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Abstract
Falling snow has the visual property that it is simultaneously a set of discrete moving particles as well as a dynamic
texture. To capture the dynamic texture properties of falling snow using particle systems can, however, require so
many particles that it severely impacts rendering rates. Here we address this limitation by rendering the texture
properties directly. We use a standard particle system to generate a relatively sparse set of falling snow flakes,
and we then composite in a dynamic texture to fill in between the particles. The texture is generated using a novel
image-based spectral synthesis method. The spectrum of the falling snow texture is defined by a dispersion relation
in the image plane, derived from linear perspective. The dispersion relation relates image speed, image size, and
particle depth. In the frequency domain, it relates the wavelength and speed of moving 2D image sinusoids. The
parameters of this spectral snow can be varied both across the image and over time. This provides the flexibility to
match the direction and speed parameters of the spectral snow to those of the falling particles. Camera motion can
also be matched. Our method produces visually pleasing results at interactive rendering rates. We demonstrate
our approach by adding snow effects to static and dynamic scenes. An extension for creating rain effects is also
presented.

1. Introduction

Falling snow turns a bleak winter scene into a romantic won-
derland. Its charm has inspired many artists, as well as many
computer graphics researchers.

Most previous computer graphics methods for rendering
snow have been based on 3D particle systems. These may
be divided into two types: those that render static images of
fallen snow [Fea00, SOH99, NIDN97], and those that ren-
der animated imagery of falling snow [Ree83, Sim90]. This
paper is concerned with the latter problem.

In addition, several methods have been developed for
modeling the global forces that drive particles such as snow
along their paths [Sta01, SF92, SF93, EMP∗03]. This paper
is not concerned with simulating these physical forces, as
the methods just cited do an admirable job already. Instead,
this paper addresses a different and neglected aspect of the
problem of rendering falling snow.

Falling snow has both particle and textural properties.
Snowflakes are obviously particles. Individual snowflakes
are clearly visible when one observes falling snow. At the
same time, one perceives not just the snowflakes, but also the
large scale forces that drive the snowflakes as they fall and

swirl in group motion. These larger scale percepts arise from
Gestalt-like configural relationships between the snowflakes
as they move. Falling snow thus generates a flow pattern, a
dynamic texture, which has a wholeness beyond the individ-
ual particles. The dynamic texture is the result of hundreds of
thousands of snowflakes being present in a real scene. If one
could model falling snow using a particle system with hun-
dreds of thousand of particles, then one would obtain the dy-
namic texture properties of falling snow automatically. Un-
fortunately, as we will see, the computational cost of doing
so can be quite expensive.

Therefore, in this paper, we introduce a method that keeps
the number of particles relatively low, and that achieves
the texture properties of falling snow using a novel image-
based spectral synthesis method. The spectral synthesis
method produces a dynamic texture which we composite
on the falling snow scene. As such, our method is a hybrid
method. It combines geometry-based rendering (particle sys-
tems) with image-based rendering (spectral synthesis). Our
method produces visually pleasing results at interactive ren-
dering rates and is flexible enough to accommodate camera
movement as well as changes in the direction and speed pa-
rameters of the spectral snow.
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The paper is organized as follows. In Section 2 we discuss
related work. Sections 3 and 4 describe motion in the fre-
quency domain and the dispersion relation for falling snow.
In Section 5 we present the details of our spectral synthe-
sis method. In Section 6 we present experimental results. In
Section 7 we present the theory and some results for dealing
with a moving camera. Finally, we summarize and discuss
some ideas for future work in Section 8.

2. Related Work

The idea of a combining image-based and geometry-based
rendering is itself not new. For example, Billboards are
a well-known technique for representing complex geome-
try, such as trees, with very few texture-mapped polygons.
More sophisticated work, such as that of [MS95], [SLS∗96],
[SGwHS98], [AL99], or [WM02], replaces distant geometry
with images. Our work is similar in that we replace a large
number of discrete snow particles with a synthesized spec-
tral snow in order to reproduce the effect of heavy snowfall
in a large spatial volume. However, our approach not only
reduces the rendering cost, but in our experimental system,
the results looked better than simply increasing the number
of particles.

For the case of a moving camera (Sec. 7), the synthe-
sized spectral snow is related to view-dependent textur-
ing [DTM96]. In traditional view-dependent texture map-
ping, the imagery changes based on the camera’s position
and orientation relative to a surface. In our case, the imagery
changes based on the camera’s orientation and motion rela-
tive to a volume of moving particles.

The two main contributions of this paper are a method for
rendering falling snow as a dynamic texture, and a method
for combining this texture with a particle system. Earlier we
cited several classic works on particle systems. Here we re-
view related work in spectral synthesis.

Spectral synthesis methods have been used widely in
computer graphics for 3D modeling of fractal-like objects.
These methods grew out of pioneering work of [Man77]
and [Vos88]. Examples of objects that have been rendered
with spectral synthesis are terrains [FFC82, MKM89], ocean
waves [MWM87, Sak93], static clouds [Gar85] or dynamic
clouds [Sak93], fluids [Sta01], wind [SF92, SF93], fire and
smoke [EMP∗03].

A key property of objects rendered with spectral synthesis
is their random multi-scale geometry. The visual appearance
of the object is determined by the statistics of the geometry
over scale, rather than by a deterministic smooth parametric
model of the geometry. The object is obtained by summing
up large numbers of sinusoidal functions which typically
have random phase with respect to each other. The object
is then rendered from this sum. Therefore, to model a given
type of object, one must define an appropriate summation,

i.e. the appropriate sinusoids and each sinusoid’s contribu-
tion to the sum. The main technical contribution of our pa-
per is an image-based method for generating the multi-scale
motion texture properties of falling snow.

Spectral synthesis can be carried out in either the space-
time domain [FFC82, Per85, Lew87, Lew89, MKM89] or
the frequency domain [Sta01, Sak93, SF92, MWM87]. In
the space-time domain, the object can be rendered procedu-
rally at each image pixel and frame. This has the advantage
that one needs only to render the visible points and at scales
that are relevant for the viewing distance. One can also let
the parameters of the model such as fractal dimension vary
continuously across space.

The alternative is to render in the frequency domain. Here
the disadvantage is that the parameters are specified glob-
ally, but the advantage is that one can use an inverse fast
Fourier transform (IFFT) which is very fast. As the FFT can
be computed on a GPU [MA03], one can potentially perform
spectral synthesis of video in real time.

A simple way to bridge these two extremes of pure space-
time vs. global Fourier transforms is to perform Fourier
transforms locally within small image tiles, such that the
frequency domain parameters are constant within each tile,
but can vary from tile to tile. This is closely analogous
to spectrogram methods used in classical speech analy-
sis/synthesis [RJ93]. Using tiles in this way gives a local
spatial control over the rendering parameters.

3. Image motion in the frequency domain

Our spectral synthesis method for falling snow is reminis-
cent of the model for ocean waves introduced in [MWM87].
In that paper, a set of 2D waves is synthesized by summing
2D sinusoids such that the speed of each component sinu-
soid depends on spatial frequency in a manner dictated by a
physics of ocean waves. The method we introduce for falling
snow also sums up 2D translating sine waves, but in our case
the waves represent the image motion of the snow at differ-
ent depths. Before we derive our model, we present the nec-
essary background.

In general, a 2D function such as an image that undergoes
a constant translation over time yields a plane of power in
the 3D spatiotemporal frequency domain[WA85]. If the im-
age is translating with velocity (vx,vy) pixels per frame, then
one can write:

I(x,y, t) = I(x− vx t, y− vy t,0) .

Let (ωx,ωy) be the spatial frequencies in the x and y di-
rections, and let ωt be the temporal frequency. If one takes
the 3D Fourier transform of the translating image I(x,y, t),
then one finds that all the power in the 3D frequency domain
(ωx,ωy,ωt) lies on the plane:

ωt = −vxωx − vyωy . (1)
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This plane passes through the origin. We refer to it as the
motion plane for velocity (vx,vy).

One way to understand the motion plane property of pure
translation is as follows. When an image sequence is created
by translating a single image frame over time with velocity
(vx,vy), then each of the 2D component sinusoids of the sin-
gle image frame travels with this velocity as well. Thus, each
component 2D sine wave produces a unique spatiotemporal
frequency component in the translating image sequence. For
each single frame component (ωx,ωy), there is a unique tem-
poral frequency as governed by Eq. (1). For example, if the
image velocity is purely in the y direction with speed s, i.e.
(vx,vy) = (0, s), then

ωt = −s ωy (2)

For fixed s, higher spatial frequencies produce higher tem-
poral frequencies. This is intuitively what one expects. The
more cycles there are across a given pixel distance, the more
temporal cycles there are (at a point) as those pixels translate
with speed s.

Eq. (1) is merely a generalization of Eq. (2) in which the
translation velocity is in an arbitrary image direction.

A few details on the geometry of the motion plane may
help the reader’s intuition. If one takes the intersection of
the motion plane with the plane ωt = 0, one obtains a line:

vxωx + vyωy = 0 .

The direction of the image velocity vector (vx, vy) is perpen-

dicular to this line, and the speed v =
√

v2
x + v2

y is the slope
of the motion plane in this motion direction.

4. A dispersion relation for falling snow

Our model departs from the motion plane model of Eq. (1)
by considering the effects of linear perspective. The im-
age motion generated by falling snow is not a single trans-
lation but rather is a family of translations. Even when
all snowflakes move with exactly the same 3D velocity,
snowflakes at different depths move with different 2D im-
age velocities.

We first address the case that the 3D velocity of the
snowflakes is in a direction that is orthogonal to the cam-
era’s view vector. For example, all snow flakes might be
moving in the y direction. In this case, the image speed of
each snowflake is also in the y direction. But because of lin-
ear perspective, the speed of the snowflake will depend on
its depth.

One way to capture the resulting range of image speeds
would be to use a set of motion planes:

{ ωt = −scosθ ωx − s sinθ ωy : s ∈ (smin, smax) } (3)

where (smin, smax) is the range of image speeds, and
(cosθ, sinθ) is the fixed direction of image motion. Such

a model was introduced in [LM03] for describing the 3D
power spectrum of the images seen by an observer who is
moving laterally relative to a cluttered 3D scene such as
the woods. (Another example is the case of falling snow,
of course.) In [LM03], the model of Eq. (3) was used for
computer vision, rather than computer graphics. That is, the
model was used for spectral analysis of video rather than for
spectral synthesis.

The model of Eq. (3) does capture the range of speeds
present in falling snow. However, it does not capture linear
perspective effects of falling snow. In this paper, we extend
the model of Eq. (3) to account for linear perspective and
then apply the model to the spectral synthesis problem.

The main idea is to use multiple motion planes as in Eq.
(3) but to restrict the set of frequencies contributed by each
motion plane in a way that is consistent with linear perspec-
tive. The image of falling snow at depth d in the scene has
two scaling properties associated with it, both of which arise
from linear perspective:

First, the closer a snowflake is to the camera, the faster
the snowflake moves in the image. Again we are assuming
that all snowflakes are falling with roughly the same 3D ve-
locity, and so the image speed s of a snowflake is is inversely
proportional to depth d,

s ∝ 1
d

.

Take the case of snowflake motion in the y direction. Substi-
tuting Eq. (2) we get:

d ∝ 1
ωt/ωy

(4)

Second, the closer the snowflake is to the camera, the
larger the snowflake appears in the image. Larger image
structure yields more power in lower spatial frequencies, i.e.

smaller values of ω =
√

ω2
x + ω2

y . Thus, the depth d of a
snowflake is proportional to the spatial frequencies to which
the snowflake contributes:

d ∝
√

ω2
x + ω2

y (5)

Combining Eqns. (4) and (5) yields, for the case of motion
in the y direction:

ωt ∝ ωy
√

ω2
x + ω2

y

For a general motion direction θ, one obtains a more general
dispersion relation:

ωt = C
cos θ ωx + sinθ ωy

√

ω2
x + ω2

y

(6)

This dispersion relation is the basis for our spectral synthesis
method.
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Figure 1: Example of tent surface of Eq. (6).

By inspection, one can see that ωt ∈ [−C,C] for all
(ωx,ωy). This fact becomes important when we consider
temporal aliasing and motion blur (see Sec. 5.5).

The constant C is equal to the temporal frequency that cor-
responds to the “fundamental” spatial frequency, (ωx,ωy) =
(cosθ, sinθ). This fundamental is most easily understood in
the case that θ ∈ {0,± π

2 ,π }. In this case, C is the image
speed of a sinusoidal component with wavelength equal to
the width of the image domain.

The dispersion relation of Eq. (6) is a surface in the 3D
frequency domain. Indeed it is a function, mapping spatial
frequencies to temporal frequency. We refer to this as the
tent surface because it has the appearance of a tent. A plot
of the surface is shown in Figure 1.

The tent surface is not defined at (ωx,ωy) = (0,0) which
is the dc component of the image sequence. The behavior
at very low spatial frequencies is governed by the following
limits,

lim
(ωx,ωy)→(0,0)

ωt =







1, cosθ ωx + sinθ ωy > 0
−1, cosθ ωx + sinθ ωy < 0

0 cosθ ωx + sinθ ωy = 0

5. Spectral synthesis method

Our spectral synthesis method is based on a discretization of
the dispersion relation of Eq. (6). The method has two steps.
First, we use spectral synthesis to create a time-varying
opacity function α(x,y, t) that represents the summed den-
sity of snowflakes that project to each pixel and frame. In
terms of spectral synthesis, α(x,y, t) is the sum of moving
2D sine waves, as described by the dispersion relation. This
opacity function is rendered in image tiles which are then
overlapped on a grid, spanning the image domain. Second,
we use this opacity function to composite a white falling
snow “layer” on top of a background image, video, or ren-
dered scene.

The next several subsections cover the following details:
how the tent surface can be defined in the 3D and 2D do-
mains; what amplitudes are chosen for each of the frequency
components; how to address aliasing problems; and how to
composite the snow over the background scene.

5.1. Discretization: 3D method

Consider a single M × M tile. We wish to synthesize the
time-varying opacity function for this tile over a sequence of
T frames. One way to do so would be to construct a density
function α̂(ωx,ωy,ωt) in the M×M×T frequency domain,
such that the density is non-zero only on the tent surface, and
then take the inverse FFT of this 3D density function, i.e.

α(x,y, t) =
M−1

∑
ωx=0

M−1

∑
ωy=0

T−1

∑
ωt=0

α̂(ωx,ωy,ωt)ei 2π
N ωxxei 2π

N ωyyei 2π
T ωt t

This yields an opacity function α(x,y, t) which is M×M×T
in space-time, and whose power spectrum by definition is
the tent surface. This spectral synthesis method was used in
[ZL03].

To construct α̂(ωx,ωy,ωt), each cell in the frequency do-
main is initialized to 0. Any cell (ωx,ωy,ωt) that overlaps
the tent surface of Eq. (6) is then assigned a complex value
with an amplitude varying between 0 to 1 (see Sec. 5.4)
and a random phase varying between 0 to 2π. To ensure
that the inverse Fourier transform α(x,y, t) of the function
is real, one enforces a conjugacy constraint, namely that
α̂(ωx,ωy,ωt) is the complex conjugate of α̂(M −ωx,M −
ωy,T −ωt) [Bra65].

This 3D spectral synthesis method has two key limita-
tions, however. First, it is relatively slow. For an M ×M =
128× 128 image tile and T = 64, several MB are required
for representing the 3D frequency volume and the compu-
tation of the IFFT takes several minutes on a Pentium 4. A
second limitation is that the direction and range of speeds of
the snow must be fixed over all T frames.

The 2D method which we describe next avoids both of
these limitations.

5.2. Discretization: 2D method

Because the dispersion relation expresses ωt as a function of
ωx and ωy, we can substitute this relation and get rid of the
ωt variable in the IFFT above:

α(x,y, t)= T
M

∑
ωx=0

M

∑
ωy=0

α̂(ωx,ωy, t) ei 2π
N ωxxei 2π

N ωyyei 2π
T φ(ωx ,ωy,t)

where φ(ωx,ωy, t) is the phase which is a function of spatial
frequency (ωx,ωy) and frame number t.

If C and θ are constant over time t, then φ(ωx,ωy, t) can
be written as a product:

φ(ωx,ωy, t) = C
cosθ ωx + sinθ ωy

√

ω2
x + ω2

y

φ0(ωx,ωy) t
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The φ0 term is a random initialization of the phases, which
is forced to obey the conjugacy constraint to ensure that the
IFFT is real for each frame.

In the more general case that C and θ depend on t, phase
is updated from frame t to t + 1 via:

φ(ωx,ωy, t +1) := C(t)
cosθ(t) ωx + sinθ(t) ωy

√

ω2
x + ω2

y

φ(ωx,ωy, t) .

The 2D method just described reduces the spatiotemporal
(3D) spectral synthesis problem to a spatial (2D) spectral
synthesis problem, with the latter performed once per frame
t. This eases the computational burden. We do not have to fit
the O(M2T ) floats per tile – the size of the spectral domain
– into main memory to compute the FFT. Instead, we need
only fit O(M2) floats per tile.

The more interesting advantage is that the various param-
eters of the motion can now vary with t:

• the fundamental speed C, i.e. C(t)
• the direction of the motion θ i.e. θ(t)
• the opacity amplitudes | α̂(ωx,ωy) | i.e. α̂(ωx,ωy, t).

We will see examples of each of these later.

5.3. Range of spatial frequencies

If all spatial frequencies (ωx,ωy) were to contribute to the
tent surface, then the contributing wavelengths would vary
from the width of the image tile M to the distance between
pixels. We found that such extreme large or small wave-
lengths do not add to the visual impression of the snow. Pre-
sumably too large snowflakes don’t work because they are
so much larger than the particles, and too small wavelengths
don’t work because they correspond to snowflakes way off
in the distance, and these move so slowly that their motion
is not perceived.

We found that we could produce a good percept of the
motion texture of falling snow using about three octaves of
speeds – that is, a factor of 8 range. For the spectral snow
presented in the paper, we include power in the tent surface
for ω from M

32 to M
4 cycles per tile width, where M

2 is the spa-
tial Nyquist frequency. Effectively, we are defining an annu-
lus in (ωx,ωy) and assigning power only to spatial frequen-
cies in this annulus. Our image tiles are of width M = 64.

5.4. 1/ω amplitudes

To make each of the image speeds of the spectral snow
equally visible, we put a constant amount of power within
each octave band of spatial frequencies [BF95]. We do so by
assigning the amplitudes to have a 1/ω noise:

| α̂(ωx,ωy) | =
1

√

ω2
x + ω2

y

5.5. Temporal aliasing and motion blur

Temporal aliasing occurs for the tent surface when the tem-
poral frequency ωt is greater than the Nyquist frequency T

2 ,
i.e.

∣

∣

∣

∣

∣

∣

C
cosθ ωx + sinθ ωy

√

ω2
x + ω2

y

∣

∣

∣

∣

∣

∣

>
T
2

Aliasing causes high speeds in direction θ to appear as high
speeds in direction θ + 180◦.

For C fixed, aliasing can be avoided by temporal blurring.
Temporal blurring is implemented in the 3D frequency do-
main by setting to zero the amplitudes of any spatial fre-
quency components that obey the above inequality. The ease
with which we can create temporal blur is an advantage of
the spectral synthesis method. With particle systems, mo-
tion blur often involves rendering the same particle multiple
times, which is potentially costly.

5.6. Inverse FFT to obtain opacity

Once the function α̂(ωx,ωy, t) has been computed for frame
t, we can obtain the opacity function α(x,y, t) for frame t by
taking the 2D inverse FFT.

To treat α(x,y, t) as opacity, we map it to the interval [0,1].
We do so by shifting the mean to 0.5 and reducing the stan-
dard deviation so that nearly all values lie in [0,1], clipping
the outliers. We also take account of the fact that the human
visual system is sensitive to logarithmic differences in in-
tensity, rather than linear differences; after mapping to [0,1],
we apply a non-linear transformation, namely we square the
α(x,y, t) values. This compresses the opacity values to the
lower part of the interval [0,1]. Thus, after the compositing
step (described next), the variations in opacity are more vis-
ible.

5.7. Composite spectral snow with a background video

Finally, we composite the opacity with a background still
image Ibg(x,y) or dynamic image Ibg(x,y, t). We set the in-
tensity of the foreground image sequence (the spectral snow
layer) to Isnow = 250 since snow should appear white, and
use the formula:

I(x,y, t) = Isnow α(x,y, t) + (1−α(x,y, t)) Ibg(x,y, t) (7)

This is a variation of standard compositing [Bli94], in which
the foreground intensity is now constant and the opacity
α(x,y, t) varies with time.

6. Results

Because this paper deals with moving imagery, the results
are best seen in the accompanying video sequences. These
videos can be downloaded from the publications section of
the first author’s homepage.
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Figure 2: Three screen-shots taken from our Human Condition example. On the left, the scene is rendered with a low particle
count snowfall. The center image shows the effect of simply increasing the particle count. There are clearly more particles, but
it does not look like dense snow. In the right image, combining the particle system with the spectral snow produces an effect
that more closely mimics heavy snowfall. (See color plate.)

Model Number of Spectral Snow Low Particle High Particle
Polygons Resolution Count Count

Human Condition 6 512×512 2000 16,000

Son of Man 8 512×512 2000 16,000

Ventana 6 512 × 512 N/A N/A

Flythrough 3836 1024×1024 30,000 150,000

Table 1: Scene details. Each snow sequence was 30 frames.

6.1. Rendering times

The 2D method described above was implemented in C on
a Pentium 4. For an image size of N ×N = 512×512, spec-
tral snow was generated at 4-5 frames per second, with a
per-frame breakdown as follows: 40 ms for the phase up-
date, 120 ms for the IFFT, 30 ms for the compositing, and
25 ms for writing to disk. Performing the computation on
overlapping tiles that span the same image size does not sig-
nificantly change these timing numbers. The numbers might
be improved dramatically if we were to optimize the code
by taking advantage of a particular processor’s floating point
pipeline for the IFFT, or performing the computation on the
GPU [MA03]. This is a topic for future work.

6.2. Example videos for single background images

We have presented three demonstration scenes for static
background images. (See first three rows of Table 1.) All
were implemented using DirectX 9 on a Windows XP PC
with a Pentium 4, 2.4GHz processor and 1GB of RAM. In
addition, the PC has an ATI Radeon 9800 Pro graphics card

with 256 MB of texture memory. For all scenarios, the spec-
tral snow opacity functions are loaded as 8-bits-per-pixel lu-
minance textures. Each spectral snow sequence is 30 frames,
and at runtime we iterate through the texture sequence at 30
fps.

Our snow particle system used the CParticleSystem class
implemented in the DirectX 9 PointSprites sample applica-
tion. The video scenes accompanying this paper were ren-
dered to disk frame-by-frame using a synthetic clock with
a 1/30th of a second delay between frames. However, all of
our demonstrations run at much higher interactive rates, as
shown in Table 2.

Our first example, human_condition.avi, is based
on a René Magritte painting of the same name, and was in-
spired by [HAA97]. We divided the painting into two tex-
tures: a foreground texture that corresponds to the interior
scene (the room, ball, canvas, and easel) and a background
texture that corresponds to the exterior scene (the sea and
sky). The background texture and spectral snow are rendered
orthographically onto a polygon at a far distance from the
camera. The spectral snow, which mimics a constant down-
ward snow fall, has a resolution of 512 × 512 pixels per
frame, and is tiled across the polygon. Since each opacity
function is toroidal in (x,y), there are no seams across tile
boundaries. Seamless tiling is advantageous since it allows
us to use smaller textures.

Closer to the camera, we render a second polygon with
only the foreground texture and no spectral snow. Snow par-
ticles are then dropped into the scene in the space between
the two textured polygons. The spectral snow was generated
to match the speed of the snow particles closest to the cam-
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Model Rendering Times Per Frame (ms)
Basic Scene Low Particle High Particle Spectral Snow Low Particles

Count Count Plus Spectral Snow

Human Condition 1.57 1.73 9.82 1.52 1.99

Son of Man 1.37 1.7 9.73 1.59 2.0

Flythrough 0.94 24.6 121.9 1.44 24.6

Table 2: Rendering performance for various scenes. Rendered to an 800×600 window. Note that while the number of particles
may significantly affect rendering times, performance is less affected by adding in the spectral snow.

era. The entire scene can be rendered in under 2 millisec-
onds. (See Table 2.)

In the accompanying video, we see that combining the
spectral snow with the particle system looks better than ei-
ther one alone. The particles provide visible individual snow
flakes, but do not make the scene look full of snow. The spec-
tral snow gives an atmospheric textural effect of heavy snow
fall, but is lacking in individual snow particles and can suf-
fer from a "shower door" effect. Together, the scene looks
as if it has a heavy snowfall. Just as significantly, simply
increasing the number of particles (from 2000 particles to
16000 particles) does not yield the same visual effect as that
of combining the particle-based and image-based systems.
(See Figure 2.) We believe the hybrid system more closely
mimics the visual effect of heavy snowfall. Furthermore, it
does so with significantly faster rendering rates. In our tim-
ing tests, rendering rates slowed to an average of nearly 10
ms per frame with the increased number of particles.

The son_of_man.avi, also based on a picture by
Magritte, was rendered in much the same way as the human
condition demo.

The ventana.avi sequence demonstrates how the mo-
tion blur method described in Sec. 5.5 can be used to gener-
ate a motion texture that is reminiscent of falling rain. (Fig-
ure 4.) Here we used vertical motion direction and a high
value of C, such that the only spatial frequency components
(ωx,ωy) that contributed to the spectral sum were those in
which | ωy | was near zero, that is, only long wavelengths
in the y direction.

All of these demos were quite easily created, showing that
our method is a practical way to add convincing weather ef-
fects to 2D imagery.

7. Varying the spectral parameters over position-time

We next consider the case of falling snow as seen by a mov-
ing camera. This case is more challenging since the image
directions and range of speeds of the particles can vary with
image position and frame number. Since the spectral snow
motion must be consistent with the particle motion, the spec-
tral snow must also vary over position-time.

For simplicity, we assume the falling snowflake particles
have a constant 3D velocity, and so the velocity of the 3D
snow in camera coordinates at any frame t is the difference
of the snow’s 3D velocity vector and the camera’s 3D ve-
locity vector. To render the spectral snow in camera coordi-
nates, without further loss of generality we treat the 3D snow
velocity as fixed and assume the camera as moving with a re-
sultant 3D velocity, which we denote (Tx,Ty,Tz).

We apply the equations of image motion developed in
[LHP80] which describe the image velocity field seen by
a camera moving relative to a rigid 3D scene (see also
[TV98]). If the image plane is at depth Z = f , and Z(x,y)
is the depth of a 3D point visible at image position (x,y),
then the image velocity at (x,y) is:

[

vx
vy

]

= Tz
Z(x,y)

[

x− xT
y− yT

]

(8)

where the special image position

(xT ,yT ) =
f

Tz
(Tx,Ty)

is called the focus of expansion (FOE).

If the scene were a single fronto-parallel plane, then image
velocity (vx,vy) would increase linearly with image distance
from the FOE. This is the case shown in Fig. 3. The FOE,
(xT ,yT ), is at the center, the second row from the top.

When the scene is 3D snow, multiple velocity vectors are
present in each tile, corresponding to different Z(x,y) values
of snowflakes that project to this tile. For any given range of
snowflake depths within a tile, the range of velocities in that
tile scales linearly by the image distance to the FOE. Patches
near the FOE have little or no motion, even though they may
have a large range of depths.

To account for these spatially varying properties of the
velocities, both between and within tiles, we rendered the
spectral snow using a 1024× 1024 image with overlapping
small tiles of size M×M where M = 64. The overlap was 10
pixels, hence there were approximately 20×20 tiles. This is
the sampling shown in Fig. 3. Spectral snow for neighboring
tiles was blended linearly across the tile overlap region.

The direction θi j was chosen to be constant in each tile
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Figure 3: Image velocity field seen by a camera moving for-
ward and upward. The depth map is a single fronto-parallel
plane i.e. Z(x,y) = constant.

(i, j). Let the center point of that tile be (xi j,yi j), and define

θi j = arctan
(

yi j − yT

xi j − xT

)

.

The range of speeds within each tile was determined by the
C constant which also varies from tile to tile. Since the range
increases linearly with the distance from the FOE, we define:

Ci j = C0

√

(xi j − xT )2 +(yi j − yT )2 .

The constant C0 is chosen once for the whole image. In this
way, the range of speeds at each position (x,y) in the spectral
snow field roughly matches the range of image speeds of
the snow particles near that position. (This assumes that the
range of depths of particles is constant over all tiles. See,
however, the final paragraph of Section 8.)

7.1. Example video for translating camera

Flythrough.avi shows an example (Figure 5), which is
based on a modified version of the DirectX 9 "Billboard"
sample application. The FOE is similar to Fig. 3.

The spectral snow opacity function is mapped onto a poly-
gon close to the near clipping plane. The spectral snow tex-
tures are not tiled; each frame covers the entire polygon
once. Again, we see that the hybrid system yields better
looking results than either particles or spectral snow alone.
In the second video of this scene, comparison.avi, we
can observe again that significantly increasing the number of
particles (from 30,000 to 150,000) does not lead to the same

Figure 4: A still image from the Ventana rain simulation.

visual effect as our hybrid approach, and it significantly de-
creases performance, causing frame rates to drop below the
threshold for interactivity as we can see in Table 2. (We ren-
dered the heavy snowfall off-line to achieve 30 frames per
second in the video.)

7.2. Example video for time-varying parameters

In the previous example, the parameters C and θ varied from
one image tile to the next, but did not vary over time. Our fi-
nal example, FOEmoving.mpeg, shows the spectral snow
such that the xT coordinate of the FOE is made to vary si-
nusoidally with frame t. This would be roughly the case, for
example, if the moving camera were to change translation
direction by panning back and forth over time.

8. Conclusions and Future Work

We have presented a hybrid geometry- and image-based
method for rendering falling snow. There are two main con-
tributions of this work. First, we introduce an image-based
spectral synthesis method for rendering falling snow which
is based on the size/speed/depth relationship that results
from linear perspective. This relationship defines multi-scale
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Figure 5: In the Flythrough sequence, the spectral snow
combined with the particle snow produces the effect of heavy
snow fall relative to a moving camera.

textural properties of the snow. We show how to synthesize
this dynamic texture frame-by-frame using a 2D IFFT on
image tiles. The motion parameters are constant within tiles,
but can vary between tiles and from frame-to-frame. The
method we describe is quite flexible, enabling us to simu-
late effects such as motion blur, rain, and a moving camera.

The second contribution is to use the spectral snow as
a way of “filling in” the dynamic texture properties of a
particle system. We use a standard particle system to gen-
erate a large number of particles with discrete positions
and velocities, and we choose the parameters of the spec-
tral snow within each image tile to be consistent with mo-
tion of those particles within that tile. Because the spectral
snow fills in the textural properties, far fewer particles are
needed, significantly improving rendering rates. We also ar-
gue that spectral snow can do a better job of conveying the
atmospheric/textural properties of the snow than does a large
number of particles. Furthermore, the spectral snow can be
easily incorporated into existing 3D systems with texture
mapping.

In regards to future work, we hope to incorporate more
motion flexibility. In each of our examples, the snowflakes
were assumed to move with a single 3D velocity, as if there
were a rigid body filling the atmosphere. In particular, the
direction θ of the spectral snow motion was constant within
each image tile. However, real falling snow is often subject
to wind and other fluid-like atmospheric phenomena, caus-
ing 3D velocity to vary with position. Indeed, there has been
great effort in developing rendering methods that simulate
precisely these effects, as cited in Section 2.

Our method could be extended so that the direction and
speed of the 3D snow can vary as a function of depth. For a
given image tile, each circle of radius ω =

√
ω2 + ω2 repre-

sents part of the 3D view volume – namely, at a depth that is
proportional to ω and at positions that project to the pixels in

this tile. The average 3D velocity of snowflakes in this part
of the view volume defines an image velocity (similar to Eq.
8) which can be used to determine the slope and direction of
the motion plane which the spatial frequency circle of radius
ω contributes to the tent. The 3D snowflake velocities in the
view volume could be determined using known techniques
[Sta01, SF92, SF93, Sta97]. Hence, it could be again possi-
ble to integrate the spectral method with a particle method.

A second topic for future research is to allow the range of
“depths” of the spectral snow to vary from tile to tile, just as
the depths of the visible particle snow will vary depending
on occlusion relationships. (Currently the spectral method
assumes a fixed three-octave range of depths over all tiles.)
For example, in an outdoor scene, pixels covering the ground
should have an opacity function whose contributing spatial
frequencies are different than those for pixels covering the
sky. One way to implement this effect would be to vary the
octave bandwidth across tiles. Although the depth map of the
background video may not be given, it could be provided by
a computer vision technique [HZ00] or painted in by a user.
Such image-based interaction indeed may be preferable for
some users than methods that require the user to specify 3D
models.
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