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Abstract
Forests are crucial for scene realism in applications such as flight simulators. This paper proposes a new repre-
sentation allowing for the real-time rendering of realistic forests covering an arbitrary terrain. It lets us produce
dense forests corresponding to continuous non-repetitive fields made of thousands of trees with full parallax.
Our representation draws on volumetric textures and aperiodic tiling: the forest consists of a set of edge-
compatible prisms containing forest samples which are aperiodically mapped onto the ground. The representation
allows for quality rendering, thanks to appropriate 3D non-linear filtering. It relies on LODs and on a GPU-
friendly structure to achieve real-time performance.
Dynamic lighting and shadowing are beyond the scope of this paper. On the other hand, we require no advanced
graphics feature except 3D textures and decent fill and vertex transform rates. However we can take advantage of
vertex shaders so that the slicing of the volumetric texture is entirely done on the GPU.
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1. Introduction

Forests seen from an airplane appear to be a strange mate-
rial: while the vegetable cover looks like a quasi-continuous
surface, one can also recognize individual trees, and some-
times see deep between them. The volumetric nature of the
forest ‘matter’ is especially obvious when the viewer moves,
due to omnipresent parallax and visibility effects. There is
far too much foliage data to expect a direct real-time render-
ing of the leaves (to say nothing of aliasing), and classical
mesh decimation does not apply to sparse data.

11* e-mails: firstname.name@imag.fr
. web: http://www-imagis.imag.fr/Publications/2004/DN04

Applications requiring real-time rendering of natural
scenes – e.g., flight simulators and more recently video-
games – are of such importance that early solutions had to be
found to get some sort of forest populating landscapes: vari-
ous alternate representations have been introduced to mimic
trees and are still used nowadays.

Our purpose is to represent and render high quality dense
forests in real-time. Our method is based on real-time volu-
metric textures. Our contributions include:

• The combination of two slicing methods to render vol-
umetric textures efficiently: a simple one used for most
locations, and a more complex one used at silhouettes.

• A novel camera-facing scheme for the slices of silhouette
cells such that no vertex needs to be created by the CPU.
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This permits a full GPU handling of the slices via vertex
shaders.

• A new pre-filtering scheme allowing to achieve a correct
non-linear 3D MIP-map in relation with our LOD adap-
tation.

• A LOD scheme for our volumetric textures, in relation
with the pre-filtering scheme.

• A new aperiodic tiling scheme avoiding interpolation ar-
tifacts at tiles borders.

In this paper we do not deal with dynamic lighting and shad-
owing. Shadowing is an important and difficult topic in and
of itself, and various existing shadowing algorithms could
be adapted to our representation. Moreover, our implemen-
tation do not rely on any advanced pixel shader programma-
bility. Using them would permit to get a per-voxel dynamic
lighting. Our contribution concentrates on a representation
allowing efficiency and quality (especially in terms of filter-
ing, parallax richness and aperiodicity).

2. Previous work

In this section we review techniques allowing the real-time
or interactive rendering of forests.

Billboards: Billboards are the most common tool for real-
time rendering of forests. Thanks to their low cost, they
are still considered the best choice in many recent indus-
trial simulators. They are used in two different ways: clas-
sical billboards are small images that always face the cam-
era [OGL98] (possibly with an axis constrained to be verti-
cal) while cross billboards consist of two to four regular tex-
tured quads crossing each other (see fig. 1).The first method
shows no parallax when the camera moves, which is only
acceptable for axis-symmetrical objects and grazing view
angles. Moreover, a tree slightly behind another is likely to
pop in front at a given angle (fig. 1 right), so billboard-based
forests are usually sparse. The second method shows arti-
facts whenever one of the quads is seen at a grazing angle.

To render a full dense forest would mean rendering mil-
lions of textured quads, which is very expensive even with
modern graphics hardware. Moreover, there is no simple
LOD scheme to gather individual billboards.

Figure 1: From left to right: billboards, cross billboard, 3-cross
billboard, 4-cross billboard, popping of billboard for a small cam-
era motion.

Other image based methods: One way to avoid the obvi-
ous artifact of cross billboards at grazing angles is to fade
the billboards that are not facing the camera enough [Jak00].

This introduces two new artifacts which show up when one
moves around a tree (see fig. 2,left): a ghosting effect (du-
plicated features) and transparency variation (blending two
half-faded textures is not equivalent to a single opaque tex-
ture).

The same idea can be used with a whole set of images
taken from various view angles [PCD∗97, MNP01]. This re-
duces the artifacts because the difference between nearby
images is smaller. But selecting and blending the images gets
costly and could not be done in real-time for a whole forest:
at least 3 textures have to be combined, and simply fetching
3 textures instead of a single one is about 2 to 3 times slower
on recent GPUs [3DM].

Relying on even more images would correspond
to bidirectional textures [SvBLD03] and light-
fields [LH96, GGSC96]. But the huge amount of image data
may not fit the graphics memory.

Max [Max96, MDK99] combines a hierarchical tree
model with a method based on precomputed multi-layered
depth images, but rendering is not real-time.

Figure 2: Left: image fading with the incidence angle: the inter-
mediate level is half-transparent and features are doubled (ghosting
effect). Right: Simplified textured tree.

Simplified textured trees: Another way to rely on textures
is to build manually or using dedicated tools an extremely
simplified tree with a few dozen to a few hundred polygons
approximating the foliage distribution (see fig. 2,right). This
has been used in video games and simulators for isolated
trees close to the viewer but cannot be used for representing
dense forests in real-time.

Lines and points: Reeves introduced particle systems in
1983 [RB85]. Even though it was not real-time, the idea of
procedurally drawing many simple primitives has often been
used to render vegetation. The number of primitives drawn
can be adapted to the distance to ensure interactive frame
rate [WP95].

In the same spirit, point-based approaches have been
recently introduced [PZvBG00, SD01, DVS03, DCSD02]:
objects are rendered using a set of points having roughly the
size of a pixel.

These primitives are very convenient. But an important
issue is that they rely on lots of vertices, and each vertex re-
quires a geometric transform (projection, clipping) plus pos-
sibly a bus transfer. The vertex transform cost limits the per-
formance in the case of huge sparse geometry such as forests
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since the transform rate1 is about 20 times slower than the
fill rate2 on recent graphics boards[3DM]. E.g., if the target
frame rate is 60Hz at 1280×1024 resolution, one can redraw
each pixel 20 times if textured polygons are used, while one
can only draw each pixel once using points. The issue is that
sparse geometry such as trees behaves like a globally trans-
parent volume: a lot data projects to the same pixel, and there
is no easy way to cull occluded data in advance.

Beside this performance issue, the main drawback of
point-based (and line-based) methods is that distance adapta-
tion is done by suppressing elements, which can induce pop-
ping. Moreover, the primitives are generally made opaque to
avoid sorting and blending costs, which prevents proper an-
tialiasing.

Volumetric textures: The volumetric textures approach
consists of mapping a 3D layer on a surface using a 3D data
set as texture pattern. This is especially adapted to a layer of
continuous vegetation covering a landscape. It was first in-
troduced in ray-tracing [KK89, Ney98] and later adapted to
hardware rendering [MN98, LPFH01].

To rely on hardware acceleration the volume is rendered
using textured slices. This has nice properties: the parallax is
perfect because the generated fragments are really 3D (i.e., at
their proper depth), and the filtering is smoothly managed by
the texture hardware (which has no equivalent for polygonal
data). A lot fewer polygons are required than with the other
approaches since each instance of the pattern corresponds to
a portion of forest which can contain several trees.

The slicing must be adapted to the viewpoint otherwise
one could see between the slices at grazing angles.
• [MN98] switch between 3 slicing directions: one ‘horizon-
tal’ (parallel to the ground) and two ‘vertical’ (orthogonal to
the ground and following the u or v texture parameteriza-
tion).
• [LPFH01] use only slicing parallel to the surface and adds
fins (edges extruded along the normal) near the silhouette.
Note that this works well for fur (the goal of the paper) be-
cause fur is very homogeneous, but would fail for heteroge-
neous data like trees.
• Real-time volume rendering tools such as Volu-
mizer [Ope] generally prefer to rely on slices that are fac-
ing the view direction. This way, one can never see between
slices. Moreover, better antialiasing can be done (because
slices not facing the camera are over-filtered by isotropic
MIP-mapping). Unfortunately, it has several drawbacks in
our context (see section 3). In particular, the computation of
the adaptive slicing of a 3D layer mapped on a surface can
get complicated. Moreover, one must recompute the geom-
etry (i.e., slices) at every frame, which implies that all this
data must be transferred to the GPU at every frame.

1 Number of transformed (i.e. projected) vertices per second.
2 Number of textured pixel fragments rasterized per second.

Aperiodic tiling: Recently, several methods for
mapping textures aperiodically have been introduced
[Sta97, NC99, CSHD03]. They consist of preparing a set of
compatible square or triangular patterns with appropriately
chosen boundary conditions (i.e., matching edges) when
tiling the surface (see fig. 3). The tiles might also be rotated
depending on the method. This also lets us represent tex-
tured area edges [NC99] which is important since textures
rarely cover the whole surface. These methods are totally
compatible with 3D textures.

Figure 3: Left: Four edge-compatible triangular tiles. Right: Set
able to represent textured area boundaries.

3. Issues of 3D textures

3D textures are now a standard feature of graphics APIs.
They are very convenient for implementing volumetric tex-
tures or volume rendering: the quadrilinear MIP-map is man-
aged by the hardware and slices can have arbitrary orienta-
tion (e.g., facing the camera). However, current implementa-
tions suffer numerous drawbacks:

• The mag and min3 filtering are linear. This makes sense
in 2D when four texture pixels lying on a face have to be
averaged, but not for two texture voxels aligned along the
view-ray direction: occlusion effects make the filtering non-
symmetrical (see fig. 4). Filtering 3D data should separate
the plane normal to the view direction – where linear filter-
ing applies – and the view direction where the filter should
use the transparency blending equation. Implementing a cor-
rect mag filter in the general case is not obvious, and imple-
menting a correct min filter is impossible because occlusion
is a view-dependent phenomena.

P
V

Figure 4: Voxels that are on the same plane P orthogonal to the
view direction V can be filtered linearly. Voxels along V should be
blended using the transparency formula. Thus the filtering of a 3D
neighborhood should not be linear.

• Despite the 3D storage, the rendering primitive is still 2D:
one must slice the volume to render it. The issue is that GPUs
set the MIP-map level based only on the parameterization of
the 2D slices regardless the slicing rate (i.e., the sampling
orthogonal to slices). So the programmer must ensure than
the slicing rate fits the MIP-map level chosen by the GPU
(which is not known to the CPU).

3 Mag filtering corresponds to the interpolation between pixels.
Min filtering corresponds to MIP-mapping.
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• On current GPUs the MIP-mapping of 3D textures is
isotropic. This means that the sampling density in depth
must be equal to the sampling density parallel to the screen.
This is wasteful since an error in depth might have little con-
sequence on screen.
• This is even worse for slices non-parallel to the screen:
with isotropic filtering a slanted slice is MIP-mapped rely-
ing on the most compressed projected parameterization. But
the resulting averaging applies to the two other directions
as well. At grazing angles the volume data will be totally
blurred in the slicing direction regardless of the slicing rate.
• Volume MIP-mapping is rarely used for volumetric ren-
dering applications, and it appears that there are several bugs
in the implementation of 3D textures even on recent boards.4

4. Our approach

Our representation relies on real-time volumetric tex-
tures [MN98, LPFH01]. We increase both their quality and
performance and we handle richer forest attributes.

As illustrated in section 2 and 3 numerous slicing algo-
rithms are possible, with various consequences on proper-
ties, quality and efficiency. The case of volumetric texture
rendering is quite different than classical volume rending ap-
plications (e.g., medical) in that:

• The overall number of voxels in the scene is enormous,
and will generally be undersampled. In contrast, traditional
volumetric applications highly oversample the data at ren-
dering.

• The volumes are mapped on a terrain and therefore are
distorted, so that the overall volume to be sliced has a com-
plicated shape (i.e., it is not a simple cube).

• The overall number of slices’ polygons is so large that gen-
erating them from the CPU at each frame cannot be accom-
plished in real-time5.

• The volume layer thickness is small compared to its hori-
zontal width implying that each slice has a small surface on
screen.

Using slices parallel to the surface is efficient since the
mesh vertices already stored on the GPU can be simply off-
seted. But it is inappropriate for grazing view angles because
one would see between slices. Introducing vertical plates (or
fins) as proposed in [LPFH01] only works well for fuzzy
data such as fur, while for contrasted data such as trees, the
grazing slices will show-up clearly and the features will not
map onto their counterparts in fins.

Generating slices facing the viewer can get complicated

4 Several have been confirmed by both nVIDIA and ATI, and
should be corrected soon. However, they limit the performance of
our current implementation.
5 It is important to note that a real-time forest renderer must keep
high performance even when processing thousands of trees.

for a complicated volume shape. Moreover, it is not GPU-
friendly since all vertices would have to be generated on the
CPU at each frame, and their transfer to the GPU would be
the bottleneck.

Moreover, the forest covers the landscape on a very wide
range of distances, so levels of detail and filtering (MIP-
mapping) must be addressed. Note that the 3D quality fil-
tering of volumes is quite different from the classical 2D
filtering as explained in section 3. In particular, occlusions
make it highly non-linear, and the default isotropic filtering
for MIP-map is not acceptable.

We propose a solution to these problems by combining
two slicing methods. The first one uses slices parallel to the
terrain and is adapted for most parts of the scenes (we also
introduce a new quality filtering and LOD scheme for it).
The second is a slicing scheme that uses slices nearly facing
the viewer (fig. 6,middle-right), using a new GPU-friendly
algorithm: the slices are an offset of the tilted base triangle
(fig. 9).

For both slicing schemes, we define a LOD-scheme in or-
der to adapt the cost to the distance, using a new non-linear
pre-filtering scheme. This is especially important for natural
scenes since the amount of data projecting to a given pixel
grows quadratically with the distance. The best way to adapt
in terms of quality is to average – i.e. to filter – the 3D data.
We describe how the volumetric texture data can be correctly
filtered. To enrich the appearance of forests, we want to han-
dle natural variations: we draw on aperiodic tiling [NC99] to
avoid texture repetitiveness.

Figure 5: Our slicing scheme.

The characteristics of our method are the following:
• We represent forest coverage by a volumetric texture layer.
• Repeated instances of the pattern (which we call texcells6)
have a prism shape: a base triangle on the ground vertically
extruded.
• We implement two different kinds of texcells: A simple
one (regular texcell) with good quality and efficiency except
at the silhouette and another (more expensive) one to be used
near the landscape silhouette (silhouette texcell), illustrated
in fig. 5.
• Regular texcells are sliced parallel to the ground
(fig. 6,left). We introduce a new representation with which
we can filter a 3D texture non-linearly (thus addressing the

6 After [KK89] who introduced the term texels. Our term is pho-
netically similar but it avoids the confusion with texture pixels that
are also called texels in numerous documents.
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issues mentioned in section 3). This lets us manage levels of
detail by adapting the number of slices to the distance.

• Silhouette texcells are sliced parallel to the screen
(fig. 6,middle,right). The slices are an offset of the tilted
base triangle (see fig. 9). This avoids creating and sending
new polygons from the CPU: a simple vertex shader can
translate the vertices of a GPU-resident mesh. We use hard-
ware 3D textures to store the volumetric pattern7. The levels
of detail are created by adapting the slicing rate to the 3D
MIP-map level.

• We define an aperiodic mapping of the texcells in the spirit
of [NC99] by creating several edge-matching patterns. In our
current implementation we rely on patterns containing pre-
computed shading and shadows, so the orientation is con-
strained: the patterns cannot be rotated as in [CSHD03]. We
propose a scheme in section 7 showing that at least 8 patterns
are required.

Creating the volume data
Like [MN98] we create our volume data from standard ge-
ometry (in our case, a piece of polygonal forest) using an
off-line renderer. The camera is orthographic and is look-
ing down. We obtain each slice by setting the near and far
clipping planes at distance δ

2 above and below the slice lo-
cation (δ is the distance between two slices), then rendering
the data. In our experiments we used a commercial package
and activated shadows (clipping planes should not prevent
objects out of the clip volume to cast shadows).

All our textures are alpha-premultiplied to avoid texture
interpolation artifacts [PD84]: the color component C ∈
{R,G,B} stores the C value times the opacity A. We denote
premultiplied colors C̄ to avoid confusion.

Figure 6: Left: a regular texcell. Middle: a silhouette texcell (fac-
ing the camera) with and without clipping of the empty top. Right: a
side view of it.

5. Regular texcells

Following [LPFH01] we prefer using whenever possible the
canonical slicing parallel to the landscape because it can be
obtained simply by offsetting the base surface. This lets us
rely on a set of 2D textures instead of 3D textures, which

7 As with all 3D textures, the 2D slices simply rely on (u,v,w) tex-
ture coordinates at their vertices pointing at the correct 3D location.
So rotating slices and updating the (u,v,w) accordingly does not ro-
tate the represented features.

avoids the problems described in section 3, and is efficient
since the geometry does not need to be rebuilt and trans-
ferred from the CPU at each frame (bus transfer can be an
important bottleneck in applications using complex geome-
try). Our goal is to define a multiscale model of volumetric
texture. This requires correct filtering. We show in this sec-
tion that since the slicing direction is constant, we can im-
prove upon linear interpolation by efficiently emulating non-
linear 3D filtering. This provides us a degree of freedom to
control levels of detail.

Our representation
As explained in section 3 and fig. 4, 3D filtering should not
be linear: the data along the slicing plane and the slicing
direction must be treated separately. Instead of 3D textures,
we rely on a set of 2D textures corresponding to the slices.
Each 2D texture has an associated MIP-map pyramid (since
linear filtering in the slice plane is justified). Moreover, we
construct a level of detail pyramid of this set (see fig. 7),
relying on non-linear filtering: At the finest level, we have
n = 2N slices whose textures are L× L; call SN this level.
At level Si we have 2i slices (representing an aggregation
of 2N−i slices from the finest level). The size of textures at
level Si is L

2N−i ×
L

2N−i . Each texture, at every level, is MIP-
mapped.

Creating the texture set
As explained in the previous section the base textures of Sn
correspond to the original unfiltered 3D volume (created of-
fline).

A set Si could be generated the same way as SN by ren-
dering thicker slices of geometry, but we can obtain the same
result with no extra rendering by blending the textures in SN
using the transparency equation C̄ f ront + (1−A f ront)C̄back:
the 2D texture Si[ j] (i.e. the jth slice of the set Si) is obtained
by blending Si+1[2 j] and Si+1[2 j + 1]. Then each resulting
2D texture is MIP-mapped.

S0

SN

Figure 7: Right: slicing real geometry using clipping planes. Left:
Pyramid of 2D texture sets Si, i = 0..n.

Rendering
We can now freely tune the number of slices to implement
levels of detail: We set the slicing rate according to the dis-
tance to the observer and to the incidence angle. If best qual-
ity is required we activate the hardware anisotropic filtering
(very efficient on recent hardware, but available only for 2D
textures), which makes the mag and min filtering really cor-
rect in the three directions.

A last issue arises because the distance between slices
along a ray depends on the ray (see fig. 8): at grazing an-
gles the sampling is coarse. Since the same number of slices
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are traversed as for normal incidence, the same total opacity
is obtained despite the longer path within the volumetric tex-
ture. So the opacity of slices must be adjusted to account for
the real sampling rate: A(dl) = 1−(1−A(δ ))

dl
δ where A(dl)

is the opacity along a length dl. We approximate this using
the first terms of the Taylor series: A(dl) ≈ dl

δ A(δ ). Values
greater than 1 are clamped, so opaque voxels are handled
correctly. The distance δv between two slices along a ray

(see fig. 8) is sz|
−→
N .

−→z
−→
N .

−→
V
|

with
−→
N the normal to the ter- Nz

δ

V

δv

Figure 8: Opacity factor.

rain,
−→
V the view direction, −→z

the vertical and sz the vertical
scaling (in case the height of
the mapped forest differs from
the original forest sample). So
we have to set an opacity mul-

tiply factor at each vertex πA = sz
δ |

−→
N .

−→z
−→
N .

−→
V
| that will be in-

terpolated on the face and multiplied by the texture (modu-
late mode) during rasterization. Note that this can easily
be done by a vertex shader.

6. Silhouette texcells

The previous model is efficient and accurate as long as the
incidence is not grazing: in such case the parallax error gets
high and one might even see between the slices. This sit-
uation corresponds to landscape silhouettes. In this situa-
tion we switch to our second model, which relies on ori-
entable slicing. In this section we explain how to compute
each slice’s location and how to deal with levels of detail.

P1

P2P3

z

h
P1

P’1

P’2

P2
G

dh

V

P1P2

P2
n-1

P1
n-1

P1
0

P2
0

V

dh
h

Figure 9: Left: The prism shape texcell. Middle: Tilting the base
triangle to face the camera. Right: The sliced volume.

Tilting the slices
We tilt the slices (see fig. 9) by moving vertices vertically.
This allows us to transform polygons pre-stored on the GPU
instead of creating them from the CPU, avoiding a bus trans-
fer bottleneck.

Given a prism of height h−→z and base triangle (P1P2P3),
let G be the center of the base triangle and

−→
V the view

direction. Assuming the viewpoint is distant, the n slices
are all parallel. So we just have to determine the tilting of
(P1P2P3) so that it faces the camera: P′

i = Pi + ki
−→z , i = 1..3.

Letting (P′
1P′

2P′
3) facing the camera means that

−−→
GP′

i ·
−→
V = 0,

i.e., ki = −
−→
GPi.

−→
V

−→z .

−→
V

. Let kmin = min(ki) and kmax = max(ki)

(note that kmin ≤ 0 and kmax ≥ 0).

We have to set the first and last slices (P0
1 P0

2 P0
3 ) and

(Pn−1
1 Pn−1

2 Pn−1
3 ) so as to insure that the whole volume of

the prism is sampled (fig. 9,right). Since the triangle slant-
ing adds a slope dh = kmax − kmin (fig. 9,middle), the sliced
volume is now a prism of height (h + dh)

−→z and base trian-
gle (P0

1 P0
2 P0

3 ). (P0
1 P0

2 P0
3 ) is a vertical translation of (P′

1P′
2P′

3)

so that the triangle is just below the ground: P0
i = Pi +(ki −

kmax)
−→z . The other slices are simply obtained by offsetting

the base triangle: P j
i = P0

i + j
n−1 (h+dh)

−→z , j = 0..n−1.

However, for grazing view angles the slant goes to
infinity, so we want to limit the slant (at the price
of an approximate facing). Let kM be the maximum
slant allowed and d′

h = min(dh,kM). We now have

P j
i = Pi +

(

d′
h

dh
(ki − kmax)+ j

n−1 (h+d′
h)

)

−→z , which is eas-

ily implemented on a vertex shader. In our implementation,
we chose kM = 2h.

Note that a part of the sliced volume is out of the 3D
texture space (the border color attribute let us set this
region transparent). We do not want these top and bottom
empty regions to cost. Setting the alpha test culling dis-
cards the transparent fragments, but these are still rasterized.
The new coming clip registers feature will soon permit to
clip the slice polygons in the vertex shaders.

Slicing rate and filtering
The slices sample a MIP-mapped 3D texture. This 3D lin-
ear filtering is justified assuming the silhouettes are distant:
when the resolution of the 3D texture is small the opacity of
the voxels is low, thus the effect of occlusion is weak.

As stated in section 3 GPUs set the MIP-map level in-
dependent of the slicing rate. We must ensure instead that
the slicing rate fits the MIP-map level. 3D MIP-mapping is
isotropic so the distance δ between slices should not be less
than the ‘voxel’ size or some information will be lost. Vol-
ume rendering applications tend to choose higher sampling
rates to improve the reconstruction quality. But we prefer to
improve rendering time, so we choose a rate as close as pos-
sible to the voxel size. We have δ = 1

n−1 (h+d′
h)
−→z .

−→
V . For a

texture resolution L3 and a MIP-map level l, we want δ = 2l

L ,

which implies that n = 1+ L
2l (h+d′

h)
−→z .

−→
V .

7. Aperiodic tiling

To avoid repetitivity when mapping texcells onto a terrain
we rely on the [NC99] aperiodic scheme (see section 2).
Since our implementation assumes that the textures are pre-
shaded we cannot rotate the patterns, which is the same sit-
uation as in [CSHD03]. We, too, consider separate bound-
ary conditions in each direction (see fig. 10). In our case we
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Figure 10: Top: The reference texture (left) containing the 8 edge-
matching triangular patterns. The wrapping is slanted (the bottom
red and top yellow triangles share an edge). We shear and wrap
the pattern (middle) to obtain a square wrapping (right). Bottom:
aperiodic tilings showing the choices.

have 3 directions (triangular tiling). If we assume 2 different
boundary conditions in each direction (indicated by colors)
we have 8 possible triplets, and thus 16 possible triangles
(pointing north or south). To save memory we choose a sub-
set of 8 triangles (4 pointing north and 4 pointing south), so
as to use each triplet once. This neither breaks aperiodicity
nor generates artifacts, as illustrated in fig. 10. If higher vari-
ability were required we could of course keep the 16 tiles.
Moreover it is also possible to build more than one tile for
one given triplet+direction combination: this lets us to create
several kind of forest patches and to account for rare events
(e.g. a higher tree).

Storing the patterns
Storing the patterns is an issue that has not been discussed
in previous papers to our knowledge: when rendering a pixel
close to a tile border, the hardware will linearly interpolate
for both mag and min filters. The color stored outside the tile
(taking the wrapping of the texture space into account) will
be blended with the inside color and thus must be coherent to
avoid artifacts on edges. We manage this by arranging the 8

tiles (shown on fig. 10,top-left) in the reference texture so as
to fit their edge constraints8. Since each kind of edge is used
by 4 tiles it appears twice: we call the two edges sharing the
same boundary condition twin edges. In fact our wrapping
is slanted: the bottom green and top grey triangles share an
edge, but only square wrapping is tractable by hardware tex-
tures. To obtain a square wrapping, we shear and wrap the
pattern (fig. 10,top-middle). The result texture is shown in
fig. 10,top-right. Two aperiodic tilings showing the choices
are shown on fig. 10,bottom.

Building the patterns
The boundary conditions (figured by edges colors in fig. 10)
yield constraints when drawing the content of the reference
texture:
• an object crossing an edge axis must be replicated on the
twin edge. This means that the neighborhoods of twin edges
are correlated, but not identical (only the content sampled
exactly on their axis is identical). The smaller the objects,
the less correlated the twin edges.
• Moreover, an object must never cross two edges (e.g. at
corners), or it would correlate them and would be replicated
on half of the cells.

Whatever their content (2D, 3D, color, bump...), the pat-
terns have to be built to respect the constraints above. For
representing forest we rely on geometrical models; numer-
ous tree models are available (online or through commercial
packages). Each tree can be represented by a bounding disk.
We first place the trees that cross the boundaries, which must
be replicated on the twin edges. (It is a good idea to start by
placing one tree quite close to a corner – without crossing 2
edges – to avoid having a vicinity bias). Then we can freely
place the other trees (with only the constraint of not cross-
ing the triangle tile boundary). We did not implement an
automatic placement of the objects populating the patterns.
[CSHD03] describes how to produce unbiased Poisson-disk
distributions.

8. Results

Implementation
We have implemented regular texcells, silhouette texcells
and aperiodic mapping described in this paper, comprising
the adaptive slicing and the non-linear filtering. Neverthe-
less, our implementation is limited:

- Scenes are lit by fixed directional lights (following
results are lit by one light). Shading is precomputed and
stored in the textures.

8 Here 8 triangle tiles are used. If one wants to use square tiles,
[DN04] addresses the problem of packing an arbitrary number of
them.
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- Our slices cannot be rotated (because our texture includes
the lighting), which increases the number of tiles to cre-
ate to match the combinatorics of edge boundary condi-
tions.

- Our levels of detail are discrete (which induces some
popping in the video): as in MIP-mapping, lod should
be a float and two levels blodc,blod +1c should be com-
bined at any time.

- We did not use any programmable shader: the regular tex-
cells’ vertices are stored on the GPU in a vertex buffer,
and the silhouette texcells are generated by the CPU.
However, this did not slow down the performance since
the bottleneck is in the pixel fill rate.

- We used 3DS-Max for setting the reference forest sam-
ple and pre-rendering the textures. But the amount of ge-
ometry for only 30 trees (300k polygons each) made the
interactive placement of trees painful, and the ray-tracing
shadowing (compulsory with clipping planes) no longer
worked, which explains the lack of shadows in our tex-
cells.

- The lack of real scene-wise shading results in a constant
illumination of the landscape. To compensate this, we es-
timate a pseudo-shading corresponding to the Lambert
lighting of the terrain.

Figure 11: Left: real geometry used for the reference texture.
Right: corresponding texcells (without shadows).

Results and performance
All the computations are done on a P4 at 1.7 GHz with a
GeForceFX 5800 graphic card. Resolution was 640× 480.
The size of volumetric data was 128 slices of 256 × 256
32bits textures yielding 12 Mb of compressed texture stor-
age on the GPU (3D texture + the 2D texture sets). Using
our implementation, we were able to map terrains with a
dense forest. We show our results in fig. 12. In fig. 11,left
we can see the original forest pattern rendered by the offline
renderer. Fig. 11,right shows the same pattern displayed in
real-time by our program. Fig. 12,top (seq #1 on the video)
shows a terrain mapped with this pattern. There are 576 tiles
containing 4 trees each, so the scene includes roughly 2300
trees. The frame rate is 25 to 40 fps depending on the view
and the tuning of parameters. Silhouette texcells are about 4
times more expensive to render than regular ones, therefore
frame rate depends on the number of rendered silhouette tex-
cells which varies with the view direction and the threshold
used to switch between the two kind of texcells.

Fig. 12,bottom (seq #2 on the video) shows a more com-
plex terrain with more texcells mapped: 9212 tiles represent-
ing a total of 37000 trees. The frame rate is 20 to 30 fps de-
pending on the view and the tuning of parameters. The frame
rate is inversely proportionnal to resolution, which means
that the bottleneck lies in the fill rate. As one can see on the
video, transitions between LODs of the same type of slices
are quite unnoticeable. Transitions between the two differ-
ent types of slices (regular and silhouette) can be noticeable
if one focuses on it, but the popping is weak and quite ac-
ceptable for a real-time application.

Limitations
- The main assumption for volumetric textures is that the

vegetable cover has textural characteristics: one cannot
expect to model a scene with precise control of given
trees. Conversely, in the sequence 2 on the video we un-
fortunately made a reference texture including one re-
markable tree (high, narrow and dark). As a result one
can see the correlated location of the rare instances of
this tree which are aligned with the tiling. However, we
can increase the variability by creating more tiles than
the minimum set. Moreover, we can mix individual key-
elements within the forest texture: usual geometric ob-
jects will be inserted coherently since 3D fragments are
generated.

- Another characteristic of textures is that they are meant to
cover everything continuously. E.g. if the terrain includes
cliffs, the mapping has to be cut accordingly.

- Some characteristics of the hardware (and drivers) were
deceiving, such as various problems with the 3D textures
and not so high performance in situations supposed to be
accelerated. But boards and drivers are evolving fast, so
these issues should be fixed soon.

9. Conclusion and future work

We have described a multiscale scheme for real-time volu-
metric textures by defining new ways to represent, filter, and
render them in real-time. We also introduced a new aperiodic
scheme which avoids interpolation artifacts at tiles borders.

This lets us efficiently render large forest scenes. Since
we compute a correct filtering – in contrast to previous vol-
umetric texture methods – we get high quality rendered im-
ages, which is strengthened by the fact that we generate non-
repetitive forests. Compare to previous real-time methods
for rendering landscapes which treat individual trees repre-
sented by a few polygons, we show for the first time a wide
and dense forest in real-time with high quality standards.

Despite our limited implementation we have shown that
our results are already convincing: we can move interac-
tively above a large forest which shows a continuous range
of tree size. The tree appears really 3D, in contrast to bill-
boards: we can move around them and show full parallax
effects in real-time, and a tree never pops in front of another.
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Figure 12: Top: 576 tiles, 2300 trees (see seq #1 on the video).
Bottom: 9212 tiles, 37000 trees (seq #2 on the video).

Therefore there is room to improve the features and test
enormous scenes. Some limitations are linked to the evolu-
tion of graphics hardware: we expect 3D texture will be soon
totally usable. Better hardware culling (especially for trans-
parent polygons) would increase the performance a lot: we
could draw the slices front to back and thus avoid useless
overdrawing.

For future work, the most important point to improve is
the dynamic lighting and shadowing: not only it is a useful
feature per se but also it would let us rotate the patterns dur-
ing the mapping. This would decrease the number of neces-
sary 3D patterns to store. Some existing real-time shadow-
mapping schemes might probably be adapted to our repre-
sentation. In addition, dynamic lighting might be handled by
using pixel shaders to compute per-voxel lighting.

Furthermore, since our volumetric textures produce frag-
ments at the correct 3D location, texcells can be mixed
with other 3D objects such as peculiar trees, grass or small
bushes.
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