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Abstract
We present a system for generating 2D illustrations from hand drawn outlines consisting of only curve strokes.
A user can draw a coarse sketch and the system would automatically augment the shape, thickness, color and
surrounding texture of the curves making up the sketch. The styles for these refinements are learned from examples
whose semantics have been pre-classified. There can be several styles applicable on a curve and the system auto-
matically identifies which one to use and how to use it based on a curve’s shape and its context in the illustration.
Our approach is based on a Hierarchical Hidden Markov Model. We present a two level hierarchy in which the
refinement process is applied at: the curve level and the scene level.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Line and Curve Genera-
tion

1. Introduction

One of the most natural ways a user can create illustrations
is by drawing a sketch. Although almost everyone can sketch
out a crude illustration, only a few of us have the artistic tal-
ent and patience to draw the refined details we wish to depict.
Even those who are lucky enough to possess those abilities
may not have the appropriate tools at hand. In this paper, we
present a method for automatically generating elaborated il-
lustrations from coarse outlines. This allows users to rapidly
sketch a prototype of what they want and have the elabora-
tion system provide the details and adjustments required.

There is wide array of applications where interaction with
a set of functions that describe the shapes or constraints of
curves is key. In particular, interfaces for simple drawings
consisting of only curve strokes are often found for comics,
presentation material, cel-animation, storyboard designs,
system designs (sketch to prototype) and non-photorealistic
pen and ink illustrations. Recent hardware advancements for
stroke based interfaces (such as pen tables or tablet PC’s)
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further justify the need for a system that can produce an in-
telligent rendition of the user’s input.

Given the diverse set of possible drawings and applications,
providing a system that only applies domain specific con-
straints may be overly restrictive. In this work, the knowl-
edge of what the refinements should be, for a given do-
main, is extracted automatically from an ensemble of exam-
ples of the desired output. This includes refinements on a
curve’s shape, variations in pen thickness and coloration. As
such, novel illustrations are rendered to exhibit the same look
as the examples in the training ensemble. Furthermore, the
framework developed allows for domain specific constraints
to be easily combined with the learned refinement styles.

In order to develop such a system, there are two key prob-
lems we address. First, we must be able to determine and
reconstruct the details of curves given only coarse and noisy
inputs. This is accomplished by training a refinement model
(i.e. a set of rules that transform a coarse curve to a refined
one). Second, we must automatically select the model that
should be applied on a curve from the set of possible refine-
ment models. This is accomplished by choosing the refine-
ment model that best transforms the curve while also satis-
fying high-level relationships between preceding curves that
are drawn as part of the same drawing.
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Our approach is based on the use of Markov models (MMs):
probabilistic descriptions of how sequentially ordered states
are related. Specifically, we use Hidden Markov models, a
modeling formalism that allows us to express the relation-
ship between aspects of a system we can observe directly
(the curve drawn by the user) and variables that cannot be
observed, but which determine the output (in this case, the
curve the user “really wants”). Our approach is to describe
an entire sketch as a hierarchy of Hidden Markov Models
[FST98] such that each curve is described by one HMM.
This leads to an inter-relationship between the HMMs used
for individual curves (the curve level) and those used to spec-
ify the identity of objects within the scene (the scene level).

The paper is organized as follows: First, we discuss previ-
ous work. Then we present an overview of the algorithm,
including a description of HMMs and our two layer hierar-
chy of HMMs applied to curves. We later describe in de-
tail our method of learning and synthesis at the curve level
HMM and then at the scene level HMM, showing examples
for each. Finally, we conclude and discuss future work.

2. Related Work

Standard applications for hand drawn sketches are either
geared toward enhanced functionality of the user interface
[LM95, HZ96] or attempt to interpret a drawing by recog-
nizing domain specific objects [KS02, SSD01]. Recognition
is commonly performed using some pre-defined set of prim-
itives or analytical constraints that are best suited for their
process. While such methods are generally applied in the
realm of 2D line-are objects, other work [KMM � 02] pro-
vide an interactive interface for users to control strokes of a
non-photorealistic rendered for 3D models.

One of the key ideas in facilitating interaction with curves is
the notion of coarse to fine refinement, or abstract to detailed
description. There are many notable works for manipulating
curves at multiple levels, including landmark results of hier-
archical and subdivision surfaces [FB88, FS94]. Typically,
such approaches focus mainly on the control of individual
objects that are removed from the context of their surround-
ings. Approaches that provide users the ability to describe
whole scenes, such as the text to scene renderer in [CS01],
render objects based on their context and generally avoid the
intrinsic details that do not generalize in the scene. Further,
in all of these methods, specialized constraints are required
that are sometimes too difficult for users to construct.

Recent advancements in texture synthesis methods
[HB95, WL00] suggest that we can learn the regular prop-
erties of example images and generate new ones that exhibit
the same statistics. Work by Hertzmann et al. [HOCS02]
show how such methods can be applied to synthesizing
stylized curves. Curve styles are learned from the statistics
of example styles and new curves exhibiting those styles
are generated over the shape of an input curve. Analogies

between the inputs and outputs are computed by calculating
an offset over both the input curve and training examples.
This offset is then used as a rigid transformation applied
in parallel to a synthesis process. Likewise, Freeman et
al. [FTP03] present an approach to learn style translations
on line segments. A training set, consisting of several
curve stokes, is used as a basis for reconstructing a line-art
drawing. New lines are generated as a linear combination of
examples consisting of the k nearest neighbors in the set.

In our work, we provide three key components that extend
the approaches cited above. First, using a Hierarchy of Hid-
den Markov Models allows us to capture multiple stochastic
functions and represent scene dynamics over various scales
and context. Secondly, individual HMMs are themselves
two-layered systems and allow us to model a controllable
process. That is, the synthesis is driven by the input curve
where the actual features generated are directly dependent
on the shape of the input. This allows us to model examples
with localized features that are tied to the shape of a given
region (such as a roof ledge that extends only at the corner
of the roof). Finally, typical approaches to synthesis com-
monly consider greedy strategies, choosing the best match at
the current point. When we are given inputs or partial data,
the locally best points may not provide the global optimum.
Future information often biases earlier points, for example,
when drawing a vertical line we do not know whether to ap-
ply brick features or bark features until we see what will be
drawn later. Our approach takes into account the entire se-
quence of inputs while also avoiding exponential run time
complexity over the arc-length.

3. Overview

Let θ be the refined curve the user is intending to draw and
let φ be the coarse curve the user has actually drawn. We
can say that φ is the result of some lossy (non-invertible)
transformation of θ :

φ � F � θ � (1)

The problem is then: how can we reconstruct θ given φ? Our
approach is to infer a new curve by examining the similarity
of the input curve with the set of examples that are currently
available to the system.

We begin with example curves that serve as exemplars of the
kinds of curves we wish to draw; we typically have several
sets of such examples (e.g. fish, water, terrain). Each exam-
ple in a set has associated to it a coarse curve that shows
what the user would draw when their intention is to produce
that particular example, i.e. the pair � θi � φi � . Using one of
these sets, the user-drawn curve is used to steer a synthesis
procedure and generate a new curve. The resulting curve is a
locally consistent mixture of segments from the set, but not
necessarily identical to any single example in the set. This
is complicated by the need to account for both fine-scale de-
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tails as well as large scale motions of the curve. Learning
and synthesis at the curve level is described is Section 4.

While we can allow the user to manually select which model
to use to refine the curve, we automate the whole process by
automatically classifying the curve being drawn as belong-
ing to one of the sets. The higher level of the hierarchy (the
scene level) moderates the recognition of what sets should
be used by specifying the conditional probability of drawing
one type of curve after another, or one type below or above
another. This scene level control is encoded in the form of
a probabilistic transition diagram between types of example
sets and is discussed in more depth in Section 5.

3.1. Hidden Markov Model

A Hidden Markov Model encodes the dependencies of suc-
cessive elements of a set of hidden states along with their
relationship to observable states. It is typically used in cases
where a set of states, that exhibit the Markov property,
are not directly measurable but only their effect is visible
through other observable states. Formally, a Hidden Markov
Model Λ is defined as follows:

Λ ��� M � B � π � (2)

where M is the transition matrix with transition probabilities
of the hidden states, p � hi � t �
	 h j � t � 1 � � , B is the confusion
matrix containing the probability that a hidden state h j gen-
erates an observation oi, p � oi � t ��	 h j � t � � , and π is the initial
distribution of the hidden states.

There is an abundance of literature on Hidden Markov Mod-
els and the domain is frequently decomposed into three basic
problems of interest:
 Evaluation: Given a model Λ and a sequence of observa-

tions o1 � o2 ��������� oT , what is the probability that those ob-
servations are generated by that model?

 Decoding: Given a model Λ and a sequence of observa-
tions o1 � o2 ��������� oT , what is the most likely hidden state se-
quence h1 � h2 ��������� hT that produces those observations?

 Learning: Given an observed set of examples, what
model Λ best represents that observed set.

Solutions to the above three problems are key to our work.
Learning allows us to model various illustration styles by
simply providing the examples. Decoding allows us to syn-
thesize a new curve (hidden states) based on a coarse user
input (observation). Evaluation allows us to detect the appro-
priate class of illustration types that an input stroke belongs
to, determining the likelihood that the input curve would be
generated by the model in question.

3.2. Two Level Hierarchal Hidden Markov Model

At the first level of the hierarchy (curve level), the charac-
teristics of our training sets are expressed statistically with

each set modeled by its own Hidden Markov Model. Sam-
ple points from the refined curves play the role of the hid-
den states while sample points from the coarse curves play
the role of the observations. Thus, the transition matrix re-
flects the likelihoods of generating curve segments given the
previous (probabilistic local constraints) and the confusion
matrix reflects the likelihoods that users would draw the par-
ticular coarse shapes when their intent is the associated re-
fined one (Figure 1). We construct a set S consisting of N
HMMs where each individual HMM is trained using a par-
ticular training ensemble:

S ��� Λ0
0 � Λ0

1 ��������� Λ0
N � (3)

For example, Λ0
0 may represent the set for terrains and Λ0

1
the set for clouds.

Figure 1: For all curve segments (in gray), the transition
matrix and confusion matrix store the above likelihoods.
This is computed over every example in a given set.

At the second level (scene level), we use another HMM to
model semantic constraints on the models at the first level.
For example, one can suggest that the cloud model in S can
only be applied to a curve that lies above another curve that
has been refined by the terrain model. As such, the state
space of this HMM reflects all possible models in S and their
relative positions. While, in principle, we can learn such con-
straints from labeled illustrations, for our purposes, we man-
ually encode them in a graph (Figure 2).

Several such graphs can be used to train HMMs at the scene
level of the hierarchy:

G ��� Λ1
0 � Λ1

1 ��������� Λ1
W � (4)

Each model in G depicts different kinds of scenes. For ex-
ample, you can have face scenes that suggest the sequence
f orehead � nose � mouth � chin or landscape scenes that
suggest grass ��� f lower� above � � cloud ��� tree � below � .
When we do not wish to have constraints on the order in
which curves are drawn, a graph can suggest that every
model can be followed by any other model, with only their
relative positioning as a constraint.
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Figure 2: Example relationships in a scene. The labels cor-
respond to HMMs at the curve level and the letters above
correspond to the allowable relative position (i.e. A: above,
B: below, L: left R: right).

4. Curve HMM

4.1. Learning Curve Styles

We train a HMM Λ0
i from examples of refined curves cou-

pled with control curves (Figure 3). The refined curves de-
pict the desired solution to be produced if a user sketches
a control curve. When only the observations are available,
learning is most commonly performed by algorithms such
as the Baum-Welch algorithm or generalized Expectation-
Maximization methods [Rab90]. In our case, we explicitly
provide data for both the observation and hidden layers by
a suitably normalized set of coupled curves. Therefore, we
can estimate a HMM by the statistics of the training data,
calculating probabilities of successive sample points along
the refined curve strokes and the probabilities that they gen-
erate the sample points along the control strokes.

Figure 3: Samples from a training set. Curves on the left
show the control curves while curves on the right show
the associated refined ones that include color. Typically, the
shape of the control curves are filtered versions of the re-
fined ones, in this case the filtered ones are very similar to
the originals. The set is sampled uniformly with 128 samples
per example for a maximum of 1024 unique states.

4.1.1. Transition Matrix

Our HMMs operate over a multi-scale curve descrip-
tion in order to capture long-range interactions. A multi-
dimensional state space is used for the hidden states Hi �
hi � s � a � to represent a curve attribute a at scale s. The at-
tributes we capture include the following: the shape of the
curve as the tangent angle θ � t � , RGB value for the color
of the curve c � t � , the thickness of the curve k � t � , RGB and
Alpha pixel values for texture fill f � t � and the fill direction
d � t � . (Every curve in the set is parametrized by the arc-length

position t.) While all of these attributes can be represented
at various scales, for efficiency, we only encode the shape
at multiple scales (θs � t � ) as it generally provides sufficient
multi-scale constraints. We use a wavelet representation with
the Haar basis [FS94].

We estimate the transition probabilities of states by the
statistics of successive sample points in the ensemble (i.e.
the occurrence of matches of successive points). Addition-
ally, we rate the goodness of the match using a Gaussian
distance metric:

p � Hi � H j � � e � ∆2 � Hi �H j �

∆2 � γi � γ j ��� ∑s ∑a w � s � a � � γi
� s � a � � γ j

� s � a ��� 2
∑s ∑a w � s � a � ν2 � a �

(5)

This Gaussian blur is applied on the difference of two states
as a weighted sum over the scales and attributes. This avoids
issues with quantization errors and also provides some de-
gree of control and flexibility over the mixing tendency. The
tendency to mix curve segments is determined by the value
of the variance ν2. A small variance reduces the mixing ten-
dency where the output will be closer to exact instances of
the training set while a large variance allows to transition
more easily, at the cost of losing some local consistency. In
our experiments, we weigh most heavily on the shape at-
tribute and the variance is empirically set for each ensemble.

Each unique state found in the training set is labeled dynami-
cally. As such, the transition matrix M is indexed using those
labels. Thus, the value Mi � j is p � Hi 	 H j � and the size of M
is proportional to the number of unique states found in the
training set.

For training sets that exhibit stationarity M � 0 ��� M � 1 ���
����� � M � T ��� M, measured over the entire curve. Otherwise,
the transition matrix is calculated over a predefined window
that identifies regions that exhibit regular properties. The
ability to specify regions of stationarity (hence global non-
stationarity) allows us to accommodate for attributes that in-
herently possess some global constraints. Indeed, if every
curve in the ensemble constitutes a stationary stochastic sig-
nal, the ensemble can be thought of as one signal. But many
cases require altering the characteristics of curves by their
position in the sequence, preserving proportionality and siz-
ing constraints over large scales. The degree of stationarity
is manually selected based on the nature of the ensemble. In
such cases, the input curve is normalized and M � 0 � is still
computed over the entire curve (providing invariance to the
starting point of the input curve).

4.1.2. Confusion Matrix

The confusion matrix B stores the likelihood that a user
would draw a certain curve segment when their intent is
to produce a particular refined shape. This can be though
of as a user’s short-hand notation for an elaborated shape.
Let φs � t � represent the sequence of tangent angles along the

c
�

The Eurographics Association 2004.

26



S. Simhon & G. Dudek / Sketch Interpretation

control curves. (We only consider the shape of the control
curve, although in principle, it is possible to also consider
other control attributes such as pressure or speed of a pen.)
We estimate the probabilities of the confusion matrix B from
the statistics of associated sample points � θs � t � � φs � t ��� in our
training set. That is, for each of these coupling in our curves,
we count the number of matches and then normalize. Thus,
the values in the confusion matrix are the conditional proba-
bilities p � φi 	 θ j � for all curve elements i and j. The confusion
matrix is extended to match the dimensionality of the hidden
states by replicating the probabilities over all the attributes
of the hidden states (i.e. p � φi 	 Hi � ). For consistency with
the transition matrix, the confusion matrix is indexed by the
same state labels.

4.1.3. Initial Distribution

To complete configuration of our HMM, we must specify an
initial distribution for the hidden states. We assume a uni-
form initial probability distribution π � PH � 0 � . That is, be-
fore anything is drawn, we provide equal likelihoods to all
curve candidates.

4.2. Curve Synthesis

Given a new input stroke (a sequence of new observations)
and our HMM trained with a family of curves, we generate
a new curve by solving for the maximum likelihood hidden
state sequence:

max
Hi � � �HN

p � H � 0 � � H � 1 � ��������� H � T � 	 φ � 0 � � φ � 1 � �������!� φ � T � � Λ0 �
(6)

That is, we reconstruct the most likely refined curve ele-
ments (represented by the hidden states) given sample points
from the input curve (represented by the observable states).
We can solve this problem using the Viterbi algorithm that
has run-time complexity of O � N2T � , where N is the num-
ber of states and T is the sequence length of the input curve.
The approach consists of iterating over the sequence of sam-
ple points from the drawn curve. At each iteration, we com-
pute the maximum likelihood estimate for a partial observa-
tion sequence and hidden state sequence up to sample point
t given that the current state is Hi (i.e. the best path going
through the ith state at point t). This likelihood is computed
for all states Hi as follows:

ψ � Hi � t � � � max
j

"
p � Hi � t �#	 H j � t � 1 � � ψ � H j � t � 1 � �%$

ψ � Hi � t � � � p � φ � t ��	 Hi � t � � ψ � Hi � t � �
(7)

That is, for each sample point, we propagate the distribution
over all states Ψ � t � forward using the transition probabilities
in M and then condition the result with the current obser-
vation. When propagating, we only consider the most likely
previous state H j � t � 1 � that would generate the current state

Hi � t � and keep a back-pointer to it. For efficiency, we thresh-
old the distribution Ψ � T � and normalize, maintaining only
the top n curve segment candidates.

Figure 4: Example synthesis diagram for three states
� h1 � h2 � h3 � and three input points � o � 1 � � o � 2 � � o � 3 � � . Solid
arrows indicate all possible transitions, the ones shown
in gray indicate the best transitions. At the last point, we
choose the state with highest probability (h1) and then back-
track through most likely transitions (dashed arrows).

This is recursively computed over the entire sequence (up
to sample point T ), maintaining the distributions and back-
pointers for each sample point. We then choose the state
that has maximum likelihood in Ψ � T � and backtrack using
the back-pointers (Figure 4). Backtracking is essential for
generating a consistent curve as not only does it consider
the maximum likelihood links between successive states, but
also implicitly propagates information from future observa-
tions back to earlier points. Choosing this maximum results
in the maximum likelihood hidden state sequence that best
describes the observations, given our HMM. The user can
choose to scroll through the list of different solutions, se-
lecting less likely but perhaps more preferable outputs.

4.2.1. Input Blurring

We cannot expect the user input points to match exactly with
sample points from the control curves in training. This can
be problematic as we will only find a non-zero conditional
in B when there is an exact match. To avoid this, we blur
the observation vector. The degree of the blur controls our
confidence in the user’s input curve.

4.3. Regularization Bias

We can take a probabilistic approach to regularization
by maximizing the posterior likelihoods of a Bayesian
model [Sze89]:

max
f ε & P � f 	 D � ∝ max

f ε & p � D 	 f � p � f 	(' � (8)

where f is an object in class ' and D is the coarse data.
Typically the data model P � D 	 f � assumes a Gaussian dis-
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tribution and P � f 	!' � is a regularization bias for smoother
solutions.

Our HMM can be formulated in a regularization framework.
Rather than having a fixed noise model and bias, we learn
these from examples. That is, in a Hidden Markov Model,
the confusion matrix represents a learned data model and the
transition matrix represents a learned regularization term.
Using this framework, we can include ad-hoc biases to the
system.

The approach consists of embedding auxiliary parameters in
the candidate list data structure that are not used in matching,
but only as inputs to regularization functions. Regularization
functions can then be included by augmenting the energy of
the candidate states:

E � Hi � t � � �)� log � Ψ � Hi � t ��� �+* ∑
k

λkRk � t � (9)

where Rk � t � is a regularization constraint (such as smooth-
ness) and λk is the associated weight.

In particular, we include three constraints that bias se-
quences that are 1) more coherent in arc-length [HOCS02]
2) reduced in the number of transitions between training ex-
amples and 3) close to the input curve. In order to enforce
arc-length coherence, we include an auxiliary attribute τ that
identifies at which arc-length point the state was found. Us-
ing the back-pointer, we are able to identify the sample point
position of the last state that generated the current and penal-
ize the current if out of sequence, i.e. 	Hτ � t * 1 �,� Hτ � t �-	�. 1.
Similarly, to reduce the number of transitions, each state
stores an id that identifies which training example it came
from. Then, we penalize state sequences with different ids.

Finally we include a constraint that simulates a magnetic at-
traction between the input and output curves, preferring out-
puts that are closer to the input. For this, we include auxiliary
parameters � x � y � that identify the Cartesian co-ordinates of
the most likely path up to and including the current state.
These values are computed by extrapolating the � x � y � val-
ues in previous state (identified by the back-pointer) using
the current tangent angle and sampling rate. The penalty is
then a function of the distance between the generated � x � y �
position and the input � xin � yin � .
There may be cases where we wish to change the amount
of influence a regularization term has at different parts of the
curve. This can be done by providing a regularization weight
that is a function of the arc-length. In particular, to enforce
closure (when a user draws a closed curve) we increase the
magnetic bias when approaching the end points:

λmag � t �+� k / e 0 1 � 2t
T 0 (10)

where t is the current sample point position and T is the
total number of sample points. The supplied video shows
some examples of how different regularization terms affect
the solution.

4.4. Curve Synthesis Examples

Figure 5 shows an example synthesis using the training set
shown in Figure 3. Note how the resulting curves consists of
mixtures of the training set. The outputs have the same over-
all shape as the sketch but exhibit the style of the training
set.

Figure 5: Example of a synthesis using the training set in
Figure 3. The left shows the inputs and right shows the re-
sulting mixture.

Figure 6: Training set with examples of fish. Control curves
(not shown) are blurred versions of the refined ones.

Figure 7: Example synthesis of fish shapes. The left shows
the inputs and the right shows the results. Some results are
recognized as exact instances from training while others are
mixed.

Figure 7 shows the outputs when using a training set con-
sisting of fish shapes (Figure 6). It can be seen how some of
the outputs are exact matches from training while others are
novel curves consisting of mixtures of segments from train-
ing. Users can control the amount of mixing by changing
the variance parameter. In this case, all of the input curves
were normalized over the average arc-length from the train-
ing curves. Figure 9 shows results using a leaf training set
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(Figure 8). It can be seen how the generated mixtures look
like leaves. Although, note some of the leaves do not exhibit
symmetry in shape, a property often seen in real leaves but
can sometimes be ignored in the realm of imaginative illus-
trations.

Figure 8: A few Samples from a training set used for leaf
synthesis (not all shown). The left shows the control curves
while the right shows the stylized curves. curve.

Figure 9: Examples of synthesis using a leaf training set.
Curves on the top are the input curves while curves on the
bottom are the generated ones.

The two bottom figures in Figure 10 show results when re-
placing the shape attribute θ � t � by a curvature attribute θ̇ � t � .
Additionally, the output curve reference frame is rotated at
each sample point to align the x � axis along the tangent an-
gle of the input curve. This modification gives our system
the ability to also generate outputs similar to [HOCS02].

4.4.1. Texture Filling

In the examples presented here we have chosen to specify
the interior color along each curve as a supplementary at-
tribute. A secondary statistical filling process also based on a
Markov model of image properties is then applied. Thus, ini-
tiate the texture filling process from cues attached to the re-
fined curves we synthesize. These cue pixels act as the seeds
for an incremental stochastic pixel inference procedure. The
set of pixels to be filled is sorted in order of the number of
filled neighbors each one has. The successive unfilled pixel
with the largest number of neighbors is selected and its color
is drawn as the maximum likelihood value of the probabil-
ity of the color for a pixel as described in [WL00]. Black
pixels are reserved for borders and are not considered when
filling. Each curve stroke is filled in its own image layer and
the alpha value, specified in the training set, is used to over-
lay. Any unfilled pixel left takes on the value of a specified
background.

Figure 10: Example of synthesis showing the use of curva-
ture versus tangent angle for two stationary patterns. Figure
(a) shows the input curve and Figure (d) shows the two pat-
terns and the control curve (straight line segment). We used
four versions of the patters, each rotated at 90 degrees. Fig-
ure (b) and (e) show the results using tangents and (c) and
(f) show the results using curvature.

Figure 11: Generating coastlines with texture fill. Training
examples consisted of 25 coastlines (see video).The figure on
the right shows the input, middle shows the output with the
texture fill seeds and the right shows the resulting texture fill
image.

5. Scene HMM

The scene level HMMs encode constraints on the refine-
ments that apply on curve segments in a scene. The con-
straints can suggest, for example, that backgrounds must be
drawn first, followed by other objects which in turn can also
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Figure 12: Texture image used for coastlines.

be followed by other objects, each drawn on top the previ-
ous. They can also represent typical drawing habits, such as
when users draw a forehead, most likely it will be followed
by a nose. They can be sequentially unconstrained, such that
every curve can follow any other type of curve. In all such
cases, positional constraints are embedded to further restrict
the types of curves based on their relative location. High-
level quantifiers are used, such as above, below, left, right,
in, out and are evaluated relative to the edges and center of
the bounding boxes of curves in the scene.

5.1. Learning Scene Constraints

A HMM Λ1 is trained using a semantic graph that defines
the high-level constraints (Figure 2). The nodes of the graph
refer to both the HMMs in the curve level and an associated
position (above, below, left, right, in or out). For example, if
we had three models, grass, tree and cloud, we could have as
many as eighteen nodes. Each edge of the graph includes a
weight that identifies the probability that a user would draw
the type of curve (identified by the destination node) at a rel-
ative position to the previous (identified by the source node).
For example, the probability that a tree will be drawn above
a cloud is very small. While this graph can sometimes be-
come tedious to construct, it is possible to apply inference
methods to remove redundancies and provide a more com-
pact representation to the user.

The hidden states play the role of these nodes and our multi-
dimensional state space can easily accommodate for the
multiple attributes (model and position). The transition ma-
trix M is captured from the edges of the graph. The confusion
matrix B is the Identity matrix as we expect 1) to directly in-
fer the likelihoods of our hidden states from the evaluation
algorithms and 2) to observe the exact position of curves.

5.2. Scene Synthesis

Given a sequence of U curve strokes Φ � 0 � � Φ � 1 � ��������� Φ � U � ,
a set S of N curve refinement models Λ0

1 � Λ0
2 ������� Λ0

N and a
HMM trained using a particular scene graph Λ1, we wish to
determine the most likely sequence of curve-level refinement
models that apply on each curve:

max
Λ0

1 � � � Λ0
N

p � Λ0 � 0 � ��������� Λ0 � M � 	 Φ � 0 � ��������� Φ � M � � Λ1 �
(11)

Our first step is to generate U vectors O1
0 � O1

1 ��������� O1
U from the

U curve strokes where each vector stores the likelihoods of
all models in S. The main computational step in generating
these vectors consists of evaluating all HMMs for all input
curves. For the kth curve, we evaluate a refinement model Λ0

j
by iterating the following over the entire arc-length:

ψ 23� Hi � t � � � ∑
j

p � Hi � t �#	 H j � t � 1 � � Λ0
j � ψ 2 � H j � t � 1 � �

ψ 23� Hi � t � � � p � φk � t ��	 Hi � t � � Λ0
j � ψ 23� Hi � t � �

(12)
The model’s likelihood is then the sum of all values in Ψ 2
at the last iteration. This is almost identical to the steps for
decoding (Equation 7), but instead of choosing the maxi-
mum previous state, we sum the probabilities of all match-
ing states. That is, we examine all the possible ways that the
model can be used to synthesize the curve and use that as a
measure of its likelihood.

While we can normalize at each iteration when decoding a
HMM, evaluation requires the compound probabilities over
the entire curve. However, for long curve segments, the prob-
abilities reach very small values and are difficult to store.
Thus, at each iteration we normalize and store the normal-
ization constant. After we have evaluated all models, we nor-
malize those normalization constants and then compound the
results.

Once the vectors O1
0 � O1

1 ��������� O1
U are computed, they are used

to decode the scene level HMM Λ1. This is accomplished
in the same fashion as described in the curve level HMM.
The result is a solution for Equation 11, the most likely se-
quence of refinement models that apply on the curve strokes.
We then decode each individual curve using the associated
refinement model.

Since our system is Markovian, we consider the last curve
that was drawn in order to determine the next. While this
avoids exponential computations, it may results in an under-
constrained system. However, computing the models’ like-
lihoods based on both the shape of a curve and its context
in the illustration typically provides enough constraints for
a unique solution. In the case where we have redundancy in
both the shape of the input curve and its context in the illus-
tration, then the system can provide the user with a choice of
the likely candidates.

5.3. Scene Synthesis Examples

Figure 13 shows example syntheses of cartoon faces. In this
case, each input stroke is a face part (forehead, nose, mouth,
chin and hair). We trained five refinement HMMs using sev-
eral examples for each segment (a few noses, a few chins
etc.). Additionally, we included a curve thickness attribute
in the examples. The scene-level HMM consists of the fol-
lowing sequence: head � f orehead � nose � mouth �
chin � head
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Figures 14 and 16 show other full scene synthesis examples.
Each scene was generated using several refinement models
such as a grass model, a skyline model, a tree trunk model, a
leaf model and each had its own semantic graph such as that
shown in Figure 2. In Figure 16, we show the results using
both a greedy strategy and the Viterbi (with back-tracking)
method applied at the scene level. It can be seen how when
we choose the best model by only considering the current
point, all horizontal strokes below the skyline are rendered
using the grass model, even though we recognize that the
shape below the horizontal line looks best like a fish. Us-
ing Viterbi, that recognition affects the entire scene. Since
a fish can only be preceded by water (Figure 2), the bottom
horizontal line is thus rendered using the water model.

All of our experiments were executed on a Linux PC with a
3GHz Pentium IV processor and 1GB of RAM. The results
were generated in interactive time.

Figure 13: Generating silhouettes of faces. The top shows
the input strokes and the bottom shows the results.

Figure 15: Training texture used to generate the texture fill
in Figure 14.

6. Conclusion & Future Work

In this paper we have described an approach for the syn-
thesis of stylized drawings from coarse outlines. This pro-
cess is based on the representation of coarse to fine refine-
ments as a Hierarchical Hidden Markov Model. The desired
refinements are learned by example sets and the semantic
constraints on those refinements are learned by a semantic
graph. Additional constraints can be embedded using a reg-
ularization framework. Novel full colored illustrations are

Figure 16: Top left shows the input sketch, top right shows
the output using a greedy method in the scene-level HMM,
bottom left shows the output using Viterbi and bottom right
shows the result using the Markovian texture filler.

Figure 17: Training data used for the skyline model in Fig-
ure 16. The two left shapes show the control curves and the
two right shapes show the refined ones. It can be seen that
from a simple set such as this, a novel skyline can be auto-
matically classified and generated.

generated from noisy curves based on this hierarchy of con-
straints, including scene level, curve level and, as a post pro-
cessing step, pixel level constraints.

The synthesis of novel illustrations from examples depends
on mixing aspects of different examples from the same set.
Excessive mixing, however, would lead to an output curve
which is simply an average (in some multi-scale space)
of the input curves. At present, the mixing fractions are
fixed and predetermined but their automatic determination
remains an open problem. We are currently examining the
automatic selection of the appropriate mixing weights based
on a form of cross validation.

One significant open issue is the application of global con-
straints to the curves being synthesized. For example, results
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Figure 14: Synthesis of a beach scene. Left shows the input, middle shows the generated scene including seeds for texture fill,
right shows the texture filled scene using the texture shown in Figure 15.

of the silhouettes of the leaves did not exhibit symmetrical
properties or were not guaranteed to close. This also applies
to the texture filling process where several filling fronts may
not join in a desirable fashion. For example, filling in texture
within leaves would require some specialized constraints in
order to have the veins of the leaves meet at the right loca-
tion. Another interesting direction for future work is to de-
velop a method for interactively editing the output. We are
examining methods that would allow the users to select re-
gions of the resulting curves and scroll through and select
different solutions.
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