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Abstract

In the field of aircraft design, interior illumination increasingly becomes an important design element. Differ-
ent illumination scenarios inside an aircraft cabin are considered to influence the mood of air passengers, help
passengers to be better prepared for time lags and to create an overall positive environment. Consequently, a
physically correct and realistic lighting simulation becomes essential during the design process. Available tools
are producing videos or still images of illumination settings. The main reason for this is that realistic lighting sim-
ulation is believed to require heavy offline processing and unfeasible to do from within a real-time system. On the
other hand, interactive Virtual Reality (VR) applications are an appropriate tool to experience an aircraft cabin
under different illuminations. The ability to integrate lighting simulations into VR applications would simplify the
design process remarkably by skipping time-consuming context and tool switches.

In this paper, we present a solution for integrating realistic lighting simulation with interactive performance into
a single VR application. We explain our integration of real-time ray tracing, interactive global illumination, and
measured point lights in a VR system, and its combination with classic rasterization techniques. We describe suit-
able interaction metaphors to enable realistic lighting simulation, high interactivity and intuitive interaction in an
application for light design inside an aircraft cabin.

Categories and Subject Descriptors (according to ACM CCS): 1.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism— Virtual Reality, 1.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism—

Raytracing, J.2 [Computer Applications]: Physical Sciences and Engineering—Aerospace

1. Introduction

In industrial contexts, Virtual Reality (VR) and respective
virtual 3D models are commonly used for immersive re-
view of construction and design in the product development
phase. For construction reviews and inspections the inherent
interactivity and immersion of VR systems and applications
are the most important features whereas for design review an
accurate material and surface representation is required. Es-
pecially the latter requirement is not fulfilled by current VR
systems. Due to the strong need for interactivity, VR systems
are optimized for rendering and interaction performance and
far less for image quality. Furthermore, for regular review
sessions users typically do not have the time for extensive
data optimization. Data sets need to be available for VR-
based examinations more or less instantly, so that a VR sys-
tem must be able to handle more or less arbitrary data. It is
commonly accepted that the lack of optimization costs per-
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formance, rendering and image quality. Consequently, VR
systems are used for reviews of and decision making on ge-
ometric properties, shapes, visibility issues, clarity of car or
aircraft interiors, etc., but not for decisions on materials, sur-
face properties and colors. Nevertheless it is highly desirable
to have VR systems that combine immersion, interactivity,
and realistic representation of surface properties under cer-
tain lighting conditions.

Current VR systems are using the well-known rasteriza-
tion algorithm [Shr09] for rendering. Rasterization is im-
plemented in a highly optimized fashion on modern graph-
ics hardware and delivers even with complex scenes real-
time frame rates. On the other hand, rendering using the ray
tracing algorithm produces acknowledged physically correct
renderings but usually with way lower frame rates. Even if
modern ray tracing renderers can achieve interactive perfor-
mance by making use of all available hardware like SIMD
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CPU extensions, many-core highly parallel GPUs or even
computing clusters, they are still too slow for real-time VR
applications. Depending on scene complexity, typical frame
rates in a ray tracer reach around 2-10 frames per sec-
ond. For the targeted high image quality, rendering features
such as soft shadows, global illumination with multiple light
bounces, or antialiasing are necessary, which again lowers
rendering performance such that frame rates may go down
to less than one frame per second.

1.1. Related Work

A multitude of previous work has done some integration
of advanced rendering algorithms in Virtual Reality sys-
tems. Schoffel has incorporated classical diffuse radiosity
in a VR system to enable soft shadows with on-demand
update at runtime [Sch97]. In order to create physically
correct lighting, required for our work, the radiosity al-
gorithm is however unsuitable. Dmitriev et al. used High
Dynamic Range (HDR) environment mapping for Global
[llumination calculated through a Pre-Computed Radiance
Transfer (PRT) method, and combine the results in a CAVE
setup [DAK*04]. PRT has limited applicability for dynamic
light changes and hard shadows (e.g., as produced by spot-
lights), which both are required for our use cases.

Dietrich et al. used interactive ray tracing for the visual-
ization of an entire aircraft geometry [DWS*06], but limit
themselves to a navigational interaction through the scene,
and do not offer graphical user interfaces (GUIs) or sim-
ilar, which would require higher interactivity (i.e., frame
rates) than a ray-tracing-only approach can currently pro-
vide. While the previously cited work is mostly targeted to
specific application scenarios, Odom et al. investigated the
general applicability of interactive ray tracing as an alter-
native rendering algorithm for driving Virtual Environments
(VEs), which would combine realtime performance with
physical correctness [OSR09]. Their results showed that us-
ing ray tracing in a distributed VR setup generally works, but
is currently limited in terms of interactivity due to high de-
lays and limited resolutions. This is why we chose a hybrid
approach for our application scenarios.

1.2. Contributions

In this paper, we are presenting an approach to combining in-
teractivity and physically correct light simulation in one VR
application. We propose a rendering approach that combines
rasterization and ray tracing in a hybrid setup. The rasterizer
is intended to be used for all tasks that require interactiv-
ity, application handling, and scene manipulations, with the
ray tracer as an on-demand add-on for producing the precise
light simulation for the current area of interest, taking into
account all direct and indirect lighting contributing to the
currently rendered view. Users can switch to the ray tracer
at any time, thus preserving actual view position, visible ob-
jects, as well as object properties.

We show the applicability of our hybrid approach in an
application for interactive lighting design for the interior of
an aircraft cabin. Light designers can actively position light
sources, manipulate light properties, color profiles, etc. Fur-
thermore, an interactive touch panel for cabin light opera-
tions is simulated to perform virtual training for cabin per-
sonnel.

On the ray-tracing end, we implement a highly accu-
rate, yet interactive global illumination algorithm working
on measured real-world luminaires, and high quality shaders
for different cabin materials.

This paper is structured as follows: Section 2 explains the
extensions done to our ray tracing engine in order to use
standard IES light source profiles and apply a progressive
global illumination algorithm to converge to the physically
correct solution. In Section 3, we show how we combine this
ray tracing engine with the rasterization renderer of our VR
system. Section 4 then gives details on the VR interaction
metaphors we provide to efficiently use such a hybrid sys-
tem. An example application scenario making use of the de-
veloped technology is presented in Section 5. Section 6 sum-
marizes results and provides an outlook to future work.

2. Light Simulation in a Realtime Ray Tracing Engine

In light design scenarios a faithful and accurate represen-
tation of the virtual scene is an essential requirement. It is
necessary that the rendering system delivers results in such
a quality that sound decisions about real-world appearance
can be based on the virtual prototype. Of particular impor-
tance are the abilities 1) to capture as many light-object in-
teractions as possible including indirect illumination, 2) to
utilize well-specified realistic light sources, and 3) to eas-
ily incorporate advanced physically-based material models.
Current rasterization engines—though delivering interactive
speed with visually convincing results—cannot guarantee this
predictive quality of the rendering, as the underlying algo-
rithms often rely on approximations, simplifying assump-
tions, or restrictive pre-computation, which do not allow for
solid estimates of the rendering accuracy.

Realtime ray tracing engines are principally much bet-
ter equipped to deal with such scenarios as their properties
can be more easily characterized with respect to the Ren-
dering Equation [Kaj86] that models the physics of light
transport. However, to achieve interactive rates, these en-
gines also compromise the quality of the lighting simulation
by considering only a subset of possible light-object inter-
actions, typically limiting their scope to direct illumination
with perfect reflection or refraction.

In our work, we have started off with state-of-art real-
time ray tracing library RTfact [GSOS8] but extended it with
a comprehensive light transport simulation based on pro-
gressive Monte-Carlo integration to be able to capture also
indirect illumination, measured light sources to simulate
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real-world luminaries, and the AnySL compiler infrastruc-
ture [KRSH10] to allow for simple and efficient specifica-
tion of physically-based materials. Our goal was to improve
the rendering capabilities to allow for accurate simulation,
yet stay interactive for applications in a VR context.

2.1. RTfact Real-Time Ray Tracing Library

RTfact [GS08] is a real-time ray tracing C++ template li-
brary that implements state of the art ray shooting algo-
rithms. It delivers high performance, while still allowing for
integration of advanced illumination simulation algorithms.

The key feature is that RTfact is architected not as a mono-
lithic framework but rather as a library designed to simplify
the building of custom ray tracing applications. The separa-
tion of the ray shooting and traversal algorithms from data
structures allows us to implement the required support for
simulation of indirect illumination, as described below.

2.2. Interactive Simulation of Indirect Illumination

In the scenario of the aircraft cabin we are primarily consid-
ering in this work (see Section 5) an indirect, multiple-times
reflected light plays the major role in the illumination of the
cabin interior. In such conditions an algorithm that would
performs some form of light tracing, that is, follows particles
from the light sources towards the scene, is absolutely nec-
essary to reach acceptable performance and image quality.
An algorithm based purely on path tracing [Kaj86] would
be unsuitable, as the chances of hitting a light source with
camera path, even with next event estimation are quite slim.

A bi-directional path tracer [LW93], though theoreti-
cally fitting, is however hard to parallelize within a high-
performance packet ray tracing context, mainly due to low
ray coherence. We have thus extended RTfact with Progres-
sive Instant Radiosity [Kel97] enhanced with robust impor-
tance sampling [GS10]. Instant Radiosity (IR) is not to be
confused with classic diffuse radiosity, but is an illumina-
tion simulation algorithm based on Monte-Carlo integration
techniques. In a first phase, the algorithm traces light par-
ticles from the light sources and creates so-called Virtual
Point Lights (VPLs) at the places where the particles hit a
surface. As these particles are independent, they can be ef-
ficiently traced in parallel. In the main rendering phase the
generated VPLs are used as conventional direct point light
sources and thus their evaluation can be performed with the
existing packet ray tracing infrastructure of RTfact.

Due to the complex illumination conditions, extending the
system with an importance sampling is required to achieve
a good performance. Without it, too many VPLs end up
being irrelevant for the camera viewpoint, significantly in-
creasing the rendering times. In our system we use the ro-
bust approach of Georgiev [GS10], adapted for use in paral-
lel packet-based system. Still, to reach the desired rendering
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quality, several thousands or more VPLs have to be traced
and evaluated, even including the importance sampling. This
amount is however too high to stay interactive and thus a pro-
gressive approach is required. Each frame, we create only
a small set of VPLs, which can be rendered interactively.
Successive frames are then properly weighted and accumu-
lated, continuously improving the quality and converging to
a correct solution. So when the user is interacting with the
scene, only a small number of VPLs is rendered, creating
an approximation of the final solution. As soon as she stops,
accumulation is automatically enabled and the image gradu-
ally improves towards a final correct solution within dozens
of seconds.

We have also considered newer approaches to the many-
lights algorithm, like Lightcuts, Matrix Row-Column Sam-
pling, or Virtual Spherical Lights (VSLs) [WFA*05,
HKWBO09] but we have decided to use the Progressive In-
stant Radiosity with importance sampling and clamping re-
duction scheme for several reasons. First, though these meth-
ods do reduce certain artifacts caused by IR, they introduce
another ad-hoc scene-dependent parameters (like VSL ra-
dius) that have not been properly investigated in the pro-
gressive setting. They also usually require extensive scene-
dependent tuning, which is not desirable in the VR context
(see Section 1). Moreover, the progressive variant of IR does
remove the core disadvantage of pure IR, since the clamping
is reduced over time and thus correct solution is achieved.
Finally, it is as of yet unclear how to incorporate these ad-
vanced methods efficiently into a high-performance packet
ray tracer, partly also due to their high memory require-
ments.

2.3. Realistic Luminaries

To assess the real-world feasibility of a given light design
it is necessary to be able to perform the above described
simulation with actual light sources that exhibit real-world
characteristics, especially physically-measured emission and
its angular distribution. Two main industry standards have
been proposed to capture the characteristics of real-world lu-
minaries, IESNA-95 (or newly IESNA-02) [Ame] and EU-
LUMDAT [Lig]. In our system we have used the most pop-
ular and widespread IESNA-95 format.

IESNA-95 encodes luminaries as point light sources with
measured non-homogeneous luminous intensity. This allows
to create realistic non-uniform light sources like flashlights,
street-lamps, emergency exit lights, etc. The intensity dis-
tribution of an IESNA-95 is described in an .ies file, which
contains tabulated luminous intensity values sampled in sev-
eral outgoing directions. Besides the emission characteris-
tics, the format can also encode the geometry of the light fix-
ture. Our system incorporates the IESNA-95 light sources as
point light sources with automatic conversion of the photo-
metric units to radiometric equivalents used by the illumina-
tion simulation. In the particle generation phase, we directly
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sample the converted tabulated data to get a radiance in a
given direction. We have found out that linear interpolation
in the tabulated data provides sufficiently accurate results.

2.4. Advanced Programmable Materials

Realistic behavior of materials plays a major role in the
accuracy of the rendered images. RTfact library provides
only a basic set of materials that are not suitable for highly-
accurate rendering. Moreover, writing new materials is quite
tedious, as it requires coding in a packet-based, templated
C++ framework, where the shader author must manually
deal with ray parallelization and correct SIMD packet uti-
lization. To this end, we have used the AnySL compiler in-
frastructure [KRSH10], which extends RTfact with the pos-
sibility to write materials in RenderMan and other high-level
languages. This allows us to use physically-based material
models, but still keep high-performance due to the integrated
SIMD vectorization infrastructure of AnySL.

3. Integration of Rasterization and Ray Tracing in VR

Our overall software architecture of the VR system inte-
grated with ray tracing resembles the one suggested by Hoff-
mann et al. [HRL*09]. We discuss changes with respect to
this original architecture below.

3.1. System Overview

As a basis for integration we use the VR system Light-
ning [BGBO8], which is strongly modularized and imple-
ments a data flow concept between its independent modules.
The native rendering back-end of Lightning is implemented
on top of the OpenGL-based OpenSceneGraph [BO04]. We
extend Lightning with two rendering back-ends for (a) di-
rect rendering using the RTfact ray tracing engine and (b)
distributed rendering using the DRONE distribution frame-
work (formerly called URay) [RLRS09].

For combining multiple renderers in a single applica-
tion, we implement a generic window module (ltWindow)
in Lightning, which is able to display not only the results of
a single rendering back-end, but those of many instantiated
renderers one at a time. This generic window is implemented
on top of OpenSceneGraph and displays the scene graph be-
low a root Switch node, whose function is to limit the scene
graph traversal to exactly one of its children at a time. If an
OpenSceneGraph-based renderer is attached to the window,
its internal scene graph is attached below the Switch node, in
all other cases renderers directly write pixels to a full-screen
textured quad attached as respective children below the root
Switch.

To summarize, in the assembled architecture, hardware-
accelerated rendering takes place in OpenSceneGraph
(GPU-based) or in RTfact (CPU-based). Pixel generation of

the latter might again be distributed on multiple physical ma-
chines through DRONE. The display of pixels generated by
a local or distributed ray tracer is always handled by Open-
SceneGraph. Figure 2 shows the assembled software stack
again graphically.

Application

Lightning

OpenSceneGraph | DRONE

Hardware-Accelerated Rendering

RTfact

Figure 2: Software stack of the assembled VR system.

3.2. Synchronization

In order to switch seamlessly between different renderers
processing the same scene, application state needs to be
maintained at each physical host that takes part in the tar-
geted VR setup. We perform synchronization on two levels:
First, on the Lightning level, where the internal state of mod-
ules needs to be synchronized between different hosts, and
second, on the DRONE level, where distributed rendering of
parts of the same frame has to be performed. As synchro-
nization inside DRONE is covered in detail in the respective
work by Repplinger et al. [RLRS09], we will focus on the
former kind here.

The Lightning cluster protocol [BGBO08] allows to syn-
chronize the state of single Lightning modules across net-
work boundaries by serializing state structures and sending
them from a master machine that receives and processes in-
put to all slaves that need to react to changes. In our VR
setup, we use this protocol to synchronize the state of the
current view position and all dependent single cameras that
make up the eye transformations (and their respective dis-
play surfaces) of one renderer. To synchronize the cameras
in-between all renderers, we simply replicate any incoming
input events changing the view position to all renderers at-
tached to a window, which then perform the distribution to
participating machines internally. Besides viewing informa-
tion, we synchronize light transformations and properties be-
tween renderers using the very same mechanisms.

3.3. Scene Data Handling

In contrast to the original architecture [HRL*09], our soft-
ware stack does not contain a dedicated scene graph for ray
tracing. The reasons for this are threefold:

Firstly, it turned out that we do not need the fine-grained
control over the exact scene hierarchy when we do ray trac-
ing. On the contrary, flattening the inherent scene graph of
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ADD LIGHT SOURCE

DELETE LIGHT SOURCE
@]

REPLACE LIGHT SOURCEJ

Figure 1: Immersive user interfaces for object positioning and data input: (a) surface positioning before and after creating a
light source; (b) 3D input panel with grasping region, tabs, and main interaction area; (c) number input wheel.

a loaded scene file to nothing but a single triangle mesh be-
fore using it in the ray tracing engine turns out to yield a per-
formance gain of 3-5x in frame rate, because the compute-
intense traversal of unnecessary hierarchical data structures
for each ray is completely omitted. As flattening results in an
entirely static scene, we can choose to omit this optimization
and thus enable dynamic objects as well.

Secondly, a flat scene structure perfectly matches the con-
cept of the Lightning VR system, which incorporates the
concept of visual objects representing a batch of geometry
that is only to be manipulated as a whole. So if one needs
geometry that is to be transformed differently than a second
geometry, those two need to be separate visual objects in
Lightning.

Finally, all the fine-grained control and manipulation in
our application scenarios that would require access to the
scene graph structure happens in the rasterization back-end
anyways. In the OpenSceneGraph-based rendering back-
end, the full scene graph can be accessed, sub-graphs trans-
formed and searched, etc.. What we ultimately need in the
ray tracing back-end is just the entire static scene geometry,
very few dynamic visual objects, and all light sources to be
manipulated separately.

4. Interaction Concepts

Interaction for our targeted light design scenarios focuses
on the spatial manipulation of light sources, configuration
of their parameters (e.g., color or intensity), travel within the
scene, and switching between rasterization and ray tracing.
All of these will be covered in the following subsections.

4.1. Facultative User Tracking

In VR, tracking of the user’s input device and head trans-
formation are very important prerequisites for efficient user
interfaces and stereo vision, respectively. To have a user per-
ceive an immediate reaction of the VR system to her track-
ing input, constraints apply to the time needed for complet-
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ing a feedback loop between user input and system reac-
tion. Due to the computational cost of ray tracing and the
resulting frame rate of the overall system, our internal tests
showed that using head tracking while operating the ray trac-
ing back-end is not beneficial for the overall immersion of
the user, or might even cause simulator sickness due to the
perceived delays between head movement and adaptation of
the field of view. As a result of these observations, we offer a
full tracking of head and interaction device only in the raster-
ization back-end, where no perceivable delays occur for the
user. The switch to the raytracing back-end results in a freeze
of the current field of view. Navigation and head tracking is
enabled whenever the switch back to rasterization is made.
This very well fits our targeted workflows of first navigating
and manipulating lights, then finding a desired viewing po-
sition (all in rasterization), and afterwards inspecting the re-
sults of the changed light situation under global illumination
(in ray tracing). We use the tracked input device in rasteriza-
tion to realize a simple travel technique using point-and-fly
gestures, which are well-known in literature [BKLPO4].

4.2. Light Source Positioning

A further important aspect of light design scenarios is the po-
sitioning of virtual light sources within the scene. Depending
on the type of light source (point, spot, area, directional) the
parameters position and orientation are available and can be
changed during runtime.

In the rasterization back-end of the visualization, all men-
tioned light source types have representation objects to vi-
sualize the current spatial properties of the respective light
source for the user (cf. Figure 1a). The most simple way of
changing the position or orientation of a light source is avail-
able through direct manipulation; that is, by grasping and
dragging the representation object of interest. This however
turns out to be difficult whenever a user wants to position
light sources precisely on surfaces, taking into account the
exact surface geometry for position and normal orientation.
To circumvent inaccuracies in these cases, we use the surface
positioning technique proposed by Rentzos et al. [RPA*11].
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Here, the user receives immediate feedback of how the sur-
face is oriented, and the light source can be positioned accu-
rately aligned to the surface and oriented towards its normal
vector (cf. Figure 1a).

4.3. Alphanumeric Data Input

For specifying exact figures used as light source parame-
ters, or selecting IES specification files from the filesystem,
alphanumeric input is needed from within the VR applica-
tion. Again, we use the concepts proposed by Rentzos et
al. [RPA™11], namely the 3D input panel and the 3D input
wheel.

The 3D input panel (cf. Figure 1b) is a flat piece of geom-
etry, which can be directly manipulated by the user, that is,
freely repositioned within the virtual world. Distinct sections
on its surface separate the areas for grasping and moving the
entire panel, for displaying the main user interface that fea-
tures classic 2D widgets, and for switching between several
tabs of that main user interface. The panel follows classic
pen-and-tablet interaction techniques [BKLPO4], with the
difference of the tablet being a fully virtual object without
any physical representation in the real world. We use the 3D
input panel for direct input of illumination parameters, sav-
ing and loading of light profiles, and selection from within
a set of IES specification files for assignment to single light
sources.

The 3D input wheel (cf. Figure 1c) is a 3D user inter-
face for the input of numeric data. The interface consists of
three concentric rings that surround a number field located
in the center. Each of the rings represents a different order of
magnitude for changing the value of the central parameter.
Whenever a user selects one of the rings, she is presented a
blue guide marker orthogonal to the ring plane. Tilting the
interaction device with respect to that guide enables her to
add to or subtract from the value field, taking into account
the order of magnitude of the change given by the currently
selected ring. We use the 3D input wheel as a follow-up in-
terface, which appears upon choosing to change a numeric
light parameter in the 3D input panel.

5. Aircraft Cabin Use-Case

‘We combine all the above concepts of rendering and interac-
tion in a single use case application that visualizes the inte-
rior of a passenger aircraft.

5.1. Data Preparation

Input data for the use case visualization is a partial model of
a passenger aircraft cabin and IES light specifications for all
the cabin lighting. The scene is exported from a DCC appli-
cation in standard VRML 2.0. We could load the very same
scene in rasterization and ray tracing, but as the scene has to
be kept in memory twice anyways (once for each renderer),

we use an enhanced scene for the ray tracer. To do so, we ex-
tend the VRML specification by custom entities to specify
AnySL shader usage (e.g., brushed metal or glass) directly
in the file (cf. Section 2.4). The extended VRML format is
then interpreted by the RTfact scene loader.

In order to be able to interactively manipulate lights and
their properties from within the VR application, they have
to be dedicated objects in the Lightning system. Thus, as es-
tablished in Section 3.3, lights may not be part of the loaded
VRML file, because the entire file is treated as one insepara-
ble entity. Instead, we export light lists directly from DCC.
When Lightning loads these lists, the light specifications are
translated to the respective interactive representations in the
OpenSceneGraph- and RTfact-based rendering back-ends.
Currently, in case of distributed rendering, both scene files
and IES files have to be present on each machine perform-
ing a part of the ray tracing. Light lists are forwarded as
scene setup events to each render node and then loaded in
the present RTfact instance, identical to the local case.

5.2. Cabin Lighting

Besides any lighting that can be added by the user during
runtime, the following light sources are placed in the scene
from the beginning: six long area lights at the ceiling, four
of them fitted into the openings above the luggage compart-
ments, two in the rear cabin; 42 spotlights as reading lights,
one above each seat; and a directional light on the outside of
the cabin, simulating the sunlight entering through the win-
dows. For performance reasons, we limit the overall number
of actual OpenGL light sources in the scene, but have some
of them available as representation objects only. In ray rac-
ing, however, all the lights are present and contribute to the
GI simulation.

Each light, can be moved and configured through direct
manipulation of their representation objects or the 3D input
panel, respectively (cf. Sections 4.2 and 4.3). In addition to
the controls on the 3D input panel, an additional interactive
panel (Flight Attendant Panel, FAP) is attached to the aft
cabin wall, in the position where it is also located in real-
world counterparts of the aircraft cabin. It offers the same
2D user interface for light control as parts of the 3D input
panel do, the FAP is however modeled after the real-world
Ul design and thus more suitable for virtual training of actual
cabin personnel, who can then have a VR simulation of their
real viewpoint when changing the light settings.

5.3. Rendering

The main input device is equipped with a dedicated button to
switch from rasterization to ray tracing at any time the user
likes to see the actual light conditions from the current point
of view. Upon switching to ray tracing, as the application
guarantees no more camera movement after the switch, the
renderer directly starts accumulating the illumination across
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Figure 3: Screenshots showing the aircraft cabin scene (a) in the rasterization back-end, (b) in the ray tracing back-end directly
after the switch from rasterization, starting the accumulation, and (c) with global illumination after 15 seconds of convergence.

all light sources and multiple frames using progressive re-
finement, at the same time descending deeper in the tree rep-
resenting the hierarchy of reflected rays. Users are told in
advance that a switch to ray tracing entails a disabling of
any head tracking, such that major head movements would
lead to a loss of immersion due to a wrong perspective with
respect to their current point of view.

Over a short time of a few seconds (cf. Section 6) after
switching to ray tracing, the image converges towards the
physically correct solution. Figure 3 shows an example of
the same field of view in rasterization and different stages
of convergence when using ray tracing. The only interaction
option a user has while in ray tracing mode, is switching
back to interactive rasterization using the same button switch
as before.

5.4. Workflow

The workflow applied in preliminary tests using this use
case scenario is as follows: Users start in rasterization mode,
where they are supposed to make themselves comfortable
with navigation in the cabin interior. Afterwards, they are
supposed to manipulate existing lights in color and inten-
sity, first using the 2D Flight Attendant Panel attached to the
cabin wall, then using the 3D input panel from anywhere
within the scene. After each change, they may switch to ray
tracing mode to examine the changes, and back to rasteri-
zation mode for further changes. Finally, they should create
and position new light sources using the 3D input panel and,
if desired, the surface positioning input technique.

6. Results

We implemented and tested the described system architec-
ture and applications on a very moderate hardware setup
consisting of two Intel Core 2 Quad 2.66 GHz workstations
(one for each eye of a projective stereo setup) equipped
with one NVIDIA GeForce 9600 GT GPU each. Each work-
station was running Ubuntu Linux and driving a passive
stereo projection screen with absolute pixel dimensions of
1920x1200. The aircraft scene we tested contained about
2.8 million partly textured triangles. In rasterization mode
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we reached frame rates of 15-20 fps, in ray tracing mode 2-
5 fps depending on the geometric complexity visible from
the current viewpoint. Waiting for a reasonably converged
ray-traced image took around 10-15 seconds. Our informal
user tests confirmed that such a setup is comfortable to work
with and suits the workflow of interactivity and light simu-
lation in rasterization and ray tracing, respectively. Having
to switch renderers did not pose a problem for our users,
although a formal user test with aircraft design specialists
will follow to confirm these findings. Taking into account the
very moderate specifications of the testing hardware, it can
be assumed that much higher frame rates can be achieved
with newest hardware or compute clusters for distributed ray
tracing.

Overall we have shown that the combination of realtime
ray tracing and rasterization can be suitable for a multitude
of VR applications. Furthermore, we have proposed ways to
incorporate measured IES light specifications used through-
out the illumination industry can be directly employed in a
ray tracer and, through our approach, used seamlessly within
VR. Our approach presented here is not at all limited to air-
craft design but is suitable for many applications such as
car interior design, architecture, etc., as the resulting image
quality and correctness of light simulation was considered
very helpful during any tested design process. Through sep-
arate renderers, the interactivity for the light design process
is still given. The additional time effort for data preparation
is limited, there is no need for precomputing light scenarios
to be used during the VR session, everything is simulated
on the fly. The system is inherently scalable across multi-
ple rendering and display hosts by using the DRONE frame-
work [RLRS09], which also allows synchronization of mul-
tiple render hosts in terms of a consistent global illumination
across all participating machines.

Limitations of our current approach are the required hard-
ware resources, especially main memory, due to the fact
that each rendering back-end currently holds its own ver-
sion of the same scene to be displayed. Ray tracing in gen-
eral still requires a lot of hardware performance, thus fu-
ture work will include making even better use of hardware
resources than RTfact already does. Our approach can be
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also implemented using any high-performance ray tracer
and thus further tests with recent GPU-based real-time ray
tracing libraries [PBD*10] are a natural extension to our
work. Further improvements in rendering speed might be
achieved by exploiting frame-to-frame coherence through
incorporating for example the incremental approach of Laine
et. al [LSK*07], which could be suitable for supporting head
tracking directly in the ray tracing mode. We leave this for
future work, as an important redesign of the ray tracing
framework would be needed, due to a major role of shadow
maps in the technique. Finally, our tests involved only simple
projective VR setups, for surround-screen CAVE-like setups
much more pixels need to be rendered per frame, and the
required hardware will multiply; even though longer times
to wait for a converged image might be an option for some
applications. In the long run, with increasing hardware capa-
bilities, a purely ray-traced yet affordable VR system might
become feasible as well.
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