
Rendering Procedural Terrain by Geometry Image Warping

Carsten Dachsbacher, Marc Stamminger

Computer Graphics Group, University of Erlangen-Nuremberg
{dachsbacher,stamminger}@cs.fau.de

Abstract

We describe an approach for rendering large terrains in real-time. A digital elevation map defines the rough shape
of the terrain. During rendering, procedural geometric and texture detail is added by the graphics hardware. We
show, how quad meshes can be generated quickly that have a locally varying resolution that is optimized for the
inclusion of procedural detail. We obtain these distorted meshes by importance based warping of geometry images.
The resulting quad mesh can then be rendered very efficiently by graphics hardware, which also adds all visible
procedural detail using vertex and fragment programs.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Genera-
tionDisplay algorithms; I.3.7 [Computer Graphics]: Three-Dimensional Graphics and RealismVirtual Reality;

1. Introduction

Interactive terrain rendering is one of the classical chal-
lenges in computer graphics. A lot of research has been spent
on how to procedurally generate large terrains and how to
render such large landscapes. Typical applications are out-
door computer games or geographic information systems. In
many of these applications, a terrain renderer should ideally
get the global terrain structure from a precomputed or loaded
height field that only sketches the landscape. This low detail
terrain should then be augmented procedurally with geomet-
ric and color detail, ideally directly at run time.

Previous approaches mostly ignore this scenario and focus
on offline terrain generation or on the interactive rendering
of precomputed, static data. In this paper we present a novel
approach for realtime view-dependent level-of-detail (LOD)
rendering of terrains, where the global shape is defined by a
static heightmap and procedural detail is added at rendering
time. Our method takes into account properties of modern
graphics hardware and is designed to optimally exploit their
computation power.

The approach is based on the idea of geometry images
[GGH02]. Geometry images are pictures, in which each
color triple corresponds to a 3D surface point. Topology is
defined implicitly, the resulting surface automatically has the
topology of a square. Imaging operations on a geometry im-
age transfer to its geometry, e.g., downfiltering the geometry
image also results in downfiltered geometry. We exploit this

property to achieve a very efficient terrain LOD by warping
the geometry image of the terrain such that mesh resolution
is increased where needed and removed where it does not
contribute to the current view.

As noted before [GGH02], geometry images are perfectly
suited for graphics hardware. A geometry image is a tex-
ture that can be directly interpreted as a quad mesh. Recent
graphics boards and very recent drivers offer this reinterpre-
tation as OpenGL extension, that allows to bind a texture as
a vertex or attribute array.

Figure 1: Handling of detail levels

Our method handles geometric detail of the terrain at differ-
ent scales, as shown in Fig. 1. Coarse detail is taken from
the input height field (sketch map). It contains detail up to
a frequency of f0 = 1/2d0, where d0 is the grid distance
of the sketch map. This height field is upsampled to a finer
grid with grid distance dg. We add procedural detail up to
frequency 1/2dg to the upsampled mesh vertices as geome-
try detail. Finally, procedural detail up to screen frequency
1/2ds is added by per-pixel lighting.

The pipeline is depicted in Fig. 2. We start with the height

c© The Eurographics Association 2004.

Eurographics Symposium on Rendering (2004)
A. Keller, H. W. Jensen (Editors)

http://www.eg.org
http://diglib.eg.org

Dachsbacher, Stamminger / Rendering Procedural Terrain

map of our world. This map is stored in main memory and
can thus be large, e.g. cover the entire Alps. It only sketches
the rough shape of our world and cannot contain fine detail,
thus we call it sketch atlas. For every frame, the square re-
gion enclosing the current view frustum is copied out of the
atlas and stored as sketch map.

In regions close to the camera, the sketch map has very low
screen resolution. On these large triangles, per-pixel light-
ing alone is not sufficient to represent procedural detail. We
thus adapt mesh resolution, such that all visible mesh cells
cover similar screen area. Depending on surface characteris-
tics and viewing parameters, we compute the required sam-
pling resolution of a mesh (generated from the sketch map)
in world space. The view dependent parameters include ori-
entation of the surface, distance to the viewer and whether
the surface is located inside the view frustum. These cri-
teria are combined to a single value (see Section 3.1). As
in [SWB98], we call the reciprocal of this value the impor-
tance, which is computed for each texel of the sketch map
and stored in an importance map.

In the next step, we convert the sketch map to a geometry
image by writing the world x and y coordinates to the red
and green channel and the height values of the sketch map
to blue. We then warp this geometry image according to the
importance map, such that regions with high importance are
enlarged and low importance regions shrink. In Section 3,
we will present a simple image operation that allows us to
do this step efficiently on the CPU with sufficient quality. We
call the resulting distorted, view-dependent geometry image
the sketch geometry image. Note that the sketch geometry
image has higher resolution than the original sketch map in
order to preserve all visible detail.

The resulting quadmesh contains the (resampled) origi-
nal height field, but with generally smaller cells that have
roughly similar screen size. Due to its increased resolution,
we can add procedural detail resulting in the detailed geom-
etry image. At this stage, to every vertex v we can only add
low-frequency detail that can be represented by the mesh, i.e.
detail up to frequency 1/2dg(v), where dg(v) is the average
grid distance around v.

The resulting detailed geometry image represents a mesh of
quads that have an image size of only a few pixels in the
current view. This quad mesh is then rendered, where pro-
cedural sub-triangle detail is added on the fragment level us-
ing bump mapping. Here, we only consider procedural detail
from frequency 1/2dg(v) up to screen resolution.

With our approach we are always either dealing with geome-
try images or quadrilateral meshes which are both very suit-
able for rendering and processing by the GPU. Our mesh
always has the same topology and the same number of prim-
itives. The warping of the sketch map according to the im-
portance map results in a dynamic, view dependent level-of-
detail method for terrain rendering, that is tailored for the

inclusion of procedural detail at run time by the graphics
processor.

After the description of previous and related work, we
present the warping procedure in Section 3. In Section 4,
we describe the band-limited evaluation of our procedural
model. Finally, we show results and conclude.

2. Previous and Related Work

Terrain rendering is one of the classical challenges in com-
puter graphics. Terrain data sets are usually very large–a
moderate height field of size 4k2 already corresponds to 32
million triangles and thus cannot be directly rendered in real-
time. However, the observer is usually relatively low above
the ground, so view frustum culling, level-of-detail meth-
ods, and occlusion culling can reduce the geometry to be
rendered enormously. Furthermore, the topology of terrains
is simple, which simplifies the application of these methods.
An excellent overview of terrain rendering methods can be
found at www.vterrain.org.

Triangulated Irregular Networks represent the terrain by
a reduced triangle mesh [GH95]. View Dependent Pro-
gressive Meshes reduce the mesh resolution according
to the current view point and provide a particularly
smooth transition [Hop98]. Other level-of-detail methods
are usually more discrete. They work on regular grids
or quadtrees and reduce the polygon count by replac-
ing distant or invisible cells of the terrain by coarser
meshes, e.g. [LKR∗96, DWS∗97, RHSS98, Ulr, CGG∗03].
The methods differ in how the varying resolutions are gen-
erated and how the transition is smoothed. Our method is
in between all these approaches. We generate a continuous
level-of-detail, but the mesh also has fixed topology, so it can
easily be handled by the GPU.

Interesting terrains are generally very large. Real-world
heightfield data and corresponding aerial textures are usu-
ally only available in low resolution (10m to 1000m) or have
to be bought at high costs. For many applications, procedu-
ral terrains that can be evaluated at arbitrary detail levels are
better suited. Procedural terrains are usually generated by
adding noise functions of increasing frequency, an excellent
overview is given in [EMP∗98].

Geometry images are a simple way to represent objects with
disk topology by a texture [GGH02]. Image operations can
be used to manipulate geometry. We will apply such an op-
eration on a geometry image of the terrain to obtain an op-
timized level-of-detail. In [AMD02], a remeshing approach
is presented that also generates meshes with adaptive den-
sity. In [SWB98] a method is presented to distort textures
such that regions with much detail receive more texture
space. The required sampling density is stored in an impor-
tance map, which then controls the texture deformation. In
[SGSH02], a similar approach is presented, however here a
signal-stretch metric is used to steer the reparametrization.

c© The Eurographics Association 2004.

104

Dachsbacher, Stamminger / Rendering Procedural Terrain

procedural

 model

sketch atlas sketch

map (x,y)

sketch geometry

Image (s,t)
detailed geometry

Image (s,t)

Φ
-1

importance map

camera view

with per-pixel noise

render
warp

Figure 2: The pipeline: the rough shape of the world is defined in a sketch atlas (left). For the region covered by the current
view frustum (sketch map) an importance map is computed that measures the required mesh density. A non-uniform quad
mesh is generated based on this importance as a geometry image (sketch geometry image). This quad mesh is augmented with
procedural detail (detailed geometry image) and rendered with bump-mapping.

We will show another importance based warping algorithm
in this paper, which delivers sufficient results and is fast
enough to be applied for realtime rendering.

In parallel to this work, Losasso et al. developed a different
terrain rendering approach with the same objective as ours
[LH04]. The approach is also optimized for GPU rendering
and can also be used to add procedural detail during render-
ing.

3. Geometry Image Warping

In this section, we describe the generation of the warped ge-
ometry image. The goal is to generate a finer resolution quad
mesh of the sketch atlas. The mesh cell size is spatially vary-
ing. In screen space, the projected size of a cell should be
between one and a few pixels.

We represent the quad mesh as a geometry image. First, the
sketch map is converted to a geometry image by storing x,
y, and altitude in the red, green, and blue channel, where
the geometry image has floating point precision. Then, this
geometry image is warped adaptively. The warping does not
modify the geometry, but it locally changes the resolution of
the represented quad mesh (the consequences of resampling
will be discussed below). We exploit this to adapt the quad
mesh resolution according to the requirements of the current
view and landscape detail.

3.1. Importance Map

We control the warping using an importance map, where the
importance I(x,y) at a position (x,y) on the height field is
the desired density of grid points around that point, i.e. a cell

around that point should roughly have the extent 1/I(x,y)
in x- and y-direction. Note that our importance measure is
isotropic and cannot differentiate between directions.

First, the importance at a surface point p = (x,y,z) is de-
termined by the view distance. So we compute how densely
the region around p is sampled by the pixel grid in the cur-
rent camera view, which corresponds to the desired local
sampling rate. This measure is inversely proportional to the
viewing distance. Note that the orientation of the surface has
to be regarded carefully, because in typical situations the
sampling of the surface (regarding the scan conversion) is
anisotropic. We account for the orientation at a later step
and define Iv(x,y) := C/d(p), where the constant C is the
desired maximum image space size of the quads (ignoring
their orientation) and d(p) is the view distance of p.

Importance can be reduced for surface parts outside the view
frustum or on backfacing mountain sides. To account for
this, we define two functions S f and Sb. S f (x,y) is zero for
points outside the view frustum and one otherwise, with a
smoothed safety transition zone. Sb(x,y) accounts for back-
facing and for silhouette regions. It is one for silhouette and
frontfacing regions and is smoothly decreased for backfac-
ing regions.

Furthermore, we take surface characteristics into account.
For example, for smooth, large features like dunes a coarse
resolution is sufficient, even for close ups. Thus, we store an
upper bound Is(x,y) on the importance for each pixel of the
heightmap, which depends on the surface material. This en-
ables us to represent smooth terrain regions with few, large
triangles.

To obtain the final importance I, we combine the above mea-

c© The Eurographics Association 2004.

105

Dachsbacher, Stamminger / Rendering Procedural Terrain

uniform view distance view frustum orientation combined
importance importance importance importance importance

Figure 3: The influence of importance (bottom row) on the resulting quad mesh (top row).

sures as follows:

I(x,y) = min{Iv(x,y)S f (x,y)Sb(x,y), Is(x,y)}

Analogously to frustum and backface culling, we could ac-
count for occlusion culling information if available.

The effect is shown in Fig. 3. The left column shows a
uniform mesh covering a simple landscape with a gaussian
mountain (top). The uniform sampling arises from a uniform
importance distribution (bottom). The importance according
to view distance is shown at the bottom of the second col-
umn, the mesh resulting from the importance-driven warping
process described in the next section is shown above. An im-
portance function which is zero outside the camera frustum
distorts the mesh as shown in the third column. The fourth
column shows the importance according to the surface ori-
entation. The final importance (last column) combines the
previous three importance values.

3.2. Mapping Function

The warped sketch geometry image is a three channel im-
age with height and (x,y) values as colors. The warping did
not change geometry, it only modified the resolution of the
geometry image quad mesh.

The red and green channels of the geometry image represent
the warping function Φ, that maps geometry image coordi-
nates (s, t) to world space coordinates (x,y): Φ(s, t) = (x,y).
Φ maps a warping target position to the input position, i.e. it
is opposite to the warping direction. We use this definition
to avoid ambiguity problems.

The sampling rate of the sketch geometry image in world
space are the derivatives of Φ, i.e. ||Φs(s, t)|| in s- and
||Φt(s, t)|| in t-direction. Accounting for importance means

that we have to choose Φ such that this sampling rate is the
reciprocal of the importance at the target point:

||Φs(s, t)|| ≈ I(Φ(s, t))−1 and ||Φt(s, t)|| ≈ I(Φ(s, t))−1

Because the resolution of the sketch geometry image is fixed,
we cannot guarantee the above equation, but we can aim for
a sampling rate that is proportional to I(Φ(s, t))−1. In the
following we describe how we can compute such a mapping
Φ(s, t).

3.3. Warping

In [SWB98], the importance driven warping is computed us-
ing a spring-mass system, where the spring lengths encode
the desired importance. This process generates good results,
however the relaxation process is iterative and too time con-
suming for our purpose. Temporal coherence or incremental
changes could be used for speed-up in such systems.

Instead, we apply a two-pass approach, where each step dis-
torts along one axis, first row- then column-wise. Our ap-
proach is not iterative and thus fast enough to be executed on
the CPU once per frame. We explain the row-wise distortion,
the column-wise distortion is analogous. The pixel value of
the i-th pixel is pi, its importance is Ii, with i ∈ [0;n−1].

We consider the pixel row as a piece-wise linear function as
in Fig. 4 (top). The warping moves the control points such
that the interval around control point pi gets relative size Ii
(second row). The vertical axis in this graph stands for the
entire color triple of a point, i.e. its (x,y,z) coordinates, and
not for a single height value. So moving a point horizontally
does not change its position in world space, it only modifies
the available geometry image resolution.

Finally, we resample the warped function uniformly to ob-

c© The Eurographics Association 2004.

106

Dachsbacher, Stamminger / Rendering Procedural Terrain

Figure 4: Importance-driven warping

a = 0; Iread = Ia; pprev = I0;

for every pixel i ∈ [0;n−1]:
Icur = 0; pcur = (0,0,0)T;
while (Iread < Icur) {

pcur+ = (pprev + pa) ·
Iread

2
Icur− = Iread; pprev = pa; a ++; Iread = Ia;

}
pclip = pprev +(pa − pprev) ·

Icur
Iread

;

pcur+ =
(

pprev + pclip
)

·
Iread

2 ;
Iread− = Icur; pprev = pclip;

ri = pcur
Iavg

;

Figure 5: Pseudo code for the row-wise importance driven
warping

tain the warped geometry image with values ri (third row).
In the horizontal distortion step, the importance map is re-
sampled in the same way, in order to have the distorted im-
portance values available for the vertical distortion. Pseudo
code to do this warping efficiently is given in Fig. 5.

Of course this simple warping procedure does not result in
an optimal warping function. An iterative process of further
row- and columnwise warping operations could improve the
result. One must consider that a suboptimal grid sampling in
some regions only results in reduced quality, because geo-

sketch map distorted sketch map

importance map

sample density gain

over importance

1.0

0.5

1.5

2.0

0.33

Figure 6: A geometry image (upper left) is warped accord-
ing to an importance map (bottom left). In the warped geom-
etry image the ratio between demanded and obtained sample
density is between 0.5 and 1 (bottom right).

metric detail must be represented at fragment level. In prac-
tice, the effect is not visible, and only appears in very rare
cases.

In our examples the results were satisfactory for our purpose.
Fig. 6 shows the color coded ratio between obtained and de-
manded resolution for an example terrain. One can see that
we obtain the demanded resolution quite uniformly–mostly,
the ratio is between 0.5 and 1 (green and cyan).

3.4. Warp and Zoom

In the warping procedure described above, the resulting
warped image has the same resolution as the input sketch
map, in our implementation this is 1282 pixels. In this res-
olution we can do the warping on the CPU in a few mil-
liseconds, so it is fast enough to do it in the rendering loop.
However, the sketch geometry image should have higher res-
olution, e.g. 5122 to provide mesh cells that only cover a few
image pixels.

Furthermore, the resampling during warping smoothes the
terrain data, which is also visible in the third row of Fig. 4.
Therefore, the increase of the resolution from the sketch
map to the sketch geometry image should happen during the
warping, as shown in the bottom row of Fig. 4. The warp-
ing can be easily modified to generate larger result images,
however, the CPU implementation becomes too slow then.

Instead, we compute the warping in low resolution, and re-
peat the warping by the GPU, this time with increased out-
put resolution. This can be achieved by rendering a uniform
quad mesh with the same resolution as the sketch map and

c© The Eurographics Association 2004.

107

Dachsbacher, Stamminger / Rendering Procedural Terrain

the red and green channel of the low-res warped image as
texture coordinates.

4. Applying the Procedural Model

In this section, we describe how the procedural features are
added. In fact, we apply a procedural model to add displace-
ment and also to attribute the terrain with color. We begin
with the description of the geometric procedural model, the
simpler color model is then described after that.

4.1. Procedural Displacement

Procedural displacement is partly represented in the geome-
try of the rendered quad mesh and partly accounted for dur-
ing per-pixel lighting (bump-mapping). Since the resolution
of the rendered quad mesh is locally varying, we need to de-
termine for each quad mesh vertex, which frequency domain
of the procedural detail can be represented by a vertex off-
set and which domain has to be accounted for in the lighting
model. This means that we must be able to restrict the eval-
uation to frequency bands.

As model for procedural detail we chose spectral synthe-
sis of band-limited noise functions (like turbulence or per-
lin noise). The detail is the sum of noise functions nk(x,y)
(k ≥ 1) of increasing frequency and decreasing amplitude:
n(x,y) = ∑∞

k=1 wknk(x,y) In our implementation, the fre-
quency of nk(x,y) is 2k f0. Because of this frequency dou-
bling (lacunarity of 2), the noise functions are called octaves
[EMP∗98].

The procedural detail is supposed to generate features that
cannot be represented in the original sketch atlas. We thus
use as base frequency f1 the first noise octave that cannot be
represented in the sketch map. Thus, if d0 is the grid distance
of the sketch map, we select f1 = 1/d0.

Low frequencies of the above sum can be represented in the
warped quad mesh. The upper frequency bound varies with
the quad mesh resolution, so we compute for every quad
mesh vertex (i, j) the maximum distance d(i, j) to its four di-
rect neighbors. According to the sampling theorem, we can
represent signals up to the Nyquist frequency of 1

2di, j
around

that vertex. So, for every vertex, we calculate the split octave
oi, j which describes up to which octave k the procedural de-
tail can be represented:

oi, j = ld
d0
di, j

(1)

All signals contained within noise octaves up to boi, jc can
be reconstructed with the sampling rate and should thus be
added as geometric offset. Detail with higher frequency (and
up to screen resolution) must be accounted for in lighting on
a per-pixel basis.

In order to achieve a smooth transition between procedu-
ral detail accounted for by geometry and by bump maps,
we share the contribution of nboi, jc between these two. This
method is comparable to the way of anti-aliasing procedural
models, also called clamping and fading. It reduces aliasing
to a neglible amount, provided that the frequency of the noise
octaves is also bounded below. Otherwise, higher octaves
may also contain low-frequency information which will only
be considered during lighting computation but will no longer
affect the geometry.

In all our previous discussions, we assumed that with a sam-
ple distance of d, detail up to a frequency of 1/2d can be rep-
resented. However, this is an upper bound only, and a faithful
reconstruction is only possible for significantly smaller sam-
ple distances. If this effect is not considered, the procedural
geometric detail is “swimming” over the mesh. The effect
can be corrected by using more conservative estimates of the
split octave in Equ. 1 and shifting more detail to the bump
mapping. By this, we cannot avoid swimming artifacts, but
reduce them to a tolerable amount.

4.2. Procedural Texturing

The procedural texturing is handled differently. First, for ev-
ery pixel we determine the surface type like snow, grass, or
rock. This can be computed according to the underlying sur-
face (altitude, slope, orientation) or be read from a surface
type map. In order to wash out the boundaries, we pertur-
bate the surface position by a precomputed and periodic tur-
bulence function before we evaluate its type. According to
the surface type, different color and material parameters are
chosen.

Because we use precomputed, periodic turbulence textures
in this stage, the frequency clamping is done by the mipmap-
ping hardware. This comes at the price of periodicity in the
texture, which is sometimes noticeable. The costly alterna-
tive is to compute the turbulence at rendering time.

5. Implementation and Results

We implemented our approach using OpenGL and pro-
grammable graphics hardware supporting the render-to-
vertex-array functionality. Since these extensions are not yet
revised by the OpenGL ARB board we used a preliminary
ATI version of this extension.

As sketch atlas we use the GTOPO30 data set of Eu-
rope (http://edcdaac.usgs.gov/gtopo30/
gtopo30.html). This data set of 55 MB exhibits a
resolution of 30 arc seconds, which corresponds to about
700m. Out of this sketch atlas resolution, we copy a 1282

subimage (sketch map) covered by the view frustum. This
allows us to cover a visible range of about 90 kilometers.

Next, we calculate the view dependent importance map and
compute the distorted geometry image with the warping

c© The Eurographics Association 2004.

108

Dachsbacher, Stamminger / Rendering Procedural Terrain

function in the red and green channel as described above.
This step is done on the CPU, and requires only a few mi-
croseconds. The resulting warping function texture and the
sketch map are transferred to the GPU, where the warping is
repeated with higher target image size. Additionally, in this
step the split octaves are computed and procedural geometry
up to this level is added. The resulting image is the detailed
geometry image. The split octave value is stored in the alpha
channel.

In another pass, we compute the normals of this detailed
geometry image and store the vertex coordinates, normals,
and split octaves in so called super-buffers. Super-buffers are
generalized memory blocks in video memory which can be
used as textures, index or vertex arrays. Thus it is possible
to use the calculated coordinates and normals as geometry
information for rendering without further overhead.

Finally, the detailed geometry image is rendered as a quad
mesh from the viewer’s perspective. The split octave is
added as vertex attribute and interpolated over the triangle.
Procedural detail from the interpolated split octave up to
screen resolution is added using bump-mapping in a frag-
ment program.

The main memory consumption only depends on the resolu-
tion of the sketch atlas plus temporary space in dimension of
a few hundred kilobytes, namely for visible part of the map,
the importance map and the warped visible low-res map (all
1282).

The video memory consumption directly depends on the size
of the super buffers used for rendering. We used two 5122

resolution super buffers, each 512 ·512 ·4 ·4 = 4 megabytes,
and 3 p-buffers, each 512 · 512 · 4 · 4 = 4 megabytes. Apart
from that, the terrain surface types are stored in a simple
color texture, whose resolution depends on the input data.
The memory requirements for the noise textures are small,
we used a 5122 color texture (8 bits per channels) for storing
the noise function.

In our implementation, we use a fairly low resolution sketch
atlas as input, so that a 1282 resolution sketch map is suffi-
cient. This is small enough to do the importance and warping
computation on the CPU and to transfer the result to the GPU
once per frame. For a higher resolution sketch atlas, a down
sampled version of the sketch atlas would be required for
fast importance and warping computation on the CPU. This
resulting warping function can be used to generate sketch
geometry images in arbitrary resolution. For this, the visible
part of the sketch atlas must be kept in video memory, which
can be achieved by simple memory management.

Our terrain rendering approach can be hardly compared with
previous approaches. Our method is focused on procedural
detail generation at runtime without precomputations. For
displaying a given height field without the addition of further
detail, well-known previous approaches are more efficient.

In Fig. 7 one can see snapshots of a flight towards the Alps.
On a PC with a 2.4 GHz Pentium and an ATI Radeon 9700
pro, we achieve very constant frame rates of about 35 frames
per second for an image resolution of 5122. Fig. 8 shows how
our procedural model augments the original height field.

Figure 7: Snapshots from a flight over the Alps at about 35
frames per second

6. Conclusions and Future Work

We presented a novel approach for view dependent level-of-
detail terrain rendering which requires almost no precalcula-
tion and very small storage cost as a consequence of the ap-
plication of procedural models. The rendering using quadri-
lateral meshes enables high performance rendering without
problems implicated by other level-of-detail methods, like
chunk-wise rendering and related connection constraints or
t-vertices.

c© The Eurographics Association 2004.

109

Dachsbacher, Stamminger / Rendering Procedural Terrain

Figure 8: The procedural model. Top: original height field.
Center: procedural detail represented in geometry. Bottom:
procedural detail in geometry and lighting.

The procedural model allows rendering of very large scale
terrain, as the high geometric detail is generated on the fly
and does not need to be stored explicitly. We achieve load
partitioning between CPU and GPU with only moderate data
transferred over the system bus. On the downside, since the
procedural model is evaluated on the GPU, collision detec-
tion requires the re-evaluation of the model on the CPU.

Our method does a resampling of the original data during
rendering. This smoothing of the original data can result in
swimming artifacts. However, since by the four times up-
sampling of the sketch atlas these annoying are reduced to a
tolerable amount in our tests.

We cannot guarantee any error bounds. Since we always
use a quad mesh with fixed topology, cases can be found,
where this quad mesh cannot provide sufficient resolution.

Our warping process is very simplistic. The separate hor-
izontal and vertical warping delivers surprisingly good re-
sults, but it cannot guarantee a close to optimal result.

As future work we want to implement the entire process
using graphics hardware. The computation of the impor-
tance map can be done very efficiently using fragment pro-
grams. The distortion computation requires flexible memory
access patterns or a larger number of rendering passes using
contemporary graphics hardware. Implementing the warping
calculation on the GPU would avoid costly data bus trans-
fers.

The dynamic sampling of a heightmap terrain is also very
suitable for point based rendering approaches, where view
dependent sampling point densities and sample point sizes
are required for rendering.

References
[AMD02] ALLIEZ P., MEYER M., DESBRUN M.: Interactive geometry remeshing.

ACM Transactions on Graphics, Proc. SIGGRAPH 2002 21, 3 (2002), 347–
354.

[CGG∗03] CIGNONI P., GANOVELLI F., GOBBETTI E., MARTON F., PONCHIO F.,
SCOPIGNO R.: Bdam - batched dynamic adaptive meshes for high perfor-
mance terrain visualization. Computer Graphics Forum 22, 3 (2003), 505–
514.

[DWS∗97] DUCHAINEAU M. A., WOLINSKY M., SIGETI D. E., MILLER M. C.,
ALDRICH C., MINEEV-WEINSTEIN M. B.: Roaming terrain: Real-time op-
timally adapting meshes. In IEEE Visualization ’97 (1997), pp. 81–88.

[EMP∗98] EBERT D. S., MUSGRAVE F. K., PEACHEY D., PERLIN K., WORLEY S.:
Texturing and Modelling. AP Professional, 1998.

[GGH02] GU X., GORTLER S. J., HOPPE H.: Geometry images. ACM Transactions
on Graphics, Proc. SIGGRAPH 2002 21, 3 (July 2002), 355–361.

[GH95] GARLAND M., HECKBERT P.: Fast Polygonal Approximation of Terrains
and Height Fields. Tech. Rep. CMU-CS-95-181, Carnegie Mellon University,
1995.

[Hop98] HOPPE H. H.: Smooth view-dependent level-of-detail control and its appli-
cation to terrain rendering. In IEEE Visualization ’98 (Oct. 1998), pp. 35–42.

[LH04] LOSASSO F., HOPPE H.: Geometry clipmaps: Terrain rendering using nested
regular grids. In ACM Transactions on Graphics, Proc. SIGGRAPH 2004
(2004). to appear.

[LKR∗96] LINDSTROM P., KOLLER D., RIBARSKY W., HUGHES L. F., FAUST N.,
TURNER G.: Real-time, continuous level of detail rendering of height fields.
In Proc. SIGGRAPH 96 (Aug. 1996), pp. 109–118.

[RHSS98] RÖTTGER S., HEIDRICH V., SLUSALLEK P., SEIDEL H.-P.: Real time gen-
eration of continuous levels of details for height fields. In Sixth International
Conference in Central Europe on Computer Graphics and Visualization (Feb.
1998).

[SGSH02] SANDER P. V., GORTLER S. J., SNYDER J., HOPPE H.: Signal-specialized
parametrization. In Rendering Techniques 2002: Proc. EG Workshop on Ren-
dering (2002), pp. 87–98.

[SWB98] SLOAN P.-P. J., WEINSTEIN D. M., BREDERSON J. D.: Importance driven
texture coordinate optimization. Computer Graphics Forum 17, 3 (1998),
97–104.

[Ulr] ULRICH T.:. “Super-size it! Scaling up to Massive Virtual Worlds" course
at SIGGRAPH 02”. see also http://tulrich.com/geekstuff/

chunklod.html.

c© The Eurographics Association 2004.

110

