
Short Paper: View Dependent Rendering to Simple
Parametric Display Surfaces

Pawan Harish† and P.J. Narayanan‡

Center for Visual Information Technology, International Institute of Information Technology - Hyderabad, India

Abstract
Computer displays have remained flat and rectangular for the most part. In this paper, we explore parametric
display surfaces, which are of arbitrary shape, but with a mapping to a 2D domain for each pixel. The display
could have arbitrary curved shapes given by implicit or parametric equations. We present a fast and efficient
method to render 3D scenes onto such a display in a perspectively correct manner. Our method tessellates the
scene based on the geodesic edge length and a user-defined error threshold. We also modify scene vertices, based
on per-vertex ray casting, so that the final image appears correct to a user’s viewpoint. The ray-surface intersection
procedure, geodesic length computation and 2D image mapping are assumed to be known for the given surface.
We exploit the tessellation hardware of the SM 5.0 GPUs to perform the error checking, polygon splitting, and
rendering in a single pass. This brings the performance of our approach closer to rasterization schemes, without
needing ray tracing. Our scheme does not interpolate pixels, ensuring high quality. We demonstrate real display
prototypes and show scalability of our system using simulated scenarios.

1. Introduction

Displays have changed much over the years with advances
in the basic technology, color gamut, vertical refresh rate,
power consumption, pixel resolution, etc. They are still
mostly flat, inactive, and rectangular windows meant to be
interacted with by sitting in front. Three dimensional dis-
plays and touch screens have enabled new interaction meth-
ods in recent times. In this work, we consider displays of
arbitrary shape. As computer generated imagery becomes
more prevalent, different surfaces in one’s environment may
be turned into a display surface using projection or by fixing
suitable display material on them. This may include parts of
one’s office or home, lobbies and other public spaces, as well
as curiosity surfaces in museums and other places.

A surface of arbitrary shape can be covered with display el-
ements or pixels with high density. These can be thought of
as being fixed on the surface. We define parametric display
surfaces as those in which the pixels map to a suitable two-
dimensional domain. This provides each pixel with a unique
id or index. The display and an image in its target domain

† harishpk@research.iiit.ac.in
‡ pjn@iiit.ac.in

are equivalent and we can drive the display by generating
the image, called its base texture. A simple rectangular do-
main or a subset of it is most convenient when using modern
graphics pipelines.

We present a view dependent scheme to render 3D scenes to
general parametric display surfaces. The display surface is
specified as a set of equations that define its shape implicitly
or parametrically. We assume the mapping of actual display
pixels from its base rectangular texture is already defined.
We, therefore, focus only on rendering to the base texture
correctly from the point of view of a user whose head is
tracked. Such a display can be thought of as a generaliza-
tion of fish tank virtual reality (FTVR) display to an arbi-
trary shape. We demonstrate our rendering scheme using a
few real curved surfaces of algebraic form, namely, sphere
and cylinder. We also show more complex algebraic display
surfaces using simulations. We achieve over 100 FPS on a
scene with close to a million triangles when rendered to a
spherical parametric display.

2. Related Work

Curved surfaces have been used to display 2D images
using texture mapping [BWB08, RWF98]. Extending this

© The Eurographics Association 2011.

Joint Virtual Reality Conference of EuroVR - EGVE (2011)
S. Coquillart, A. Steed, and G. Welch (Editors)

DOI: 10.2312/EGVE/JVRC11/027-030

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/EGVE/JVRC11/027-030


Pawan Harish & P.J. Narayanan / Short Paper: View Dependent Rendering to Simple Parametric Display Surfaces

approach to display 3D scenes is not trivial. Bimber et
al. [BWEN05] show stereoscopic projection on any surface
using the two pass texture mapping approach. Fish tank
virtual reality allows realistic exploration of 3D scenes us-
ing head tracking. Each planar facet of the display shows
an image based on the viewer location such that the com-
bined effect produces the illusion of virtual objects placed in
viewer space or vice-versa. Though the notion of FTVR dis-
plays is old [Fis82], one of the first implementations was the
CAVE virtual environment [CNSD93]. Five back-lit planes
were projected on to create a virtual enclosure. Off axis
rendering [Dee92] was used to generate projection matri-
ces through which the scene was rendered independently
for each plane. FTVR displays have followed this template
with alterations to the basic framework. Cubby [DOS01,
FDO02] added manipulation tools to interact with the dis-
play. Cubee [SVF06] created an inside-to-outside viewing
cube for physics based visualizations. PCubee [SLF10] hand
held display enabled bimodal interaction with a personal dis-
play. Iwata [Iwa04] created a rhombic dodecahedron FTVR
display to facilitate better pixel and space efficiency. In our
earlier work [HN09] we give a GPU algorithm for better im-
age generation for multi-planar display surfaces that can ap-
proximate arbitrary surfaces. The present work focuses on
rendering to a display that is exactly defined parametrically.

3. Rendering on to Parametric Display Surfaces

Rendering to a parametric display surface is equivalent to
rendering to its base texture, which is wrapped around the
surface of the display (Figure 1(a)). This texture is the tar-
get for our rendering pipeline. Given a curved display shape,
it can be seen that lines on the texture can become curves
(Figure 1(b)). The position of end vertices may also change
due to the mapping process. Ray tracing the scene to visi-
ble pixels is the natural way to render to parametric display
surfaces. This produces correct results at heavy costs. Our

Wrapped 

Texture

Display 
Parametric form

Tracked Viewer
CameraVirtual Plane

Fixed Texture 
Coordinates

(a) Display parametric form, texture image
and viewer camera in the same coordinate
frame

���� �����	� 
��
����� �������

����������� �������
���� ������ �� ! ���	�

(b) Lines
mapping to
curves

Figure 1: Parametric display form along with texture
wrapped around the display, note line on the texture map-
ping to a curve on the display surface.

rendering scheme approximates this using rasterization and
tessellation to a user-specifiable error bound. We modify the
scene to be displayed so that a perspectively correct view is
seen from the observer’s viewpoint. Two attributes must be
preserved to do this on an arbitrary surface: Linearity and
vertex location in the viewer’s eye coordinates must be pre-
served.

3.1. Triangle Division to Preserve Linearity

In order to preserve linearity on the surface, lines in the scene
should be pre-warped in the texture image, to compensate for
the local surface curvature. Correct solution to this problem
requires non-linear rasterization of the scene to the texture.
It can be observed that the curvature effects are negligible
for small line segments in the world. In the limit case, ray
tracing to base texture pixels will provide correct results. We
approximate non-linear rasterization by subdividing or tes-
sellating large triangles on the fly. This breaks line segments
into smaller ones. We exploit the tesselation unit available in
the Shader Model 5.0 GPUs to do this. The subdivision and
rendering are preformed in a single pass. The tessellation
control shader is used to divide a given triangle into smaller
triangles. The tessellation hardware divides edges of a given
triangle using TessLevelOuter parameter. For a given trian-
gle three TessLevelOuter values are passed to the tessellation
hardware, one for each edge. The tessellator divides each
edge into equal size segments using these values and forms
smaller triangles as shown in Figure 2(a), top. The length of
a line segment to be drawn is fixed based on the local display
geometry. To do this, we intersect the ray from the viewpoint
to each triangle vertex with the exact display surface. We as-
sume a ray intersection solution is available for the given
shape. Ray tracing methods using shaders are now available
for higher order surfaces [SN10]. The geodesic length of the
triangle sides determine the level of subdivision so that a
user-specified error is not exceeded. Geodesic length compu-
tation depends on the surface used and may differ for various
shapes. We use the great circle distance for our spherical pro-
totype. The tesselation parameters are computed adaptively

�������������	
���������
���	
(a) Tessel-
lation Lev-
els

Tracked viewer
camera

Intersections 
on the surface

Scene vertices

s

t

Texture 
mapping 
on the 
display

Vertex to 
viewer rays

Image wrapped 
around the display

Unmapping to 
the texture

Rasterized
triangle

Threshold

(b) Finding intersection on the surface
along with the corresponding pixel value

Figure 2: Tessellation levels, and finding edge length and
vertex location based on per vertex ray casting.

© The Eurographics Association 2011.

28



Pawan Harish & P.J. Narayanan / Short Paper: View Dependent Rendering to Simple Parametric Display Surfaces

based on the triangle edge lengths and the error threshold.
Figure 2(a)(top) shows that even after dividing the edges into
smaller segments the newly formed triangles may end up
with edges greater than the threshold. The hardware tessella-
tor uses the TessLevelInner parameter to divide the inside of
a given triangle. A single value is passed to set this. We set
TessLevelInner as the maximum of TessLevelOuter values
to ensure that all triangles will have edge lengths less than or
equal to the threshold, as shown in Figure 2(a)(bottom). The
triangle tessellation control shader is shown in Algorithm 1.

Algorithm 1 Tessellation Control Shader
1: Input: Vertices[3], Threshold
2: Compute geodesic length of each edge on the surface as

D[1 to 3] based on ray-casting.
3: TessLevelOuter[1 to 3] = D[1 to 3]/Threshold
4: TessLevelInner = max(TessLevelOuter[1 to 3])
5: Output: TessLevelOuter[3], TessLevelInner

3.2. Modifying Scene Vertices

Subdivision of the triangles is not enough to ensure correct
rendering. The resulting vertices should be moved to ensure
an undistorted image. Modified positions depends on the lo-
cal display surface and the viewer location. We compute new
vertex positions using per vertex ray-casting, finding inter-
section of each eye-vertex ray with the display surface and
changing the vertex coordinates to the new location. The
vertices can then be mapped to the texture space using the
mapping from display surface to the base texture for ras-
terization, as shown in Figure 2(b). We move the newly

Algorithm 2 Tessellation Evaluation Shader
1: Input: Vertex, Viewer location, Viewer camera
2: Find the ray from viewer head position to the vertex
3: Intersect ray with parametric equation of the surface
4: Convert intersection point (x,y,z) to (s, t) in [0,1] range

using texture mapping
5: Set vertex x-coordinate as s and y-coordinate as t
6: Compute vertex z-coordinate based on viewer camera
7: Output: Vertex

formed vertices in the normalized canonical space. The tes-
sellation evaluation shader is used to generate vertex coordi-
nates in this space. Each newly formed vertex finds a ray to
the viewer location. The ray is intersected with the surface
and the intersection point is converted to a (s, t) coordinate
in [0,1] range using the base texture mapping. The vertex
then sets its (x,y) coordinate to the new (s, t) location while
the depth value is computed using the viewer camera. The
tessellation evaluation shader is given in Algorithm 2.

3.3. The Overall Rendering Pipeline

The overall rendering pipeline (Figure 3) works in a single
pass to render a given scene onto the parametric display. The

Triangles 

and 

Viewer 

Location

Base 

Texture

Tessellate 

triangles into 

smaller triangles

Rasterize

Compute 

geodesic length, 

set tessellation 

parameters

Modify new 

vertices based 

on per-vertex 

ray-casting

Figure 3: Rendering pipeline for view dependent parametric
display surfaces.

(a) (b) (c) (d) (e)

Figure 4: Tessellation and ray casting to generate inverse
curve on the texture. Figure (a) the scene, (b) texture without
tessellation, (c) non-tessellated texture on display, (d) texture
using tessellation and (e) tessellated texture on display.

pipeline maps to the SM 5.0 pipeline by replacing tessella-
tion control shader and tessellation evaluation shaders for
the oval boxes. A head tracker sends the viewer location to
the system. The surface shape and the mapping to the base
texture are known to the shaders. Triangles are subdivided
and their vertices are modified by the shaders. The result-
ing mesh is then sent down to the rasterizer to generate the
base texture image which is mapped on to the display surface
using fixed texture coordinates. The image when wrapped
around the display appears perspectively correct from the
viewer’s point of view. Figure 4 shows the 3D scene, the ren-
dered base texture image with and without tessellation and
the view on the surface as observed from the viewer’s point
of view.

4. Display Prototypes

We demonstrate our rendering mechanism using projected
and simulated setups. Projected setups allow only a limited
number of pixels on the surface, but still demonstrate the en-
tire process. Our prototypes show 30−40% of the projected
pixels on the surface. The base texture is wrapped around
a virtual replica of the physical display and is projected on
to the calibrated physical display using a calibrated projec-
tor. For the simulated displays, we use a base texture res-
olution of 64M pixels to support many types and sizes of
displays. Head is tracked using two infrared head trackers,
TrackIR5, with a refresh rate of 120Hz the latency is mini-
mized. Figure 5 shows various scenes in spherical and cylin-
drical prototypes. A single GTX470 GPU is used to tessel-
late and render the scene. In Figure 6(a) we show the effect
of tessellation on a real display. Lines map to curves when
projected on to a spherical display without tessellation, even
when vertex positions are corrected based on viewer loca-
tion. Edges of the triangles become straight with tessellation

Figure 5: Projection based display prototypes.

© The Eurographics Association 2011.

29



Pawan Harish & P.J. Narayanan / Short Paper: View Dependent Rendering to Simple Parametric Display Surfaces

(a) Rendering with and without tessel-
lation. LCD shows the texture image.

(b) Simulated
Display

Figure 6: Effect of tessellation on a real display. A simulated
display with surface equation y = x2 + z2.

enabled along with vertex position correction from the point
of view of the observer. The display shown in Figure 6(b) has
parametric form y = x2 + z2, and a high curvature. Our ren-
dering pipeline is capable of handling surfaces with high cur-
vature. The curvature of the surface is compensated for by
using a smaller distance threshold for tessellation (1.2% of
the height of the display). Decreasing the threshold to small
percentages has minimal affect on performance as reported
in Section 5.

5. Performance Evaluation

We demonstrate the scalability and performance compari-
son of our rendering pipeline in this section. We use a sin-
gle Nvidia GTX 470 GPU with 1.2GB of RAM on an In-
tel Q6600 processor with 2GB RAM as our testbed for
all the experiments reported in this section. Figure 7(a)
compares the rendering times of our method with our pre-
vious approach, approximating the surface using multiple
planes [HN09], for varying scene complexity. Typically we
see an increase in rendering times with increasing number of
scene triangles. However, the reverse may also happen: the
scene with 871K triangles shows faster rendering as com-
pared to scenes with lesser number of triangles. This hap-
pens because a scene with a large number of triangles will
have smaller triangles, such lie within the threshold range
and are thus not tessellated. It can also be seen our method
is orders faster than [HN09] because of single pass render-
ing. We see an average speed gain of 20× over our previous
method. Figure 7(b) explores the effect of varying tessella-
tion threshold for the 817K triangle scene on the spherical
display. It can be seen that even at distances as low as 1%
of the radius of the sphere, the performance penality due to

16K 69K 74K 160K 216K 522K 647K 871K
10

0

10
1

10
2

Number of Scene Triangles

T
im

es
 in

 M
ill

is
ec

on
ds

Sphere Parametric
Sphere MultiPlanar (840 Facets)
Cylinder Parametric
Cylinder MultiPlanar (216 Facets)

(a) Rendering times with
varying scene complexity
compared to [HN09].
Threshold = 0.01×radius.

5 4 3 2 1 0.35 0.3 0.25 0.2 0.15 0.1 0.05
0

50

100

150

200

250

Threshold as Percentage of Radius

T
im

es
 in

 M
ill

is
ec

on
ds

(b) Effect of reducing the
threshold. Display: Sphere,
Model: Dragon (871K tri-
angles).

Figure 7: Performance analysis of our rendering pipeline

tessellation is negligible. Performance degrades after 0.25%,
which is a very small distance as compared to the size of the
display. Visually no variation beyond 1% of the radius as
tessellation threshold was observed for any scene.

6. Conclusion and Future Work

We presented an approximate high performing view-
dependent rendering scheme for parametric surfaces in
this paper. With motion capture technologies become more
prevalent, our scheme provides an ideal match for walk-
around gaming applications. Our prototypes demonstrated
the look and feel of such displays. The method, however, is
only applicable to surfaces that can be ray-casted. More gen-
eral surfaces are now finding ray-casting solutions [SN10]
and can become suitable display candidates.We would like to
explore rendering to more complex display shapes. Surfaces
defined by splines can be used to approximate any surface
and would provide a general solution to any display shape.

References
[BWB08] BENKO H., WILSON A. D., BALAKRISHNAN R.:

Sphere: Multi-touch interactions on a spherical display. In ACM
User Interface Software and Technology (2008), pp. 77–86.

[BWEN05] BIMBER O., WETZSTEIN G., EMMERLING A.,
NITSCHKE C.: Enabling view-dependent stereoscopic projec-
tion in real environments. In International Symposium on Mixed
and Augmented Reality (2005), ISMAR ’05, pp. 14–23.

[CNSD93] CRUZ-NEIRA C., SANDIN D. J., DEFANTI T. A.:
Surround-screen projection-based virtual reality: the design and
implementation of the cave. In SIGGRAPH (1993), pp. 135–142.

[Dee92] DEERING M.: High resolution virtual reality. SIG-
GRAPH Comput. Graph. 26, 2 (1992), 195–202.

[DOS01] DJAJADININGRAT J., OVERBEEKE C., STAPPERS P.:
Cubby: A unified interaction space for precision manipulation.
In Proceedings of ITEC 2001 (2001), ITEC 2001, pp. 24–26.

[FDO02] FRENS J. W., DJAJADININGRAT J. P., OVERBEEKE
C. J.: Cubby+: exploring interaction. In Designing Interactive
Systems (2002), DIS ’02, pp. 135–140.

[Fis82] FISHER S.: Viewpoint dependent imaging: An interactive
stereoscopic display. SPIE (1982), 367.

[HN09] HARISH P., NARAYANAN P. J.: A view-dependent, poly-
hedral 3d display. In Virtual Reality Continuum and its Applica-
tions in Industry (2009), VRCAI ’09, pp. 71–75.

[Iwa04] IWATA H.: Full-surround image display technologies.
Int. J. Comput. Vision 58 (2004), 227–235.

[RWF98] RASKAR R., WELCH G., FUCHS H.: Seamless pro-
jection overlaps using image warping and intensity blending. In
Virtual Systems and Multimedia (1998).

[SLF10] STAVNESS I., LAM B., FELS S.: pcubee: A perspective-
corrected handheld cubic display. In Human factors in Comput-
ing Systems (2010), CHI ’10, pp. 1381–1390.

[SN10] SINGH J. M., NARAYANAN P. J.: Real-time ray tracing
of implicit surfaces on the gpu. IEEE Transactions on Visualiza-
tion and Computer Graphics 16 (2010), 261–272.

[SVF06] STAVNESS I., VOGT F., FELS S.: Cubee: a cubic 3D
display for physics-based interaction. In SIGGRAPH ’06: ACM
SIGGRAPH 2006 Sketches (2006), p. 165.

© The Eurographics Association 2011.

30


