. In SIGGRAPH ’03
(July 2003), pp. 521–526.

[Sel] SELINGER P.: Potrace: a polygon based tracing
algorithm. potrace.sourceforge.net/potrace.pdf.

[Sen04] SEN P.: Silhouette maps for texture magnifica-
tion. In Graphics Hardware 2004 (to appear)
(2004).

[SGHS00] SANDER P. V., GORTLER S. J., HOPPE H.,
SNYDER J.: Silhouette clipping. In SIGGRAPH
’00 (Aug. 2000), pp. 327–334.

[SLD92] SALESIN D. H., LISCHINSKI D., DEROSE T.:
Reconstructing illumination functions with se-
lected discontinuities. In 3rd Eurographics
Workshop on Rendering (May 1992), pp. 99–
112.

[SN90] SEDERBERG T. W., NISHITA T.: Curve in-
tersection using Bezier clipping. In Computer-
Aided Design (Nov. 1990), pp. 538–549.

[SVG] Scalable Vector Graphics 1.1. specification.
http://www.w3.org/TR/SVG11/.

[TC04] TUMBLIN J., CHOUDHURY P.: Bixels: Picture
samples with sharp embedded boundaries. In
15th Eurographics Workshop on Rendering (to
appear) (2004).

[Tup01] TUPPER J.: Reliable two-dimensional graph-
ing methods for mathematical formulae with
two free variables. In SIGGRAPH ’01 (2001),
pp. 77–86.

[Wil83] WILLIAMS L.: Pyramidal parametrics. In SIG-
GRAPH ’83 (1983), pp. 1–11.

c© The Eurographics Association 2004.

274

