
IPT-EGVE Symposium (2007)
B. Fröhlich, R. Blach, and R. van Liere (Editors)

Using Time-of-Flight Range Data for
Occlusion Handling in Augmented Reality

Jan Fischer1 † Benjamin Huhle2 Andreas Schilling2,3

1Island Graphics Group, University of Victoria, Canada
2WSI/GRIS, University of Tübingen, Germany 3Stanford University, USA (visiting scientist)

Abstract

One of the main problems of monoscopic video see-through augmented reality (AR) is the lack of reliable depth
information. This makes it difficult to correctly represent complex spatial interactions between real and virtual
objects, e.g., when rendering shadows. The most obvious graphical artifact is the incorrect display of the occlusion
of virtual models by real objects. Since the graphical models are rendered opaquely over the camera image, they
always appear to occlude all objects in the real environment, regardless of the actual spatial relationship. In this
paper, we propose to utilize a new type of hardware in order to solve some of the basic challenges of AR rendering.
We introduce a depth-of-flight range sensor into AR, which produces a 2D map of the distances to real objects
in the environment. The distance map is registered with high resolution color images delivered by a digital video
camera. When displaying the virtual models in AR, the distance map is used in order to decide whether the camera
image or the virtual object is visible at any position. This way, the occlusion of virtual models by real objects can
be correctly represented. Preliminary results obtained with our approach show that a useful occlusion handling
based on time-of-flight range data is possible.

Categories and Subject Descriptors (according to ACM CCS): H.5.1 [Information Interfaces and Presentation]:
Artificial, augmented, and virtual realities I.3.3 [Computer Graphics]: Display algorithms

1. Introduction

Augmented reality (AR) systems combine real images with
three-dimensional graphical objects [ABB∗01]. A signifi-
cant proportion of augmented reality applications are de-
signed as monoscopic video see-through systems. In these
systems, a single digital video camera captures images of the
real scene and uses them as background images when draw-
ing the virtual objects. The main drawback of this approach
to augmented reality with regard to the resulting graphical
representation is the total lack of depth information. Since
the distance of the real objects to the camera is not known,
complex spatial interactions cannot be correctly displayed.

One of the most obvious artifacts resulting from this
shortcoming is the lack of a correct handling of occlusions.
Typcial rendering pipelines for AR simply superimpose the
graphical models over the camera image. This produces out-
put images in which virtual models continually occlude all

† e-mail: jan@janfischer.com

objects in the real environment, neglecting the actual spatial
relationships. The task of achieving a correct representation
of the mutual occlusion of real and virtual objects in AR is
called occlusion handling, and the occlusion of virtual mod-
els by real occluders can be identified as the most difficult
and relevant problem [Kli04].

Here, we propose for the first time the introduction of
a new kind of equipment into augmented reality. Time-of-
flight range sensors deliver a 2D map of distances to objects
in the environment in real-time. We believe that by combin-
ing this depth information with the color image delivered
by a digital video camera, complex graphical effects can be
added to monoscopic video see-through AR. In this paper,
we describe how to use time-of-flight range data for occlu-
sion handling in augmented reality.

The distance map delivered by the time-of-flight sensor is
registered to high resolution color images of the real envi-
ronment. This is achieved with a one-time calibration step.
For camera pose estimation, our prototype system uses stan-
dard optical marker tracking based on the ARToolKit li-

c© The Eurographics Association 2007.

http://www.eg.org
http://diglib.eg.org

J. Fischer et al. / Using Time-of-Flight Range Data for Occlusion Handling in AR

brary [KB99]. When rendering graphical objects according
to the currently estimated camera position and orientation,
the information in the 2D depth map is taken into account. A
specialized shader program running on the graphics process-
ing unit (GPU) compares the absolute distance to the cam-
era image plane computed for graphical object pixels with
the measured real-world depth. If a real object is closer to
the camera at a given position, the display of the virtual ob-
ject pixel is suppressed. This way, the occlusion of graphical
models by real-world objects is correctly represented.

We describe our prototype setup for augmented reality
rendering using time-of-flight range data. The digital video
camera is physically attached to the time-of-flight sensor in
order to record a combined color and range image stream.
We discuss the required steps to register color image and
range data, as well as implementation details for making the
comparison of absolute depths possible. Our current proto-
type design uses an offline process for generating the AR
images. However, the processing speed of our occlusion han-
dling method is fast enough for real-time image generation,
and it could be easily adapted to be used in an interactive AR
application.

The remainder of this paper is structured as follows. Sec-
tion 2 discusses related work. Section 3 introduces the time-
of-flight sensor technology and describes the hardware setup
of our prototype system. The registration of the depth range
data with the color images is described in Section 4. The
actual occlusion handling method is discussed in Section 5,
and Section 6 elaborates on some aspects of the implemen-
tation. Results obtained with our prototype system are pre-
sented in Section 7 and are discussed in Section 8. Finally,
Section 9 concludes this paper with a summary and an out-
look on possible future developments.

2. Related Work

The detection and handling of occlusion in augmented real-
ity is an active research area. Breen et al. have suggested a
model-based approach to handling occlusion in augmented
reality [BWRT96]. The use of geometric models of known
real objects for detecting the occlusion of virtual objects
is called static occlusion handling. An extension of static
occlusion handling for determining how virtual objects are
hidden by the user’s body was described by Fuhrmann et
al. [FHFG99]. Fischer et al. have presented an application-
specific optimization for using static occlusion handling in
medical AR [FBS04]. Dynamic occlusion handling does not
require geometric descriptions of real objects in the environ-
ment, but relies on image processing and computer vision
techniques combined with certain assumptions or partial in-
formation about the real environment. Berger has described
a method for resolving dynamic occlusion when overlay-
ing virtual objects over recorded video sequences [Ber97].
Later, Lepetit and Berger presented another approach to
handling occlusion in off-line augmented reality [LB00],

which is based on the manual definition of the occlusion
boundary of a real object as well as relevant key frames
in the stored video sequence. An algorithm for detecting
dynamic occlusion in front of planar, textured background
objects was described by Fischer et al. [FRB03]. A simi-
lar, but more advanced, algorithm was later presented by
Lin et al. [LSKS05]. Approaches for detecting occlusion
in a stereo camera AR system have also been investigated.
In some cases, an attempt to solve the occlusion problem
using depth information delivered by stereo matching is
made [KOTY00, WA95]. The method developed by Gordon
et al. [GBB∗02] can correctly render interaction devices into
the scene.

Some researchers have used image-based object recon-
struction techniques in order to incorporate real objects into
a virtual environment. An example of this approach is de-
scribed by Lok et al. [LNWB03]. However, this method typ-
ically requires multiple color video cameras (four in this
case) and is computationally expensive.

Time-of-flight cameras, such as the PMD camera used in
our system, can in principle deliver optical images along
with the depth infromation. However, they normally pro-
vide only poor image quality compared to standard cam-
eras, mainly due to the low resolution of the sensor. There-
fore, it is a common approach to enhance the resulting 3D
data by integrating a second (color) camera into the sys-
tem [PHW∗06, Reu06]. Since color images contain implicit
information about the 3D geometry of a scene, it also be-
comes possible to enhance the quality of the distance data
using a combination of a color camera and a time-of-flight
camera, e.g., by optimizing the depth values in a Markov
Random Field model that encodes the dependencies of edges
in the image and the depth domain [HFS07]. However,
constraining ourselves to real-time AR applications in this
paper, we employed the depth data without further post-
processing.

Another example of a depth camera is the Z-CamTM pro-
duced by 3DV Systems [3DV07]. The use of this camera for
depth-based occlusion handling has been demonstrated by
Gvili et al. [GKOY03]. However, they only presented occlu-
sion handling for purely image-based applications and for
manually placed 3D objects. They did not deal with the reg-
istration of depth values from an AR camera tracking sys-
tem with the acquired depth map, which is the core issue
addressed in this paper (cf. Fig. 3).

3. The Time-of-Flight Range Sensor

Recently, time-of-flight sensors with a sufficiently high res-
olution for use in an AR context became available from dif-
ferent manufacturers at admissible costs. We chose the 3D
time-of-flight camera from PMD Technologies, namely the
PMD [vision] 19k [PMD07]. The camera uses a 160x120
pixel photonic mixer device (PMD) sensor array that ac-
quires distance data using the time-of-flight principle with

c© The Eurographics Association 2007.

110

J. Fischer et al. / Using Time-of-Flight Range Data for Occlusion Handling in AR

Figure 1: The intensity (top) and depth images (bottom) de-
livered by the time-of-flight camera for an example scene.

active illumination. An array of LEDs sends out invisible
modulated near-infrared light. For each pixel, the PMD sen-
sor delivers distance and intensity information simultane-
ously, where the distance data is computed from the phase
shift of the reflected light directly inside the camera. Since
both the intensity and the depth values are captured through
the same optical system, they are perfectly aligned.

We use the PMD vision camera equipped with a 12 mm
lens resulting in a horizontal field-of-view of about 30◦. In
contrast to devices such as most laser scanners and struc-
tured light range sensors, the time-of-flight technique with
active illumination is able to capture 3D data of dynamic
scenes. The camera works at a frame-rate of up to 20 fps and
is therefore perfectly suitable for real-time augmented reality
applications. Figure 1 shows the depth map and the intensity
image as output by the camera for one example scene.

3.1. Hardware Setup of the Prototype System

As seen in Figure 1, the image data of the PMD camera it-
self is not adequate for augmented reality applications due
to the low resolution and the limitation to grayscale im-
ages. In order to enhance the visual quality, we combined the
time-of-flight camera with a standard high-resolution cam-
era, namely a Matrix Vision BlueFox with a 1600x1200 pixel
sensor and equipped with a 12 mm lens [Mat07]. The result-

Figure 2: Our two-camera setup (top). The high resolution
color camera is attached to the top of the time-of-flight PMD
camera. The bottom image shows the color image delivered
by the color camera for the example scene.

ing horizontal field-of-view of about 34◦ is similar to that of
the PMD camera. This ensures an easy calibration of both
cameras and only a small loss of information. Moreover,
due to the small dimensions of the Matrix camera, the two-
camera-setup (see Figure 2) can be assembled in a way to
provide a combined color and depth sensor with only small
parallax effects.

4. Image Registration

To acquire colored 3D data from our two-camera setup, it is
necessary to map the image data delivered by the color cam-
era onto the depth map of the time-of-flight sensor. Since the
intensity image and depth data coming from the PMD cam-
era are perfectly aligned, it is possible to use standard algo-
rithms for calibration and registration of the high-resolution
camera with the depth data. This means that by registering
two standard optical images - the PMD intensity image and
the high resolution color image - we can effectively regis-
ter two different modalities. To determine the relative po-
sition and orientation of both cameras, one can interpret the
setup as a stereo system that needs to be calibrated. Using the
stereo system calibration method of the Camera Calibration
Toolbox for Matlab [Bou07] from Caltech, we calculate the
extrinsic as well as the intrinsic parameters of this system.

c© The Eurographics Association 2007.

111

J. Fischer et al. / Using Time-of-Flight Range Data for Occlusion Handling in AR

By applying the resulting translation and rotation to the 3D
data calculated from the depth data, one obtains 3D coordi-
nates in the reference frame of the high resolution camera.

Note that the depth map entries originally delivered by the
PMD camera do not represent the parallel projected distance
to objects for each pixel. Instead, the absolute distance to
the center of projection in the optical system is stored. In or-
der to use the depth-of-flight data for advanced augmented
reality rendering, however, Cartesian 3D coordinates are re-
quired.

To compute these 3D coordinates P from the depth map,
i.e., from the distances between the PMD sensor and the real
world objects, we use the simple pinhole camera model:

P = d
p

‖p‖ ,

where d is the depth value of the pixel (ximg,yimg) with pro-
jected 3D coordinates p = (ximg,yimg, f) on the image plane
(f being the focal length measured in pixels). This model is
valid only after performing an undistortion step based on the
estimated intrinsic parameters delivered by the calibration
toolkit.

After back-projecting the 3D points from the color cam-
era frame onto the image plane according to the intrinsic pa-
rameters of the color camera, a nearest-neighbor interpola-
tion is performed to fill the whole area of the camera image
with depth values. Finally, we supply the computed Carte-
sian depth values together with the already undistorted color
images to the AR rendering pipeline.

5. Occlusion Handling

The occlusion handling scheme presented here is based on
the comparison of the absolute depths of real and virtual ob-
jects. This is made possible since the aforementioned image
acquisition pipeline delivers depth maps containing the par-
allel projected distance from the camera image plane to ob-
jects in the real world. These depths are calibrated so that
an absolute depth value of 1.0 corresponds to one real mil-
limeter. At the same time, the augmented reality camera pose
estimation is also calibrated so that global coordinates cor-
responding to real millimeters are delivered.

Our protoype system for occlusion handling using time-
of-flight range data consists of an offline image generation
process. The depth maps and color images created by the
process described above are stored on disk and then im-
ported into our AR image generation software. We use the
ARToolKit for marker tracking in order to estimate the po-
sition and orientation of the combined camera setup rela-
tive to a marker visible in the scene. The marker tracking is
performed based on the color image obtained from the high
resolution camera. Assuming that the correct camera cali-
bration matrix is used and the correct marker dimensions are
passed to the ARToolKit, it also delivers camera tracking in-
formation calibrated in real-world millimeters. This makes

Figure 3: Color and depth images for one example frame.
The cross in the bottom image indicates the position where
the depths were measured for comparison.

it possible to easily compare virtual objects depths with the
time-of-flight depth maps.

Figure 3 shows the color and depth images for an exam-
ple frame processed with our system. In the top image, the
color data for a scene containing an ARToolKit marker is
shown. The bottom image of Figure 3 shows the registered
depth information for this frame displayed as pixel intensi-
ties. The brightly colored quadrangle in the depth image rep-
resents the outline of the marker projected according to the
current camera pose estimation. The brightness on the in-
side of the marker rectangle correlates to the absolute depth
of the marker computed using the estimated camera pose. In
order to compare the depths delivered by the time-of-flight
sensor and the marker tracking, we determined both depths
at the position indicated by the white cross in the figure. The
distance to the camera image plane computed at this posi-
tion is 1156 mm, while the time-of-flight depth is 1176 mm.
This is a deviation of only 2 cm, equivalent to an error of
less than 2%. We have found that our system can deliver
a similarly good correspondence between time-of-flight and
marker tracking depths under most circumstances.

c© The Eurographics Association 2007.

112

J. Fischer et al. / Using Time-of-Flight Range Data for Occlusion Handling in AR

5.1. Modification of the Rendering Pipeline

When graphical objects are rendered in our system, an
adapted rendering method is used in order to perform the
occlusion handling. A special shader program is executed on
the programmable graphics processing unit (GPU) available
in modern graphics cards. Whenever a graphical primitive
constituting a virtual model in the augmented environment is
to be rendered, this shader program is activated. The shader
compares the depth of each pixel of the graphical primitive
with the depth information stored in the time-of-flight map.
If the depth measured by the time-of-flight sensor is smaller
than the primitive depth at this location, the display of the
virtual object pixel is suppressed. This way, the occlusion of
virtual objects by real objects is represented.

The OpenGL Shading Language (GLSL) was used for the
implementation of the occlusion shader [Ros06]. In order to
make a correct depth test possible, this shader cannot rely
on the per-pixel depth information available in the graph-
ics pipeline. The standard depth information available to the
fragment shader, which controls the rendering of individual
pixels, is provided in so-called OpenGL window coordinates
(see [SWND03]). These window coordinates and the asso-
ciated depth information are only indirectly related to the
original virtual object vertices in the world coordinate sys-
tem. Therefore, we use a special GLSL vertex shader, which
computes the vertex coordinates transformed according to
the current ARToolKit camera pose estimation. These trans-
formed vertex coordinates reside in the so-called eye coor-
dinate system and can be directly compared with the depth
delivered by the time-of-flight sensor.

The z value of each vertex in eye coordinates is stored in
a varying variable of the shader. This means that the z eye
coordinate is linearly interpolated over the area of the graph-
ical primitive. This principle is illustrated in Figure 4, where
the z eye coordinates of the vertices of a triangle primitive
are denoted as ec_zn. The fragment shader then can access
the interpolated z coordinate for each pixel to be rendered.
A correct comparison of this interpolated z value in eye co-
ordinates with the time-of-flight depth is now possible.

Figure 4: Interpolation of the z value in eye coordinates over
the area of a graphical primitive.

An alternative to using a specialized shader for the depth
test would be to convert the acquired depth range informa-
tion into corresponding hardware z-buffer values and upload
them into graphics card memory. This approach, however,
would require a non-linear transformation executed on the
CPU based on various parameters of the current OpenGL
state. We believe that such a method would have a signifi-
cant impact on the performance on the system, and would
moreover require a considerably more complex implemen-
tation.

6. Implementation Details

The capturing of the sequences is done in the XGRT soft-
ware framework developed in the WSI/GRIS graphics group
of the University of Tübingen. With the flexible functionality
of XGRT, we were able to acquire data from our two-camera
system and perform the image registration. We could also
show a real-time preview of the dynamic 3D scenes in order
to confirm the validity of the acquired range information. As
mentioned above, the color and depth images are then stored
on disk for further processing in our occlusion-capable aug-
mented reality rendering system.

Note that since undistorted images are already exported
from the capturing software, we can forgo the undistor-
tion step in the ARToolKit. This is achieved by setting
the distortion factors in the ARToolKit camera parameter
structure to the vector (0,0,0,1). This way, the internal
functions arParamIdeal2Observ and arParamOb-
serv2Ideal return the unaltered identical input coordi-
nates when performing image distortion or undistortion. As
mentioned above, we determine the remaining internal pa-
rameters of the high resolution camera in a separate calibra-
tion step. In our augmented reality software, these param-
eters are passed as perspective matrix K to the ARToolKit
library, ensuring a correct functioning of the marker track-
ing component.

In the central occlusion fragment shader in our AR ren-
dering software, a comparison of interpolated virtual object
z coordinates with time-of-flight depth data is performed.
This test is implemented using conditional branching, i.e.,
with an if statement. If the real object depth is found to be
less than the virtual object depth, the GLSL special function
discard is called in order to prevent the fragment shader
from altering the camera image pixel.

The time of flight depth map is supplied to the occlusion
fragment shader as a 2D texture. This means that each depth
map is uploaded into graphics card memory along with the
color camera image before each AR frame is rendered. In
our system, the depth information is represented as 16-bit
unsigned integer data encoded in the R- and G- channels of a
color image. The occlusion shader accesses this RGB texture
and reconstructs the 16-bit depth information from it.

Note that since the occlusion shader replaces the fixed

c© The Eurographics Association 2007.

113

J. Fischer et al. / Using Time-of-Flight Range Data for Occlusion Handling in AR

functionality rendering pipeline of OpenGL, standard fea-
tures like lighting are not automatically available anymore.
In our prototype system, we have added a simple dif-
fuse lighting computation to the occlusion shader. This
way, the visible portions of virtual objects are rendered
with a monochrome shading effect suggesting their three-
dimensional structure. (Note that we have used a simple
lighting model for demonstration purposes only. More ad-
vanced lighting could be easily integrated into the shader,
and corresponding shader code is freely available, for exam-
ple in [Ros06]).

7. Results

We have tested the occlusion handling method using time-
of-flight depth data with several example scenes. Images
from three tests are shown in Figures 5, 6, and 7. Although
the color camera used in our system is capable of deliv-
ering higher resolutions, we scaled down the color images
to a size of 640x480 pixels before feeding them into the
AR image generation software. This was done to reduce the
size of the color image video sequences on disk, which are
stored as sets of individual image files. Moreover, the time-
of-flight sensor only produces depth maps with a resolution
of 160x120 pixels anyway.

Figures 5 and 6 depict example frames, in which a virtual
easter island statue is penetrated by a real piece of cardboard.
In these figures, the images on the left show the depth data
as intensity images, i.e., brighter pixels represent a larger
distance to the camera image plane. Next to the depth im-
ages, the resulting output images of our occlusion-capable
AR rendering pipeline are shown. One of the limitations of
the current generation of time-of-flight cameras becomes ap-
parent in these figures. In particular in Figure 5, noise con-
tained in the acquired depth information leads to unstable
occlusion handling results near the intersection of real and
virtual objects. In our experience, this problem typically de-
pends on the material of the real occluder and its angle with
respect to the time-of-flight camera. Figure 6, on the other
hand, shows an example of a more stable occlusion handling
result.

Figure 7 shows a virtual DC10 plane model partially oc-
cluded by a real piece of cardboard. In this figure, the output
image rendered by conventional AR image generation with-
out occlusion handling is additionally depicted on the right.
This clearly illustrates the comparative benefit of occlusion
handling based on real depth data.

8. Discussion

The examples described in the previous section, as well as
a number of additional tests not presented here, demonstrate
that our prototype system is capable of handling occlusion
based on 2D depth information. Thanks to the design of our

combined camera setup and the registration of the time-of-
flight data with the high resolution color images, a useful
combined stream of depth and color images is delivered. The
adaptation of various parts of the augmented reality render-
ing pipeline (i.e., the modification of the internal camera pa-
rameters and the application of the occlusion shader) lead to
a working occlusion handling system. Although the method
is currently implemented as an offline processing system, the
occlusion test executed on the GPU only has a minimal im-
pact on the rendering speed and could be used in an interac-
tive real-time application.

However, our tests have also highlighted some of the fu-
ture challenges when introducing time-of-flight depth infor-
mation into augmented reality. The data delivered by the
time-of-flight sensor often contains noise, and can sporad-
ically contain extreme outliers. (This can for example be
caused by total reflections of the active illumination on cer-
tain materials.) The presence of noise is evident for instance
in Figures 5 and 6, particularly near the intersection of real
and virtual objects and near the ARToolKit marker. An ad-
ditional shortcoming, which is not visible in the examples
shown here, is the fact that the time-of-flight sensor and the
color camera are not perfectly synchronized. This can lead
to a mismatch of color and depth information in the case of
fast-moving objects in the environment. Indeed, we consider
a better synchronization of the depth range images with the
color images to be one of the most important challenges for
future work.

9. Conclusions and Future Work

In this paper, we have presented a system which introduces
time-of-flight depth information into augmented reality. We
have described a hardware setup combining the depth sen-
sor with a color camera, and our approach to the registration
of the 2D images. Moreover, a prototype implementation of
occlusion handling in AR based on the additional depth in-
formation was presented.

The most important future developments will deal with
the current shortcomings of the depth information. Methods
for adaptive interpolation or smoothing could help to reduce
the impact of noise present in the data (e.g., see [HFS07]).
An improved hardware- or software-based synchronization
of the two sensors could make it possible to use the sys-
tem in environments with fast-moving objects. In addition
to these improvements, the AR rendering pipeline could be
directly integrated into the software framework used for cap-
turing the time-of-flight and color images. This way, depth-
enhanced augmented reality could be demonstrated in an in-
teractive real-time application for the first time.

The main obstacle preventing a practical use in a mobile
augmented reality scenario currently is the size of the com-
bined camera setup. In particular, the time-of-flight sensor is
relatively large and heavy compared to typical digital video

c© The Eurographics Association 2007.

114

J. Fischer et al. / Using Time-of-Flight Range Data for Occlusion Handling in AR

Figure 5: Virtual easter island statue vertically penetrated by real piece of cardboard. (Left: depth data. Right: AR image with
occlusion handling.)

Figure 6: Virtual easter island statue horizontally penetrated by real piece of cardboard. (Left: depth data. Right: AR image
with occlusion handling.)

cameras. However, we expect future types of depth cameras
to be significantly smaller and lighter than the current gen-
eration. Moreover, an increased resolution and reduced ten-
dency to noise can also be expected for future time-of-flight
cameras.

The integration of depth information into monoscopic
video see-through augmented reality can solve many of the
basic problems of AR rendering. We believe that he utiliza-
tion of depth data is not limited to occlusion handling, but
can for instance also be useful for displaying shadows, for
user interaction, and other tasks.

Acknowledgments

This work was supported by a Research Fellowship from the Ger-
man Research Foundation (DFG). We would like to thank Rachel
Gold for proofreading this paper.

References

[3DV07] 3DV SYSTEMS LTD: 3D Camera & 3D Video Solu-
tions. http://www.3dvsystems.com/, 2007.

[ABB∗01] AZUMA R., BAILLOT Y., BEHRINGER R., FEINER

S., JULIER S., MACINTYRE B.: Recent Advances in Aug-
mented Reality. IEEE Computer Graphics and Applications 21,
6 (November/December 2001), 34–47.

c© The Eurographics Association 2007.

115

J. Fischer et al. / Using Time-of-Flight Range Data for Occlusion Handling in AR

Figure 7: Virtual DC10 plane model occluded by real piece of cardboard. (Left: depth data. Center: AR image with occlusion
handling. Right: conventional AR display without occlusion handling.)

[Ber97] BERGER M.-O.: Resolving Occlusion in Augmented Re-
ality: A Contour Based Approach without 3D Reconstruction.
In Proc. of IEEE Conference on Computer Vision and Pattern
Recognition (1997), pp. 91–96.

[Bou07] BOUGUET J.-Y.: Camera Calibration Toolbox for Mat-
lab. available at www.vision.caltech.edu/bouguetj (2007).

[BWRT96] BREEN D., WHITAKER R., ROSE E., TUCERYAN

M.: Interactive Occlusion and Automatic Object Placement for
Augmented Reality. Computer Graphics Forum 15, 3 (1996),
11–22.

[FBS04] FISCHER J., BARTZ D., STRASSER W.: Occlusion Han-
dling for Medical Augmented Reality using a Volumetric Phan-
tom Model. In Proc. of ACM Symposium on Virtual Reality Soft-
ware and Technology (November 2004), pp. 174–177.

[FHFG99] FUHRMANN A., HESINA G., FAURE F., GERVAUTZ

M.: Occlusion in Collaborative Augmented Environments. Com-
puters & Graphics 23, 6 (1999), 809–819.

[FRB03] FISCHER J., REGENBRECHT H., BARATOFF G.: De-
tecting Dynamic Occlusion in front of Static Backgrounds for
AR Scenes. In Proc. of Eurographics Symposium on Virtual En-
vironments (May 2003), pp. 153–161.

[GBB∗02] GORDON G., BILLINGHURST M., BELL M., WOOD-
FILL J., KOWALIK B., ERENDI A., TILANDER J.: The Use
of Dense Stereo Range Data in Augmented Reality. In Proc.
of IEEE and ACM International Symposium on Mixed and Aug-
mented Reality (September 2002), pp. 14–26.

[GKOY03] GVILI R., KAPLAN A., OFEK E., YAHAV G.: Depth
Keying. In Proc. of SPIE Electronic Imaging (2003).

[HFS07] HUHLE B., FLECK S., SCHILLING A.: Integrating 3d
time-of-flight camera data and high resolution images for 3dtv
applications. In 3DTV CON – The True Vision (2007).

[KB99] KATO H., BILLINGHURST M.: Marker Tracking and
HMD Calibration for a video-based Augmented Reality Confer-
encing System. In Proc. of IEEE and ACM International Work-
shop on Augmented Reality (October 1999), pp. 85–94.

[Kli04] KLINKER G.: Introduction to AR - 3. OpenGL, Mix-
ing Virtual and Real Objects. Lecture, Technische Universität
München, campar.in.tum.de, November 2004.

[KOTY00] KANBARA M., OKUMA T., TAKEMURA H.,
YOKOYA N.: A Stereoscopic Video See-through Augmented
Reality System Based on Real-time Vision-based Registration.
In Proc. of IEEE Virtual Reality (March 2000), pp. 255–262.

[LB00] LEPETIT V., BERGER M.-O.: A Semi-Automatic
Method for Resolving Occlusion in Augmented Reality. In Proc.
of IEEE Conference on Computer Vision and Pattern Recognition
(June 2000), pp. 2225–2230.

[LNWB03] LOK B., NAIK S., WHITTON M., BROOKS F.: Incor-
porating Dynamic Real Objects into Immersive Virtual Environ-
ments. In Proc. of ACM Symposium on Interactive 3D Graphics
and Games (2003), pp. 31–40.

[LSKS05] LIN W., SENGUPTA K., KUMAR P., SHARMA R.: Oc-
clusion Handling in Augmented Reality Using Background Fore-
ground Segmentation. Presence: Teleoperators and Virtual Envi-
ronments 14, 3 (June 2005), 264–277.

[Mat07] MATRIX VISION GMBH:
mvBlueFox. http://www.matrix-
vision.com/products/hardware/mvbluefox.php, 2007.

[PHW∗06] PRASAD A., HARTMANN K., WEIHS W., GHOBADI

S. E., SLUITER A.: First steps in ehancing 3d vision technique
using 2d/3d sensors. In Computer Vision Winter Workshop, Czech
Pattern Recognition Society (2006), Chum, Franc, (Eds.).

[PMD07] PMD TECHNOLOGIES GMBH: PMD-Cameras.
http://www.pmdtec.com/e_inhalt/produkte/kamera.htm, 2007.

[Reu06] REULKE R.: Combination of distance data with high
resolution images. In ISPRS, Commission V Symposium, Image
Engineering and Vision Metrology (2006).

[Ros06] ROST R.: OpenGL Shading Language, 2nd ed. Addison-
Wesley Publishing Company, 2006.

[SWND03] SHREINER D., WOO M., NEIDER J., DAVIS T.:
OpenGL Programming Guide, 4th ed. Addison-Wesley Publish-
ing Company, 2003.

[WA95] WLOKA M., ANDERSON B.: Resolving Occlusion in
Augmented Reality. In Proc. of ACM Symposium on Interactive
3D Graphics and Games (1995), pp. 5–12.

c© The Eurographics Association 2007.

116

