

Language Learning in Virtual Environments: ‘Bobo and Apples’

H. Holmen and F. Nielsen

Aalborg University Esbjerg, Department for Software and Media Technology

Abstract
‘Bobo and Apples’ is one of the prototype games within SAME4KIDS (Speech-based,Animated,
Multilingual,Educational games for Kids, http://same4kids.sourceforge.net/), a multi-language and
multi-purpose games project for young kids of age 3-5 years. The main goal of SAME4KIDS is to
expose young learners to multi-module games in various available platforms. In the prototype of
‘Bobo and Apples’, the game is designed to teach multiple languages and simple math within a
frame of virtual environment, using mainly visual images, animation and sound. In this paper we
introduce the main design concept and architecture for the prototype, as well as the envisioned VR
conversion of the game, based on the Animarium system.

1. Introduction

International personal mobility, due to global
economy, political situation and education, is common in
present time. As a consequence, increasingly many families
are left in a situation that requires multiple languages (e.g.
home: language 1, work: language 2, nation of residence:
language 3, etc). Traditional language educational tools are
largely for one language at a time, while in reality multiple
languages are often required simultaneously. Although it is
known that early exposition to languages is crucial for
learning (Tok01), many educational tools do not
accommodate the needs of poly-lingual families with
toddlers. The SAME4KIDS project’s motivation is to find
a new methodology for such families, centered on a
pictorial translation component. (Figure 1)

Since the project is planned to run both on PCs and on
the web, portability is one of our central requirements.
Moreover, later in our research, we also plan to evaluate
the possibilities offered by mobile hardware platforms,
such as mobile phones or PDAs. This is why we decided to
develop most SAME4KIDS games in Java and XML; SVG
will also be used in the client-side of some of the games
and to define and print paper tangibles. Finally, voice
recognition and real-time audio manipulation require some
third-party, platform specific code, in which case libraries
in C/C++ are used (and integrated with Java code as native
methods - JNI).

Figure 1: Conceptual model of the pictorial language

 Meanwhile, 3D VE games such as ‘Bobo and Apples’,
are developed in a more complicated and dedicated
programming system, Animarium, with intensions to make
the conversion between different systems easier. For the
SAME4KIDS purpose itself, ‘Bobo and Apples’ in
confined systems such as CAVE might not be a realistic
means for many target users at the moment. However, with
generated interest in VR and AR, particularly using mobile
phone (with cameras), it is possible for researchers to
envision the possible future. This paper is discussing an
educational game project design in VE and its
implementing tool.
 As mentioned before, the SAME4KIDS project
consists of many small games, specifically designed to

IPT & EGVE Workshop (2005)
R. Blach, E. Kjems (Editors)

c© The Eurographics Association 2005.

http://smaall.sourceforge.net/
http://www.eg.org
http://diglib.eg.org

H. Holmen & F. Nielsen / Language Learning in Virtual Environments: ‘Bobo and Apples’

experience multiple languages simultaneously. Overall, the
project is developing the following technical areas:

• Visual-language translator
• Prototype implementing tools
• Speech recognition

2. Design Concept of ‘Bobo and Apples’

 As a SAME4KIDS game, ‘Bobo and Apples’ has the
following general requirements to meet:

• Multi-language
• Multi-purpose
• Kids-friendly HCI

The player will be controlling Bobo, the host character.
Instructions will be given in speech, as well as written
words on the screen. There will be 5 different levels
focusing on different aspects of language (figure 2).

Level 1 Level 2 Level 3 Level 4 Level 5
Names + size + colour +numbers All

mixed
Apple
Banana
Strawberry

Big
Small
Giant
Tiny

Red
Green
Yellow
Etc.

1 to 10 Simple
math

Figure 2: Game levels and learning objectives

 Game instructions will be given both as speech and
written words. Here is a demonstrative game play scenario
in the first level:

1. Open the game; meet Bobo. (Sound: ‘Here is Bobo’)
2. Controlling instruction. (‘Use the mouse to move Bobo

around, and click the mouse button to pick up an object’)
3. Game begins. Bobo walks around in a small 3D

environment with some objects scattered around. (‘Bobo
wants an apple. Go to the apple.’)

4. Pick up the apple. The apple will get legs and follow
Bobo. A reward point (an apple in a basket) is given, and
when all 5 points are taken, the next level opens.

 ‘Bobo and Apples’ will mix multiple languages
automatically, simultaneously. For example, instructions to
get fruits (step 3) will be given in a randomly chosen
language. The player can not choose language within the
game. The base-language the game starts with is
determined by the log-in process.
 In each higher level, more language attributes are
added, and repetition of simple words, visual
representation, and pronunciation are important methods
for learning throughout the project. For example, in level 4,

one can still hear the instruction ‘Bobo wants an apple’, but
also ‘Bobo wants two, big, green apples’. In level 5, the
game can present confusing situations. For example, one
hears the instruction of ‘Bobo wants one, big, red apple’,
while the visuals are one big green apple and one tiny red
apple. Should you choose the red apple, even though it is
not big?

For the prototype research, the project is working with
two Danish kindergartens. The two groups are very
different, both in goals and computer access. Group A is an
average Danish kindergarten where 99% of the kids are
Danish. Caretakers of Group A think the tool may help
those kids who need to improve their native language
(Danish), as well as inspire a few for the second language
training.
 Group B is largely kids from refugee families from
African and Arab nations, who need to learn Danish as
soon as possible. Teachers in Group B hope that the tool
may help in learning Danish (second language for the kids),
and are largely interested in the visual-language translator
function of the project. Within this group environment, it is
often the case that neither parents and kids nor the teachers
share a common language to communicate in a basic level.
It might be necessary to customize the game with Arabic in
‘Bobo and Apples’ for Group B.

Regarding HCI, one important factor with both groups

of kids is familiarity with computers, and the use of input
devices. In the future, the project with speech recognition
would solve many control device problems. The prototype
is using mouse and a developed easy-to-use login system
with unique id, represented by the kids’ own pictures. The
login id information consists of the following:

• Country of residence (Base language)
• Each parent’s language
• Parent’s common language (e.g. in a multi racial family,

a Danish father and French mother may communicate
with each other in English)

• Preferred 1st and 2nd languages

c© The Eurographics Association 2005.

142

H. Holmen & F. Nielsen / Language Learning in Virtual Environments: ‘Bobo and Apples’

Figure 3: Bobo

Animation of Bobo and characters are made in 3D
animation software Maya, and the shape and acting style
are meant to imitate a small child. Bobo is a rather typical
representation of a child (figure 3) in the sense of very
short, tiny steps, a funny balance, and bottom heavy design.
These are the same ideas as used in famous kids-friendly
characters like Teletubbies and Big Bird. The other
characters are neutral with no expressive body parts other
than legs (figure 4).

Figure 4: Character design for the apples.

3. Implementation in Animarium

Animarium is a prototypical virtual Medialogy
laboratory. The system was conceived originally as a
teaching tool, for a computer game construction course
held at Esbjerg campus for bachelor level students. In
conjunction with the course, students were to design a
computer game and implement a prototype showing key
gameplay, as a semester project. When working with
computer game-like systems in academia, one quickly
stumbles on the problem of available tools. While a large
number of software packages / game engines are available,
the general tendency of current-crop systems is that they
require a large amount of training and very good technical
abilities on the part of the users, before actual gameplay
can be implemented. In this situation we were faced with
the prospect of devoting a large part of the course to
teaching the specifics of such a tool, which is something
we would rather avoid, instead devoting the course to the
more important principles of game design and
development. Hence we quickly implemented the first
prototype of Animarium, using a series of open-source
libraries, the chief one being the programming language
Python (see http://www.python.org).

For this project, the environment was used to create the
multi-language learning game “Bobo and apples”. IN
particular, we will describe how the animated “Apple”
objects that grow legs and follow the main character
around when touched. It was thought that giving the
objects a life of their own would stimulate the children

playing the game further than just walking up to inanimate
objects.

As mentioned before, the legged apple was modelled in
Maya as a skinned character with an animated skeleton.
Subsequently, a number of animation “snippets” was
created for it (see fig. 5, below).

Figure 5: Example of three animation ‘snippets’ for the
apple – ‘walk’, ‘fall’ and ‘getup’

In addition to the animation, a basic behaviour pattern
was construed with the object of installing some life and
fun in the apples. This took the form of a list of predefined
behaviours:

• Sleeping – before being approached by the player, the

apples are inert, giving surprise of growing legs and
becoming alive when touched

• Waiting – when alerted and being sufficiently close to
the player, the apple simply stands in its place using an
“idle” animation cycle

• Following – whenever the distance between the apple
and the player becomes too great, the apple tries to bring
itself closer by walking. The algorithm is exceedingly
simple, just walk forward whilst always turning in the
direction of the player

• Falling – to underline the comical nature of the apples-
with-legs, it was decided to animate the apples bumping
into an obstacle, i.e. falling on their behind and getting
up again. In order to avoid the obstacle again, the apple
simply turns 135º to the left and starts walking again

• Searching – if the line of sight between the player and
the apple is broken, it immediately forgets where the
player was, and starts walking aimlessly around, in the
hope of accidentally re-gaining visual contact

Subsequently, a script for the objects was designed, in form
of a state machine. Each behaviour on the list was turned
into a state in the script, and a number of transitions with
adjoining conditions were added. The design is illustrated
in fig. 6, below:

c© The Eurographics Association 2005.

143

H. Holmen & F. Nielsen / Language Learning in Virtual Environments: ‘Bobo and Apples’

Figure 6: State-transition diagram for the autonomous
“Apple” object. Arrows mark transitions along with the
condition that cause them.

4. Architecture of Animarium

The core activity of implementing gameplay is
programming (or “scripting”) of behaviour in autonomous
actors. Based on earlier experience from commercial game
development, we wanted to teach the students the concept
of building state machines in a concurrent programming
environment. One reason for choosing Python as both
implementation and scripting language for the system is the
availability of a language extension known as Stackless
Python (see http://www.stackless.com), which
extends the language semantics to allow ultra-lightweight
microthreads (“tasklets”) to execute simultaneously in a
voluntary time-sharing scheme. On this foundation a very
light scripting framework was built, which allows objects
in Animarium’s 3D environment to be controlled by
concurrent state-machine scripts, written in Python. These
scripts would control the appearance, movement etc. of the
objects and communicate with one another using
synchronous message passing.

4.1 State machines

One reason for choosing state machines as the main
way to structure scripts is the suitability of this tool for
interactive animation. Much of the animation in the
prototype is realized using pre-recorded animation
snippets, both loops and one-shot animations, which are
played in series. In many cases, a single animation snippet
corresponds exactly to one state in the script, so the object
can be animated using a simple mapping of state-to-
animation snippet. As an example of this, consider the
behaviour of the “fruit” objects in the prototype, and the
two behaviour patterns of a) wandering aimlessly around in

search of Bobo when they cannot see him, and b) bumping
into a wall which happens to be in the way. Both have a
distinct animation (“walk” (a) and “fall+getup” (b)) as well
as a distinct state (“searching” and “falling”) associated
with them. The visualization of these two behaviours is
achieved with a simple mapping of the states (in the script),
and corresponding animation ‘snippets’ (see earlier fig. 5).

4.2 Concurrency and the Actor model

The current implementation of Animarium relies on
segregated concurrent processes communicating via
message passing. It was thought that teaching this tool to
the students would ease the difficult task of creating a
working interactive system with a high degree of
parallelism, which a computer game with autonomous
behaviour inevitably is.

This paradigm of computation originated in research
done at MIT’s Artificial Intelligence Laboratory starting in
the 1970’s. The so-called Actor model developed in main
by Carl Hewitt [Hew76], and the term concurrent
programming defines the terminology, and there was a later
formalization in the form of the pi-calculus [Mil99]. One
should consider the paradigm as an alternative to
multiprogramming, the currently more common approach
to parallelism involving multiple parallel processes
(“threads”) communicating with each other using shared
memory.

It is our belief that this programming paradigm will
reveal itself to be well suited to the development of
autonomous behaviour within a virtual world simulation.
The model provides a kind of encapsulation of parallelism,
because the system’s state is truly distributed. “…a model
of computation based on the notion of actors, active objects
that communicate by message passing.” and further,
“Actors blur the conventional distinction between data and
procedures.” [Lie87, p. 1]

5. Conclusion

The SAME4KIDS project is in its early stages and

certainly a lot have to be done. However, it is encouraging
to know that the project has been received enthusiastically
by two different kindergartens, which showed there is a
need for such tools. The data gathering from the prototype
experiments will show if children can learn simple words
in other languages. For example, the project will register if
a kid made the right or wrong choice for different language
commands.

With respect to the implementation, we intend to use the
application of language learning as a series of prototypes
for further developing the Animarium environment as a
virtual laboratory, with uses in both research and learning
situations.

In addition, we wish to test the SAME4KIDS language
learning games into the realm of immersive projection and
speech recognition. Animarium could be adapted to support

c© The Eurographics Association 2005.

144

H. Holmen & F. Nielsen / Language Learning in Virtual Environments: ‘Bobo and Apples’

both technologies with relative ease, and the effects of a
more intuitive and immersive interface on the learning
level of the target audience subsequently studied.

References:

[Hew76] Hewitt, Carl: Viewing Control Structures as

Patterns of Passing Messages (1987). http://
www.cypherpunks.to/erights/history/actors/A
IM-410.pdf

[Lie87] Lieberman, Henry: Concurrent Object-Oriented

Programming in Act 1. Object-Oriented Concurrent
Programming, A. Yonezawa and M. Tokorro, eds., MIT
Press, 1987

[Pap93] Papert, Seymour: The children's machine.

Rethinking School in the Age of the Computer. Basic
Books , 1993

[Mil99] Milner, Robin: Communicating and Mobile

Systems – The Pi Calculus. University of Cambridge,
1999

[Tok01] Tokuhama-Espinosa, Tracey: Raising

Multilingual Children. Greenwood Publishing. 2001

c© The Eurographics Association 2005.

145

