
Joint Virtual Reality Conference of EGVE - ICAT - EuroVR (2009)
M. Hirose, D. Schmalstieg, C. A. Wingrave, and K. Nishimura (Editors)

Short Paper: Desktop Integration in Graphics Environments

Torsten Ullrich1,2 , Volker Settgast1,2, Christian Ofenböck1, Dieter W. Fellner1,2,3

1 Institut für ComputerGraphik und WissensVisualisierung Technische Universität Graz, Austria
2 Visual Computing Division, Fraunhofer Austria Research, Graz, Austria

3 Fraunhofer Institute for Computer Research and Technical University of Darmstadt, Germany

delivered by

EUROGRAPHICSEUROGRAPHICS

D LIGITAL IBRARYD LIGITAL IBRARY
www.eg.org diglib.eg.org

Abstract
In this paper, we present the usage of the Remote Desktop Protocol to integrate arbitrary, legacy applications
in various environments. This approach accesses a desktop on a real computer or within a virtual machine. The
result is not one image of the whole desktop, but a sequence of images of all desktop components (windows,
dialogs, etc.). These components are rendered into textures and fed into a rendering framework (OpenSG). There
the functional hierarchy is represented by a scene graph. In this way the desktop components can be rearranged
freely and painted according to circumstances of the graphical environment supporting a wide range of display
settings – from immersive environments via high-resolution tiled displays to mobile devices.

Categories and Subject Descriptors (according to ACM
CCS): H.5.2 [Information Interfaces and Presentation]:
User Interfaces—Graphical User Interfaces, Windowing
Systems I.3.2 [Computer Graphics]: Graphics Systems—
Distributed/Network Graphics

1. Introduction

In the use of personal computers (PC) – especially
in the field of human-computer-interaction – a shift of
paradigms takes place. The “Windows, Icons, Menus,
Pointer” paradigm of user interface design started in the
1970s. Major developments and improvements have been re-
alized (in alphabetic order) by Apple, Digital Research, Mi-
crosoft, Motif, NeXT Computer, Sun Microsystems, Xerox
Palo Alto Research Center, and many more. This user inter-
action is based on a single physical input device (a pointer)
controlled by a single user. Information and data are pre-
sented by icons and windows. Available commands are com-
piled together in menus, which can be started via the point-
ing device. This graphical user interface paradigm is easy to
use for both novice and power users.

With the usage of tabletop environments, tablet PCs,
immersive environments etc. this single-pointer, single-
user paradigm started to change. In 2007 Chia Shen et
al. [SFWV] authored an open letter to operating system (OS)
designers in which they outlined the major requirements of
the new user interface paradigm. Concerning these require-

ments current operating systems have deficiencies which are
currently compensated on application level.

In this paper we present a technique to cope with the
graphical requirements; moreover it solves the integration
problem of legacy applications in immersive environments.
We use the remote desktop protocol to access a desktop, dis-
assemble it into its components and rearrange/repaint it ac-
cording to the setup of the environment, in which the desktop
is embedded.

2. Related Work

Previous research has analyzed the influence of display se-
tups to a user’s performance in everydays work [BB09]. An
overview of large high-resolution screen setups and cluster
rendering software has been presented by Ni et al. [NSS∗06].

The approach presented in this paper is similar to other
projects: In 1993 Dykstra introduced the idea of mapping
X11 windows as textures onto polygons in a virtual 3D
world [Dyk93]. As X11 – the network-enabled windowing
protocol for Unix systems [GKM86] – plays a minor role
for many end-users following projects concentrated on Mi-
crosoft Windows. For example, Regenbracht et al [RBW01]
integrated 2D desktops and 3D data sets into a tangi-
ble, augemented reality (AR) desktop environment. Besides
computer vision and AR techniques they use a modified Vir-
tual Network Computing (VNC) to display 2d desktops on

c© The Eurographics Association 2009.

DOI: 10.2312/EGVE/JVRC09/109-112

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/EGVE/JVRC09/109-112


T. Ullrich, V. Settgast, C. Ofenböck, D. W. Fellner / Desktop Integration in Graphics Environments

3d geometry. Also Bues et al. [BBH03] and Nakashima et
al. [NMKT05] presented a VNC-based solution.

Depending on the setting in which our approach is used,
we utilize various input devices. As this paper concentrates
on the network and computer graphics part we only summa-
rize the main input methods briefly. We support multi-touch
interaction (based on [KBBC05]), 3D-tracked pointing de-
vices, gaming devices and standard input methods (mouse,
keyboard). An overview on multi-touch techniques is pre-
sented online by B. Buxton [Bux09]. Implementation details
of various multi-touch enabling libraries are described by
P. Dietz and D. Leigh [DL01], S. Jordà et al. [JKGA06] and
B. Ullmer and H. Ishii [UI00].

To access a desktop various network protocols have
been designed. On Unix systems the most common solu-
tion is the X-server protocol. Enhancements for reduced
bandwidth [Pin03], multi-pointer and multi-focuses sup-
port [Hut06, HT07] have been made and may be included
into future X standards. On non Unix desktop systems the
VNC protocol [RSFWH98] and the RDP [Mic09] are pre-
dominant and both are available (server and client) for Mac
OSXTMand Microsoft WindowsTM.

The main difference between RDP and VNC is the ab-
straction layer. All information within the VNC protocol are
bitmap based, whereas RDP spezifies more abstract infor-
mation such as font and text handling, vector graphics and
bitmaps as fallback. Consequently, with RDP it is possi-
ble to identify window design elements and to adjust them
to the destination environment. Furthermore RDP needs
less network bandwidth than VNC. In [NYN03] Nieh et
al. benchmarked RDP and VNC: “Overall, VNC [... is ...]
faster at higher network bandwidths, whereas [...] RDP per-
formed better at lower network bandwidths. This suggests
that the more complex optimizations and higher-level encod-
ing primitives used by [...] RDP are beneficial at lower net-
work bandwidths when reducing the amount of data trans-
ferred significantly reduces network latency.”

Having accessed a desktop’s components we store them
into texture images. Then the rendering can easily be done
using any graphics framework such as OpenGL, DirectX etc.
Our rendering solution uses OpenSG [RVB02] – a portable
scene graph system to create real-time graphics programs
based on OpenGL. Its extensibility, multi-thread safety and
clustering capabilities allow customizing the graphics ren-
dering to various graphics environments (from mobile de-
vices to virtual environments and high-resolution projection
walls).

3. Implementation

The Remote Desktop Protocol was introduced with Win-
dows NTTM. Once a remote connection is established the
client forwards user input to the server, while the server
sends drawing commands of elements of the screen to the

client. If not disabled explicitly, the server sends updates of
all changed graphical elements. Even changes, which are not
visible e.g. due to occulsion, are sent to the client by default.
The protocol uses bitmap compression and color palettes
to keep the amount of data transmitted small. Caching of
bitmaps, fonts (glyphs) and desktop screenshots is another
way to reduce network traffic within RDP. The current ver-
sion of RDP (6.1) supports seamless windows. In order to
support earlier RDP versions we use a simple alternative de-
veloped by Cendio (http://www.cendio.com/seamlessrdp/).
They provide a server side application (shell) that enables
a seamless mode. Furthermore there are patches for rdesk-
top (http://www.rdesktop.org/) and seamlessrdp available
from Fontis (http://www.fontis.com.au/rdesktop) allowing
the use of one single connection to launch multiple pro-
grams.

Based on these techniques and applications – especially
rdesktop – we created an object-oriented framework, which
wraps the pure C applications in a modular manner. The net-
work, compression and authentication parts are now inte-
grated into an RDP module. This module uses an abstract
window factory and abstract graphics/user interactions to
work with. These interfaces can be implemented, for exam-
ple, by classes which map RDP events to a graphical user-
interface (GUI) library. In this case the result is a “normal”
RDP client (used for debugging purposes). Though the ab-
stract graphics and user interfaces can also be implemented
in a different way. We provide a texture-based approach
which is integrated into OpenSG. In this manner, we can in-
tegrate a WindowsTMdesktop into any environment which is
supported by OpenSG.

The RDP screens are drawn into the data fields of OpenSG
texture objects which are used in material objects. A shader
program applied to the material can create advanced visual
effects. The material can be referenced by any geometric ob-
ject in the scene graph – even more than once. For the geo-
metric representation of a window we normally use a quad-
rangular plane shape. The geometry is added to the scene
graph as child of a transformation node.

Figure 1: At a tabletop display there is no fixed definition
of top and bottom as people can move around the table and
use it from any side. Furthermore all users can interact si-
multaneously.

c© The Eurographics Association 2009.

110



T. Ullrich, V. Settgast, C. Ofenböck, D. W. Fellner / Desktop Integration in Graphics Environments

The rendering is decoupled from the RDP connection
to the hosting system. Therefore, the texture content may
be updated independently from rendering frame rates. The
overall performance is sufficient for web browsers, word
processor programs, spread sheet applications, presentation
software, etc.. Fast frame updates for large display areas,
for example a video player running in full screen mode, do
not perform very good. Also areas of the desktop which are
drawn in overlay/direct mode are not accessable for RDP ap-
plications.

User inputs have to be sent back to the RDP server. They
can be divided into two classes: on the one hand there are
user inputs concerning the arrangements of window ele-
ments (normally handled by a window manager); on the
other hand there are inputs, which are passed directly to the
corresponding application to which the window/dialog/etc.
belongs. Both input categories now have to be handled in
3D. Instead of 2D screen coordinates an intersection point
Pi has to be found, e.g. by shooting a ray along the input de-
vice into 3D object space. The intersection point belongs to
some geometry in the scene graph and its texture coordinate
system maps the intersection point Pi to screen coordinates.
OpenSG has built-in methods to test the geometry in a scene
graph for ray intersection. This method returns the hit object
and triangle as well as the intersection point Pi.

The user input actions can be modified before they are
sent to the RDP server. A double click event for example
can be simulated with other kinds of actions depending on
the input device. On the multi-touch table (see Figure 1) we
are currently sending mouse clicks for each touch event that
happens inside the remote window area. Obviously it is not
possible to distinguish between a left click and a right click
in this way. There are many ways of how to handle this re-
striction. One idea is to use gesture recognition. Another way
would be to define different clicks depending on the time
span between press and release events.

Having all the single desktop components the render
system can modify the visual appearance of the desktop.
In computer graphics the texture rendering is altered by
shaders. It is possible to add special effects not only as an
eye catcher, but also for practical reasons. We experimented
with a shader for distorting a high resolution screen to fit in
an area of lower resolution without clipping.

4. Applications

In this section we demonstrate a few examples in which our
approach is used.

Desktop in XXL: In a tiled display setting with 4096×2048
pixels the desktop to render runs in a virtual machine. A
virtual machine allows configuring the graphics settings in-
dependently from any hardware restrictions. Therefore it is
possible to set the virtual desktop resolution to values up to
40962 (software limit of Windows XPTM). Figure 2 shows

Figure 2: Our tiled display with 3×2 projectors has about
4000× 2000 pixels. The rendering is done on 3 PCs which
are controlled by a master. Each render slave is connected
to two projectors.

such a high-resolution display with one single desktop ren-
dered by three PCs and displayed by six projectors.

Presentations on Arbitrary Displays: The previous exam-
ple tries to make the most of the display technology. An-
other relevant example is a low-resolution one. Using the
RDP technology it is possible to access any Windows PC
and Mac (RDP server is not installed by default). All appli-
cations, which do not use direct overlay techniques – such
as video players – or direct graphics hardware access, can be
shown on the presentation wall. In this way it is possible to
show, e.g., PowerPointTMpresentations, which are running
on a simple laptop.

Desktop in 3D: Our approach accesses the single compo-
nents of a desktop separately. A functional hierarchy (parent
window → child dialog) is mapped to a scene graph hier-
archy in OpenSG. As the default object space of OpenSG
is three-dimensional the 2D desktop can be embedded into
3D. Figure 3 shows such a setting. The desktop is integrated
into a CAVE-like virtual environment. The 2D structure is
dissolved and merged with virtual reality. A tracked point-
ing device with buttons allows clicking into the 2D desktop.
Windows can be arranged freely in the 3D space by clicking
on the edges of the container geometry.

Desktop Virtualization: A virtual environment does not
need to be three dimensional. Using a full-featured rendering
framework – such as OpenSG – our approach can visualize
a virtual desktop of higher resolution than the display reso-
lution. This concept of virtual screens can be used, e.g., on a
multi-touch table. There we render a virtual desktop, which
has three times the resolution the multi-touch system has.
Each screen is a little bit smaller than the system resolution
so that if one screen is displayed 1 : 1 some space is left. The
free space is used to display down-scaled version of the re-
maining screen of the desktop (to the left or to the right as
appropriate).

c© The Eurographics Association 2009.

111



T. Ullrich, V. Settgast, C. Ofenböck, D. W. Fellner / Desktop Integration in Graphics Environments

Figure 3: 2D windows are embedded into a 3D scene us-
ing a CAVE environment. The container geometry can be ar-
ranged freely in the 3D space.

5. Contribution & Benefit

We have presented a system for rendering legacy Windows
software directly in various graphics environments like tiled
displays, tabletop surfaces and CAVEs. It uses an implemen-
tation of the Remote Desktop Protocol to fetch a desktop or
single applications. The RDP server can run on a separate
PC or as a virtual machine. Applications can be used with-
out modification. We showed examples running on a tiled
display with a high resolution, in an immersive environment
and on a multi-touch table. With the possibility to freely
transform application windows we can solve the orientation
problem of tabletop screens. The system can also be used to
manipulate the visual appearance of a desktop. User inputs
can be mapped from various input devices to the common
keyboard and mouse input events that the legacy software
can process. The general restrictions of common desktop ap-
plications are not solved. To allow multiple users to work
together in one application, substantial modifications on a
lower level are necessary. The applications and also the op-
erating system would need to allow multiple inputs simulta-
neously and multiple applications being in focus at the same
time.

In the future the system will be integrated into a multi-
touch table framework. Its availability and the terms of li-
cense will be discussed as soon as the integration is final-
ized.

References
[BB09] BI X., BALAKRISHNAN R.: Comparing Usage of a Large

High-Resolution Display to Single or Dual Desktop Displays for
Daily Work. Conference on Human Factors in Computing Sys-
tems 27 (2009), 1005–1014.

[BBH03] BUES M., BLACH R., HASELBERGER F.: Sensing sur-
faces: bringing the desktop into virtual environments. Proceed-

ings of the workshop on Virtual Environments (EGVE) 39 (2003),
303–304.

[Bux09] BUXTON B.: Multi-Touch Systems
that I Have Known and Loved. online:
http://www.billbuxton.com/multitouchOverview.html, 2009.

[DL01] DIETZ P., LEIGH D.: DiamondTouch: a multi-user touch
technology. Proceedings of the 14th annual ACM symposium on
User interface software and technology 14 (2001), 219 – 226.

[Dyk93] DYKSTRA P.: X11 in virtual environments. Proceed-
ings of IEEE 1993 Symposium on Research Frontiers in Virtual
Reality 9 (1993), 118–119.

[GKM86] GETTYS J., KARLTON P. L., MCGREGOR S.: The X
Window System. ACM Transactions on Graphics 5 (1986), 79–
109.

[HT07] HUTTERER P., THOMAS B. H.: Groupware Support in
the Windowing System. Proceedings of the eight Australasian
conference on User interface 64 (2007), 39–46.

[Hut06] HUTTERER P.: The Multi-Pointer X Server. online:
http://wearables.unisa.edu.au/mpx, 2006.

[JKGA06] JORDÀ S., KALTENBRUNNER M., GEIGER G.,
ALONSO M.: The reacTable – A Tangible Tabletop Musical In-
strument and Collaborative Workbench. International Confer-
ence on Computer Graphics and Interactive Techniques archive
ACM SIGGRAPH 2006 Sketches 25 (2006), 91.

[KBBC05] KALTENBRUNNER M., BOVERMANN T., BENCINA
R., CONSTANZA E.: TUIO: A Protocol for Table-Top Tangi-
ble User Interfaces. Proceedings of the 6th International Work-
shop on Gesture in Human-Computer Interaction and Simulation
6 (2005), 1–5.

[Mic09] MICROSOFT CORPORATION: Remote Desktop Protocol:
Basic Connectivity and Graphics Remote Specification (Version
9.0). Microsoft Corporation, 2009.

[NMKT05] NAKASHIMA K., MACHIDA T., KIYOKAWA K.,
TAKEMURA H.: A 2D-3D integrated environment for coopera-
tive work. Proceedings of the ACM symposium on Virtual Reality
Software and Technology 12 (2005), 16–22.

[NSS∗06] NI T., SCHMIDT G. S., STAADT O. G., LIVINGSTON
M. A., BALL R., MAY R.: A Survey of Large High-Resolution
Display Technologies, Techniques, and Applications. Proceed-
ings of the IEEE Conference on Virtual Reality 14 (2006), 223–
236.

[NYN03] NIEH J., YANG J. S., NOVIK N.: Measuring Thin-
Client Performance Using Slow-Motion Benchmarking. ACM
Transactions on Computer Systems 21, 1 (2003), 87 – 115.

[Pin03] PINZARI G. F.: Introduction to NX technology. NoMa-
chine Technical Report 309 (2003), 1–7.

[RBW01] REGENBRECHT H., BARATOFF G., WAGNER M.: A
tangible AR desktop environment. Computers & Graphics 25, 5
(2001), 755–763.

[RSFWH98] RICHARDSON T., STAFFORD-FRASER Q., WOOD
K. R., HOPPER A.: Virtual network computing. IEEE Internet
Computing 2 (1998), 33–38.

[RVB02] REINERS D., VOSS G., BEHR J.: OpenSG: Basic con-
cepts. Proceedings of OpenSG Symposium 2002 1 (2002), 1–7.

[SFWV] SHEN C., FORLINES C., WIGDOR D., VERNIER F.:
Open Letter to OS Designers from the Tabletop Research Com-
munity. online: http://www.diamondspace.merl.com/papers/
2007_open_letter_to_OS_developers.pdf.

[UI00] ULLMER B., ISHII H.: Emerging frameworks for tangible
user interfaces. IBM Systems Journal 39 (2000), 915–931.

c© The Eurographics Association 2009.

112


