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Abstract
Despite recent advances in finding efficient LOD-representations for gigantic 3D objects, rendering of complex,
gigabyte-sized models and environments is still a challenging task, especially under real-time constraints and
high demands on the visual accuracy. The two general approaches are using either a polygon- or a point-based
representation for the simplified geometry. With the polygon-based approaches high frame rates can be achieved
by sacrificing the exact appearance and thus the image quality. Point-based approaches on the other hand preserve
higher image quality at the cost of higher primitive counts and therefore lower frame rates.
In this paper we present a new hybrid point-polygon LOD algorithm for real-time rendering of complex models
and environments including shadows. While rendering different LODs, we preserve the appearance of an object by
using a novel error measure for simplification which allows us to steer the LOD generation in such a way that the
geometric as well as the appearance deviation is bounded in image space. Additionally, to enhance the perception
of the models shadows should be used. We present a novel LOD selection and prefetching method for real-time
rendering of hard shadows. In contrast to the only currently available method for out-of-core shadow generation,
our approach entirely runs on a single CPU system.

Categories and Subject Descriptors(according to ACM CCS): I.3.7 [Computer Graphics]: Shading, shadow and tex-
ture I.3.3 [Computer Graphics]: Viewing algorithms E.2 [Data Storage Representations]: Object Representation

1. Introduction

Modern 3D acquisition techniques allow to digitize 3D ob-
jects with very high accuracy. Digitizing human sized ob-
jects in the sub-millimeter range has become common, pos-
ing new challenges for the rendering of this data. First, due
to the sheer size of models which is often in the range of sev-
eral gigabytes, out-of-core rendering techniques are needed.
Second, the quality of the rendering has to reflect the accu-
racy of the acquired data. Third, additional visual effects like
shadows that are commonly used to improve the perception
of objects in computer graphics should be applicable to these
models. Last but not least even for such complex objects all
these requirements should be fulfilled in real time.

To meet at least some of these challenges, many differ-
ent approaches – like hierarchical geometry representations,
point based rendering, visibility culling, and even image-
based methods – for interactive rendering of complex mod-
els have been developed in the recent years. Most of these
algorithms have in common that additional data structures,

Figure 1: Images of the St. Matthew statue (372M trian-
gles) rendered with state-of-the-art polygon based out-of-
core rendering (left) and with our algorithm including soft
shadows (right). Notice how the left picture appears blurred
due to the lack of fine details.

like level of detail (LOD) structures, multi-resolution rep-
resentations, images, or occluder information, have to be
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stored that further increase the memory requirements. While
this already leads to problems with medium sized objects,
many of these algorithms cannot be used for gigabyte-sized
models like the one shown in Figure1. Therefore, current
research efforts concentrate on the extension of available
in-core approaches to out-of-core methods that allow to re-
strict the memory footprint at runtime. These extended meth-
ods only load the currently required parts of the model and
additional data structures into main memory and employ
prefetching techniques to prevent load stalls whenever in-
teractivity is required.

For interactive rendering of complex models, hierarchical
level of detail (HLOD) methods have proven to be the most
efficient approach. A scene hierarchy is build using spatial
subdivision and for each node of this hierarchy a single, or
a few levels of detail are generated using offline simplifica-
tion. HLODs support out-of-core algorithms in a straightfor-
ward way and allow an optimal balance between CPU and
GPU load during rendering. The HLODs either consist of
a point- [RL00] or polygon-based [EM00] approximations
of the model. While polygon-based HLODs lead to a higher
performance especially for models with large smooth sur-
faces, the point-based HLODs preserve small features like
wrinkles or chiselmarks much better. The reason for this is
that in point-based approaches the geometry is tightly cou-
pled to appearance attributes like normal and color, whereas
in most polygon-based out-of-core simplification algorithms
this coupling is neglected and therefore the polygon-based
approximations tend to generate less primitives but destroy
the appearance of the model. A further disadvantage of
polygon-based approaches is that the continuity along the
node boundaries has to be maintained explicitly.

Generating shadows for out-of-core models requires an
appropriate LOD selection for shadow casters and the ren-
dering of the shadows themselves. Unfortunately, the com-
putational overhead on the CPU of the only so far existing
out-of-core hard shadow algorithm is high. Therefore, it is
applicable with reasonable speed only on a multi proces-
sor system or a on small cluster. Since it does not guarantee
a reasonable screen space error for the shadows, disturbing
popping artifacts occur during movement.

Finally, there is no rendering algorithm to generate real-
time, or at least interactive soft shadows for out-of-core
models.

In this paper we present the first appearance preserving
out-of-core rendering algorithm based on HLODs that com-
bines point- and polygon-based representations. We devel-
oped a new LOD selection method to render pixel accu-
rate hard shadows at real-time frame rates using perspective
shadow maps. Furthermore, we modify our shadow caster
LOD selection algorithm to generate realistic soft shadows
at interactive frame rates using penumbra quads. The main
contributions of our new algorithm over state-of-the-art out-
of-core rendering are:

• An accurate high quality real-time rendering of out-of-
core models with guaranteed visual error (see Figure1).

• A point/polygon balancing technique that allows a transi-
tion in both directions.

• A LOD selection algorithm for pixel accurate real-time
shadows on a single CPU system.

• A specialized LOD selection algorithm for interactive
high quality soft shadows.

We applied our algorithm to several gigabyte-sized mod-
els composed of up to hundreds of millions of polygons.
Our out-of-core rendering algorithm typically uses a mem-
ory footprint of some hundred megabytes depending on the
memory available on the graphics card. For performance
evaluation we compare our method with purely point-based
as well as non-appearance preserving polygon-based out-of-
core rendering techniques.

The rest of the paper is organized as follows: we give
a brief overview of previous work in Section2. After that
we describe the construction of our HLOD hierarchy in Sec-
tion 3. The rendering and shadow caster LOD selection al-
gorithm is described in Section4 and results are given in
Section5. Finally, in Section6 we present our conclusions.

2. Previous Work

Our new algorithm is based on previous work in the area of
out-of-core rendering, appearance preserving level-of-detail,
hybrid point/polygon representations and real-time shadow
algorithms. Therefore, we give a brief overview of previous
work in these fields.

2.1. Out-of-Core Rendering

The problem of rendering gigabyte-sized models was first
addressed in terrain rendering. To reduce the per-triangle
computation cost on the CPU, pre-computed terrain patches
are assembled during run-time to shift the bottleneck from
the CPU to the GPU like [Ger] and the RUSTiC [Pom00] and
CABTT [Lev02] data structures. These methods were fur-
ther improved by representing the patches within the nodes
as irregular triangulated patches in a quadtree [KS01] or a bi-
nary tree domain [CGG∗03]. Unfortunately these algorithms
cannot be used directly for arbitrary 3D models since they
rely on a parametrization of the mesh which is only trivial
for terrain models.

A number of techniques like indexing, caching and
prefetching [DP, SCH∗01] were developed to increase the
performance for large environment walkthrough applica-
tions. Recently some algorithms combining level-of-detail
and culling have been proposed like [BSGM02]. Since this
approach only worked for models that could be loaded into
memory, it has been extended to handle gigabyte-sized mod-
els by employing out-of-core techniques in [VM02]. How-
ever, the screen space error is relatively high since they do
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not control the Hausdorff error during simplification. Since
these algorithms are based on the segmentation of objects
into smaller subparts, the simplification along cuts is con-
strained. These problems were solved for terrain rendering
in [CGG∗03] and for 3D models in [GBK03] by filling in-
troduced cracks in screen space and restricting the Hausdorff
distance during simplification.

To generate the needed HLOD hierarchy a number of out-
of-core simplification algorithms for large models have been
developed [BMR99, CMRS03, LS01, SG01]. The currently
most efficient out-of-core simplification algorithm [ILGS03]
uses processing sequences and out-of-core compression to
simplify gigabyte-sized models within a few hours. The
main drawback of all out-of-core simplification algorithms
mentioned so far is that they do not use the Hausdorff er-
ror during simplification. This was solved by Borodin et
al. [BGK03], but no algorithm supports appearance preserv-
ing simplification with guaranteed error tolerance.

2.2. Appearance Preserving LOD

In the field of appearance preserving level of detail, two
main approaches exist. The first approach is to use tex-
tures to store the information required for correct shading,
the so-called normal maps [COM98]. They can be used for
efficient shading in software or on programmable graph-
ics hardware [TCRS00]. Since normal maps require a large
amount of memory, some quality preserving approaches to
compress textures on polygonal models have been proposed
e.g. [BTB02, SGSH02]. However, while the normal map
texture size despite compression remains a problem in the
context of out-of-core rendering, there is a further draw-
back: since for rendering efficient HLODs have to be gen-
erated using topology modifying simplification, consistent
parameterizations for the normal map textures of subsequent
HLODs are hard to generate.

The second, less memory intense and more general ap-
proach is to use appearance preserving level of detail. Gar-
land et al. modified their error quadrics [GH97] to preserve
color, texture coordinates and normals [GH98]. However,
guaranteeing a certain error of the geometry or the appear-
ance during rendering is not possible using these modified
error quadrics. As a different error measure for appearance
preserving out-of-core simplification, the curvature of the
mesh can be used as in [Lin02], but like for the modified er-
ror quadrics no screen space error can be guaranteed for this
method. Another approach used for view-dependent refine-
ment of multi-resolution meshes was introduced by Klein et
al. [KSS98] which is able to control the shading error by
guaranteeing that for each point on the screen the distance
to the next correctly shaded pixel is below a specified con-
stant. Unfortunately, this method cannot be used for static
LODs, since the error measure is view-point dependent and
requires the exact position and orientation of the surface on
the screen to be known. Furthermore, the derivatives are cal-

culated in screen-space which make it unapplicable to pre-
computed static LODs.

A different approach is perceptually driven simplification
(e.g. [WLC∗03]). But again this method requires knowledge
of all viewing parameters – even for its basic features that
produce results similar to appearance preserving simplifi-
cation – and additional movement information for veloc-
ity simplification. Finally, peripheral simplification even re-
quires tracking of the users eye movements.

2.3. Hybrid Point Polygon Algorithms

While the quality of point based rendering methods is suffi-
cient, the performance of point based rendering covering the
whole range from very coarse up to the finest LOD is still
too slow for gigantic models. To overcome this problem, hy-
brid models combining point and polygon based rendering
have recently been introduced.

A hybrid point/polygon-based representation of objects
was first used by the POP rendering system [CN01], which
uses polygons at the lowest level only and a point hierarchy
similar to QSplat [RL00] on higher levels. Simultaneously
a method for hybrid point polygon simplification based on
edge collapse operations was introduced in [CAZ01]. In this
approach points are generated according to the error met-
ric and the size of the triangle. This algorithm however, al-
lows a transition only from polygons to points and not vice
versa, and therefore, the transition point has a high impact
on the efficiency of the simplification. Another approach
starting with a point cloud representation of the model is
PMR [DH02]. The point cloud is simplified using a feature-
based simplification algorithm and a triangulation of this
point cloud is generated for display at higher resolutions af-
terwards. During rendering points or triangles are selected
for rendering depending on their screen size. This approach
adjust the point/polygon balance to achieve maximum ren-
dering performance, but due to the triangulation of the sim-
plified points cloud, the efficiency of the simplification algo-
rithm is reduced.

2.4. Shadow Algorithms

In the recent years several algorithms for interactive shadow
generation using graphics hardware have been developed.
The two basic approaches to this problem are shadow
maps [Wil78] and shadow volumes [Cro77].

To reduce aliasing artifacts inherent in the image-based
approach of the shadow map algorithm, the perspective
shadow map [SD02] was developed which takes the per-
spective projection into account to generate a more evenly
sampled shadow map.

Since many improvements have been made to the shadow
volume algorithm we refer to [MHE∗03] for details. Due
to advances in recent graphics hardware developments,
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shadow volume computations can be completely performed
on the GPU [BS03]. Since the generation of these shadow
volumes is still too slow for complex scenes, a hybrid
shadow map/shadow volume algorithm has been devel-
oped [GLY∗03] which combines the speed of the shadow
map with the accuracy of the shadow volumes. However,
due to the computational overhead of this algorithm it is only
applicable on a multi processor system or a small cluster. In
addition there is no control over the screen space error of the
shadows which leads to popping artifacts during movement.

Although enhancing the visual appearance, the hard shad-
ows produced by the methods mentioned above suffer from
a lack of realism, since all natural light sources produce
soft shadows which depend on the size and distance of the
light source. Due to their higher computational complexity
compared to hard shadows they are even more challeng-
ing in the context of gigabyte-sized models and have not
been used for out-of-core rendering so far. A recent sur-
vey on soft shadow algorithms has been made by Hasen-
fratz et al. [HLHS03]. The first methods for interactive soft
shadows were image based techniques like [ARHM00]. A
straightforward approach is rendering the scene with sev-
eral shadow maps and then combining the image to gener-
ate soft shadows e.g. on a cluster [ISH03]. For shadow maps
the first real-time algorithm for a single GPU system was
the penumbra maps [WH03]. Since this algorithm renders
only the outer half of the soft shadow (and a full shadow in-
side), the visual quality can be improved by combining this
method with the shadow map [KD03] which only renders the
inner half of the soft shadow. Recently an algorithm capa-
ble of rendering both inner and outer penumbra at real-time
frame rates for moderately complex scenes using penumbra
quads [AW04] was developed. For higher quality and more
precise soft shadow calculation, the shadow volume algo-
rithm was modified by Assarsson et al. [ADMAM03]. Due
to the limited performance of shadow volumes this is not
usable for complex scenes.

Although these shadow rendering algorithms can also be
used for out-of-core rendering, appropriate LODs have to
be selected for the shadow casters. So far there is no ex-
plicit LOD selection and prefetching algorithm for out-of-
core models that guarantees a pixel correct location for the
shadow silhouettes. Furthermore, there is no LOD selection
algorithm that exploits the special requirements and restric-
tions of soft shadows.

3. HLOD Generation

Since our HLOD generation algorithm starts with a polyg-
onal representation of the model, a point cloud model has
to be triangulated in advance using standard reconstruction
tools like [CL96]. Then, we follow the out-of-core simplifi-
cation of Borodin et al. [BGK03] building an octree based
HLOD hierarchy.

The partitioning algorithm starts with the whole model in

the root node of an octree. The object is partitioned by cut-
ting the geometry contained in each node into the eight child
nodes and storing them in its children. This is repeated re-
cursively until each leaf node contains at mostTmax trian-
gles. Starting from the geometry contained in the leaf nodes
the HLOD hierarchy is build recursively from bottom to top
with the following algorithm:

• Gather the simplified geometry from all child nodes that
are two levels below the current node (or the original ge-
ometry if there is no HLOD at this depth). Its approxima-
tion errorεprev is then the maximum error of the simpli-
fied geometry in these child nodes.

• Simplify resulting geometry as long as the simplification
error is less thanεsimp = enode

res − εprev, whereenode is the
edge length of the currents nodes bounding cube andres
is the desired resolution in fractions ofenode.

• Storeεnode= εsimp+ εprev as approximation error in the
current node.

This algorithm guarantees a Hausdorff distanceεnode
of the simplified geometry to the original model to lie
between 3

4
enode
res and enode

res for a user specified resolution
res. Additionally, it closes the cracks introduced by the
hierarchical simplification using generalized pair contrac-
tions [BGGK03]. But in contrast to the previous out-of-core
rendering method [GBK03], we do not use the Hausdorff
distance between the simplified and the original geometry,
but the novel appearance preserving error measure described
in Section3.1.

Finally the geometry of each node is compressed and
stored on disk, as well as the skeleton of the scene graph
containing the bounding boxes and the geometric error of
the simplified geometry contained in each node.

3.1. Preserving the Appearance

To preserve the appearance of the object during simplifi-
cation, we extend the geometric Hausdorff error measure
with respect to appearance attributes as proposed by Klein
et al. [KSS98] for view-dependent multi-resolution meshes.
However, in contrast to this approach we need an error mea-
sure that is independent of the viewing position.

When an edge is removed due to a collapse operation, the
appearance attributes of the removed points are interpolated
during rendering. A screen space error can now be defined
as the distance between a shaded point of the original model
projected into screen space and the next pixel on screen with
the same color. For static LODs this distance can directly
be transformed into object space as the distance between a
point on the approximated surface and the next point on the
original mesh with the same appearance attribute.

We define the simplification error in object space to be
the distance of a pointp on the original mesh and the closest
point on the simplified mesh with the same interpolated nor-
mal q (see Figure2). Now we make the observation that the
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Figure 2: Combination of error measures.

vector between the original pointp andq can be split into the
orthogonal vectorspq′ andq′q, whereq′ is the closest point
on the simplified mesh. Therefore, the simplification errorε
can be written as a combination of the geometric Hausdorff
error εgeo and the normal deviation error on the simplified
meshεapp:

ε2 = ε2
geo+ ε2

app

The normal deviation errorεapp can be approximated us-
ing the maximum normal curvatureκ1:

εapp ≈ arccos(~n ·~nint)
κ1

,

where~nint is the interpolated normal atq′. The maximum
curvature of a point on a bi-linearly interpolated triangular
patch with specified per vertex normals can be approximated
by:

κ1 ≈ max

(
arccos(~n1 ·~n2)
‖P1−P2‖

,
arccos(~n1 ·~n3)
‖P1−P3‖

,
arccos(~n2 ·~n3)
‖P2−P3‖

)
.

For small angles, the computation of the inverse cosine
can be saved, since in this case arccos(~na ·~nb)≈ ‖~na−~nb‖.

To prevent aliasing artifacts in the shading, we smooth the
normals of vertices that are only adjacent to triangles smaller
than enode

res before simplification. This also leads to a more
efficient simplification.

While we only use normals in our examples, our algo-
rithm is able to deal with arbitrary appearance attributes for
which a distance is defined, e.g. per vertex colors, BRDFs,
etc.

3.2. Point Generation

During the octree construction, triangles are allowed to be-
come arbitrarily small. For rendering purposes however, us-
ing points instead of small triangles has proven to increase
the performance significantly. Therefore, after finishing the
complete hierarchical simplification the individual HLODs
are processed and small triangles are replaced with points.

To find an appropriate criterion for the transition point

between triangles and points we make the following obser-
vation: on modern graphics hardware a point – using the
GL_POINTS primitive – can be rendered about twice as fast
as a pixel sized triangle. Since according to Euler’s formula,
the number of vertices in a mesh is approximately half the
number of triangles (Nt ≈ 2Nv), not more than 3 additional
points per vertex can be used without reducing the rendering
performance.

Figure 3: Points used to replace a triangle.

To determine which triangles are to be replaced with
points, we simply check if the distance of the triangle ver-
tices to the barycenter is at most than 2ε pixel on screen
(typically: ε = 0.5). If this is the case, the points shown in
Figure 3 cover the whole area of the triangle and we re-
place the triangle with up to 6 vertices. To avoid unneces-
sary points we use vertex clustering with a grid size ofε.
During this vertex clustering the attributes are averaged sim-
ilarly to [RL00].

This way the number of points used per HLOD is opti-
mally adapted to the features of the simplified object. As
shown in Table2 it might even happen that it decreases with
the coarser level, which of course would not be possible by
simple clustering.

The main advantage of our technique is that due to the
maximum size of a node on screen we can calculate the max-
imum number of pixels a triangle can cover. Therefore, we
can apply the triangle to point transition during the prepro-
cessing and store the points in the HLOD representation.

3.3. Compression

Even though prefetching is used (see Section4.3) to predict
which parts of the model will be visible next, the loading
of parts from out-of-core devices (such as disc drives or over
the network) is time-critical and can be a bottleneck. In order
to minimize the resulting latency we employ sophisticated
compression schemes capable of real-time decompression of
the out-of-core data. As we use a hybrid point-polygon ap-
proach, we employ two well known compression schemes.
To compress the triangle mesh we apply the Cut-Border al-
gorithm for non-manifold meshes [Gum99]. Similar algo-
rithms like Edgebreaker [Ros99] would work as well. In or-
der to sufficiently compress the point data, we utilize the ap-
proach of Botsch et al. [BWK02].
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4. Rendering

To render the scene we first determine the required level of
detail and the visibility of cells. The octree is traversed and
at each node the visibility is checked using view frustum
and backface culling. For each visible cell its approximation
error is projected onto the screen and if this screen space
error is not sufficient the traversal is continued to finer levels.

The cracks introduced due to the independent simplifi-
cation of adjacent cells need to be filled during rendering.
In [GBK03] this was accomplished by rendering shaded bill-
board lines along these cracks. Since we guarantee a screen
space error of at most 0.5 pixel for high quality rendering
anyway, we can render simple lines instead which is more
efficient.

4.1. LOD Selection for Shadows

Independently of the algorithm used to generate the shadow
effect, the parts of the scene casting shadows have to be de-
termined and an appropriate level of detail has to be selected.

For point or directional light sources, the level of detail
required for a shadow caster depends on quantities shown in
Figure4 (left). Unfortunately, for shadows the approxima-
tion error depends not only on the distances between light
source, caster and receiver but also on the angle of the in-
coming light and the surface normal of the receiver. If the
incoming light is nearly perpendicular to the surface nor-
mal even the slightest change of the caster position leads
to an arbitrarily high change in the shadow location on the
receiver. Fortunately, this is only a problem if the receiver
is highly specular since in all other cases the surface does
not receive much irradiance from the respective light source.
Therefore, by guaranteeing an accuracy for the shadow loca-
tion for cases where the surface normal is nearly parallel to
the incoming light direction to be better than 1/2 a pixel we
inherently guarantee the accuracy to be better than 1 pixel in
image space even for an angle of 60◦ between surface nor-
mal and incoming light. Please note that this angle on the
other hand leads to a decrease of the irradiance from this
light source by a half.

From Figure4 (left) we get the following maximum ap-
proximation errorεh of the shadow caster depending on the
desired approximation errorεr of the corresponding shadow
receiver:

εh =
εrdl

dl +dp

Note, that for directional light sources (i.e.dl = ∞), εh
equalsεr .

When using an area light source, the required approxima-
tion accuracy for a shadow caster depends on the relations
shown in Figure4 (right). If we allow an intensity change of
γi , this leads to the following projected approximation error

�h

dl

dp

�r

sl

dl

dp

�i

sp

� ���p i ps

Figure 4: Shadow caster approximation error for hard shad-
ows (left) and soft shadows (right).

εp:

εp = γisp = γi
sl dp

dl

The corresponding approximation errorεi is the back-
projection of this offset onto the shadow caster:

εi =
εpdl

dl +dp
= γi

sl dp

dl +dp

To combine these error measures, we simply addεh andεi .
This means, that we allow the shadow edge to have an off-
set of at mostεscreen pixel offset on screen and an inten-
sity change of at mostγi . This is reasonable, since for hard
shadows (i.e. a very small light source)εi has to be zero. So
the maximum allowed approximation errorεc for a shadow
caster is:

εc =
εrdl

dl +dp
+ γi

sl dp

dl +dp
=

εrdl + γisl dp

dl +dp

4.2. Shadow Generation

During rendering the coarsest possible LOD is chosen for the
shadow casters. Since the appearance of an object is not rel-
evant for shadow computation, a purely geometrically sim-
plified HLOD representation can be used without loss of ac-
curacy. The most general approach to effectively generate
shadows on a single CPU are the so called shadow maps.
This algorithm uses the hardware Z-Buffer to generate the
required occlusion information. This technique however suf-
fers from aliasing artifacts. To reduce artifacts that occur if
the user zooms in (perspective aliasing) we use perspective
shadow maps, where the scene is first transformed by the
perspective view projection and then rendered from the po-
sition of the transformed light source.

Since the approximation error of all shadow receivers (i.e.
all visible nodes) has to be known for both types of light
sources, we first traverse the octree of the model and per-
form level of detail selection and culling. Then we compute
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Figure 5: Change of light sources view frusta due to rotation
(top left) and translation (top right and bottom) of the viewer.
To simplify matters only one light source frustum is shown.

the view-aligned bounding box for each hierarchy level of
the visible nodes. These bounding boxes are tight due to the
relation of error and cell size and the regular octree structure.
For each of these bounding boxes a minimum view frustum
containing the whole box is calculated from the light source.
These view frusta are then used for culling and level of detail
selection of the shadow casters. To estimate the distance be-
tween a shadow caster and its first visible shadow receiver,
we simply use the distance of the caster’s cell to the cur-
rent view frustum. This means that for all visible cells the
shadow caster approximation errorεc is always less or equal
to its approximation error used for renderingεr . Therefore,
the self-shadowing artifacts described in [GLY∗03] cannot
occur.

To render the shadow we use the perspective shadow map
algorithm [SD02] with a sufficient resolution to guarantee at
most 0.5 pixel screen space error for shadow boundaries (on
a surface orthogonal to the light direction, see the above sec-
tion). For soft shadows we use the penumbra quads [AW04]
combined with perspective shadow maps. Since the shadow
map generation only requires a geometric approximation of
the model we do not use the appearance preserving simplifi-
cation. This leads to a considerable speed-up of the shadow
map generation.

4.3. Prefetching

Since geometry required for rendering must be streamed
from disk, we use a priority based prefetching similar

to [GBK03] in order to load data for subsequent frames. The
loading priority of a cell’s geometry depends on the viewer’s
movement that is necessary for the cell to become visible.

To support moving light sources, we apply the same prior-
ities to the view frusta of each light to prefetch shadow caster
geometry. Since both translation and rotation of the viewer
result in rotations and zooms of the view frusta of the light
sources as shown in Figure5, a modification of these pri-
orities is not necessary to support prefetching for a moving
viewer.

5. Results

To analyze the efficiency of our approach, we compare it
with several previous algorithms related to different aspects
of our work, that can either guarantee a purely geometric
screen space error or an appearance preserving screen space
error. The models used for comparison are listed in Table1.
The system used for all performance evaluations is an Athlon
2800+ PC with a Radeon 9800 XP graphics card and 1 GB
main memory.

model #triangles app. pres. geometric

Dragon 871,414 4.9 MB 2.4 MB
Happy Buddha 1,087,716 7.5 MB 3.5 MB
David 2mm 8,254,150 35.5 MB 20.2 MB
Lucy 28,055,742 148.4 MB 66.7 MB
David 1mm 56,230,343 321.3 MB 138.6 MB
St. Matthew 372,422,615 1566.2 MB 649.6 MB

Table 1: Triangle numbers of models used for testing and
their size on disk for appearance preserving and non ap-
pearance preserving (geometric approximation) HLODs.

5.1. HLOD Generation

Table2 shows the average number of triangles and points in
an octree cell for each level of the HLOD hierarchy. While
the number of triangles per octree node of the purely ge-
ometrically simplified model is roughly constant, it varies
strongly in the appearance preserving model due to varia-
tions in model features. Note that the transition from points
back to triangles is clearly visible between level 1 and 0.

Of course due to the much more restrictive error measure
the simplification rates become less compared to a pure geo-
metric simplification. This overhead, however, is more than
compensated for by the noticeable improvement of the ob-
ject appearance.

For the finer levels of detail, the geometric error domi-
nates the total simplification error. Therefore, the difference
between appearance preserving and geometric simplification
decreases. When the approximation error becomes higher,
the relative curvature increases which leads to a much higher
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LOD #triangles #points #tri. (geom.)

0 3 368 107
1 0 1,429 334
2 71 5,636 597
3 3,208 22,255 955
4 31,073 72,151 1,313
5 48,369 122,117 1,672
6 19,174 55,278 2,030
7 17,170 42,041 2,384
8 12,170 22,759 2,089
9 10,203 12,984 1,791

10 7,703 3,969 1,492
11 5,092 756 1,204
12 2,052 112 835
13 896 50 478
14 1,379 0 895
15 1,194 0 1,194

Table 2: Average triangle and point numbers of the octree
cells in different LOD levels for the appearance preserving
St. Matthew model compared to the triangle count of the
purely geometrically simplified version.

number of triangles and points compared to pure geometric
simplification. At the coarsest LODs however, as the features
are blurred by the normal antialiasing and thus the approxi-
mation error is dominated by the geometric error again.

Note that a purely point based algorithm needs to generate
at least the same number of points as our approach plus the
points represented by triangles. Since all triangles that can
be rendered as six points are removed, at least 3 new points
would be required for each triangle. If we assume an average
number of 5 points per triangle, then a purely point based
approach would require up to 360,000 point per node.

The differences in disk space of the HLOD models are
already shown in Table1. The disk space required for the
QSplat models is comparable to that of the geometric ap-
proximation and amounts to 63.4 MB for the Lucy model
and 644.4 MB for the St. Matthew model.

5.2. Out-of-Core Rendering

First we compare our algorithm to state-of-the-art out-of-
core rendering without appearance preservation [GBK03]
and to the QSplat rendering system [RL00]. For all three
algorithms we use the same camera path, display resolution
(640×480 pixel) and the same screen space error (0.5 pixel).
Table3 shows the average and minimum frame rates for dif-
ferent models.

As can be seen from Table3, in the case of smaller models
the rendering performance of our approach is relatively close
to the purely geometric simplification. This is mainly due to
the fact that the middle section of the HLOD hierarchy (see

model app. pres. geometric QSplat

Dragon 99 fps 122 fps n.a.
Happy Buddha 81 fps 117 fps ∼8 fps
David 2mm 64 fps 155 fps n.a.
Lucy 55 fps 110 fps ∼4 fps
David 1mm 57 fps 114 fps n.a.
St. Matthew 53 fps 93 fps <1 fps

Table 3: Average frame rates for different rendering algo-
rithms.

Table 2) becomes smaller and thus the maximum number
of primitives per node is not significantly higher than for
the geometric simplification. Additionally due to the coarser
sampling these models are smoother and have less details to
preserve.

Regarding the comparison to the QSplat algorithm, the re-
markable performance gain of QSplat in the case of smaller
models also results from the coarser sampling, since pixel
accuracy cannot be reached during closeups, as the original
scanning of these models is too sparse.

Figure 6: David models rendered with purely geometric out-
of-core rendering (left) and with our new appearance pre-
serving algorithm (right). In the middle the model is ren-
dered using geometric simplification but approximately the
same number of primitives as for the right image.

As shown in Figure6 and the accompanying video, shad-
ing and popping artifacts that are visible for the purely geom-
etry based simplification totally disappear with our approach
since they fall below pixel scale. Although it is possible to
reduce the artifacts of geometric simplification with a lower
screen space error (see Figure6 middle), small features are
still blurred at the same frame rate and primitive count.
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5.3. Shadow Generation

In Table4 we compare the frame rates of our algorithm with
different types of light sources, while Figure7 shows the
frame rates for the St. Matthew model with the three differ-
ent light source types.

model no shadow point light area light

Dragon 99 fps 75 fps 20 fps
Happy Buddha 81 fps 70 fps 20 fps
David 2mm 64 fps 55 fps 21 fps
Lucy 55 fps 40 fps 15 fps
David 1mm 57 fps 45 fps 17 fps
St. Matthew 53 fps 37 fps 13 fps

Table 4: Average frame rates for different shadow algo-
rithms.

For hard shadows the frame rates are only reduced to 86%
to 70% compared to our algorithm without shadows and are
on average well above real-time. For soft shadows the gen-
eration of the inner and outer penumbra textures require two
additional rendering passes with the pure geometrically sim-
plified geometry. During each of these rendering passes ap-
proximately twice the number of primitives needs to be ren-
dered to generate the penumbra quads. With respect to this
much higher total primitive count, a drop to only 33% to
20% of the average frame rate is very good.

Figure 7: Frame rate plot for the St. Matthew model with the
three different types of light source for a recorded camera
path. The first third is shown in the accompanying video.

Figure 7 shows that the frame rate of our algorithm is
always real-time even with hard shadows, except for se-
quences with very fast closeups like int the time between
190 and 230 seconds of the camera path. With soft shadows
the frame rate is interactive to real time since it is always at
least 3 frame per second and increases above 25 for distant
views.

Finally, Figure8 shows a screenshot from the camera path
sequence with a point and an area light source.

Figure 8: Screenshot from the camera path used for mea-
surements with hard shadows (top) and soft shadows (bot-
tom).

Note that in contrast to [GLY∗03] we do not need an ad-
ditional PC in a cluster to compute the shadows, but achieve
high quality hard shadows with only a minor overhead. Even
soft shadows can be rendered at interactive frame rates with
our method.

6. Conclusions

In this paper we presented an appearance preserving out-of-
core rendering algorithm based on hierarchical levels of de-
tail that combines point- and polygon-based approximations.
To improve the comprehensiveness of the generated images,
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we have developed a LOD selection method to render pixel
accurate hard and soft shadows of moving light sources at
interactive frame rates using perspective shadow maps and
penumbra quads. The visual quality of the rendering is im-
proved with only a small overhead compared to previous al-
gorithms. Our appearance preserving error measure is gen-
eral enough to be applicable to any type of surface attribute
for which a distance measure can be defined, e.g. per vertex
color, material or BRDF.
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