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Abstract
In this paper we present our integration of volume rendering into virtual reality, combining a fast
and flexible software implementation of direct volume rendering with the intuitive manipulation and
navigation techniques of a virtual environment. By distributing the visualization and interaction tasks
to two low-end PCs we managed to realize a highly interactive, yet inexpensive set-up. The volume
objects are seamlessly integrated into the polygonal virtual environment through image-based rendering.
The interaction techniques include scalar parameterization of transfer functions, direct 3D selection,
3D highlighting of volume objects and clipping cubes and cutting planes. These methods combined with
the interaction and display devices of virtual reality form a powerful yet intuitive environment for the
investigation of volume data sets. As main application areas we propose training and education.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism(Virtual reality); I.4.10 [Computer Graphics]: Image Represen-
tation(Volumetric);

1. Introduction

The advantages of a virtual environment as user-
interface for visualization applications have been
demonstrated previously: Cruz-Neira [CN93] demon-
strated the application of her CAVETMvirtual envi-
ronment in scientific visualization, our own adaptation
of a commercial visualization system for virtual real-
ity (VR) [FLS97], and many others [vDFL∗00] have
demonstrated the useful combination of Virtual Real-
ity (VR) and visualization.

Swan et al. [Swa00] demonstrated a computational
steering system, also using a virtual environment for
visualization and user interaction. Within a cave 3D
output is shown from time-varying data, also facilitat-
ing volume rendering as well as a VR user interface to
enable steering of the simulation process.

Especially in the field of volume visualization, the
application of direct manipulation widgets – geometric
objects exhibiting interactive behavior – makes nav-
igation and manipulation intuitive, efficient and in-
formative [KKC01]. The use of 6 degree-of-freedom

(DoF) input hardware allows effective control of these
widgets and stereoscopic display devices deliver the
necessary feedback for 3D interaction and ease the in-
terpretation of the volume data.

Opposed to smart software solutions for fast and in-
teractive volume rendering, special-purpose hardware
is another option to gain high frame-rates. The Vol-
umePro board [PHK∗99], for example,can be used as
an additional graphics board on the PC platform, per-
forming fast volume rendering. The newer VP1000
version is able to integrate high quality (orthographic)
volume rendering into OpenGL scenes. However the
cost of the hardware forbids its integration into an
inexpensive setup.

2. Objective

The main objective of this paper is to demonstrate
our seamless integration of software-rendered volume
visualization into a low-cost PC-based virtual envi-
ronment. The possibility to directly interact with vol-
ume and polygonal objects alike, and the application
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Figure 1: Using the pen to position the clipping cube.
The clipped part of the ”Torso” data set is displayed
as non-photorealistic contour rendering. The virtual
pad displays the slider controls of the cube widget.

Figure 2: Four phases of the animated ”heart”
data-set, front removed with cutting-plane.

Figure 3: The ”head” data-set with threshold set to
bones surface. Volume in front of the cutting-plane is
displayed as green contours.

of polygonally represented widgets, like cutting planes
or light sources, on the volume data makes for a more
intuitive and efficient workflow than conventional in-
teraction modes.

In the next section of this paper, we describe the
following properties of our system in detail:

• Real-time volume visualization Depending on
the complexity of the volume data set, and on the
rendering modes – e.g. surface shaded, maximum in-
tensity projection or non-photorealistic – we reach
interactive frame (stereo pair) rates of up to 25fps
for a resolution of 1283 or approximately 11fps for
2563. The virtual environment itself delivers inde-
pendently of this 60fps.

• Interaction in the virtual environment Us-
ing stereoscopic displays and six degree-of-freedom
(6DoF) interactions devices, we realize a set of so-
phisticated manipulation methods: direct 3D selec-
tion of volume sub-structures with real-time graphi-
cal feedback and focus-and-context visualization via
oblique and axis-aligned clipping planes.

• Heterogeneous display Applying image-based
rendering techniques, we mix volume rendering and
polygonal rendering to seamlessly integrate volume
visualization and interaction widgets.

3. Integrating Volume Visualization
into Virtual Reality

We aimed to integrate software volume rendering with
intuitive virtual reality interaction and display tech-
niques into a low-cost PC-based virtual environment
(VE). Our environment for volume rendering in vir-
tual reality combines two in-house developed libraries:
the Real Time Volume Rendering Library (RTVR)
and the Studierstube virtual environment [SFH∗02].
We already have employed VR-techniques in a Visu-
alization setting [FLS97,FG98], and applied our expe-
riences in this new case. By distributing the volume
rendering to a separate server, a fast PC with enough
memory for the volume data sets, we added flexibil-
ity and scalability to the system (section 3.5). This
server communicates with the client, implemented as
Studierstube application, via a LAN. Images sent by
the server are integrated into the polygonal renderings
of the virtual environment as image-based primitives.

3.1. RTVR -
Real Time Volume Rendering Library

The usual approach to providing volume rendering
within virtual environments is to exploit the texture-
mapping capabilities of 3D rendering hardware. SGI’s
volumizer [Sil] library may be used to obtain volume
rendering functionality on SGI hardware. On the PC
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platform a couple of efficient approaches for volume
rendering have been published, which exploit the ca-
pabilities of inexpensive 3D gaming cards [KKC01,
EKE01]. Although the performance of volume ren-
dering using texture mapping hardware is usually su-
perior to software-based approaches, there are some
drawbacks:

• To achieve high quality and functionality of volume
rendering proprietary extensions of OpenGL have
to be used. Shader code required to implement a
rendering technique on NVidia chips differs signifi-
cantly from code for ATI chips or SGIs. Depending
on implemented features of a specific hardware plat-
form (like the number of texturing units) the per-
formance of a specific approach to volume rendering
may vary significantly.

• The amount of texture mapping memory available
on 3D PC cards is quite limited. Depending on the
desired features of the volume rendering, further in-
formation has to be stored for each voxel in addition
to the scalar data value. To perform shaded render-
ing a gradient volume has to be stored - using 3×8
bit gradient vectors or a quantized representation
of it (12-16 bit). Opacity modulation by gradient
magnitude - used for enhancement of boundary sur-
faces - requires to store precomputed gradient mag-
nitude (8 bit). The display of segmented volumes
requires access to segmentation information during
rendering. Flexible and high quality rendering tech-
niques require 5 and more bytes of texture memory
for each voxel of the volume [KKC01]. Thus, render-
ing a 5123 volume with 16-bit data values (medical
data sets usually use 12 bit voxels) requires 256 MB
of texture memory. Sufficient memory is only pro-
vided by the latest generation of PC graphics cards
(like some GeForce FX cards).

Using a pure software approach overcomes the de-
pendency on specific hardware features and restrictive
limitations to volume size and rendering functionality.
Schulze and Niemeier [SNL01] presented an approach
for utilizing perspective shear-warp for volume ren-
dering within a CAVE environment. The CAVE setup
requires to perform perspective projection for volume
rendering, which is slower than parallel projection,
and allows to render only small data sets (323–643)
at frame rates suited for tracked environments.

RTVR (Real Time Volume Rendering Library) is
a framework of Java classes for interactive volume
rendering [MH01]. High rendering performance is
achieved by working with sets of voxels represent-
ing structures of interest within a volume, instead of
rendering the entire monolithic volume. For this rea-
son, rendering performance mainly depends on size
and structure of the visualized features of the volume,

rather than on the size of the volume itself. For typi-
cal visualizations of 2563 data sets from medicine this
approach allows to render up to 35 frames per second
on a single CPU (See section 5).

RTVR uses two-level volume rendering [HMBG00]
an extension of standard 3D visualization in such a
way that it allows to do object-aware volume render-
ing. Starting out with a segmented volume, for each
and every object within the data, an individual ren-
dering mode – ranging from direct volume rendering
through compositing, maximum-intensity projection,
and surface rendering, to non-photorealistic rendering
(NPR) of contours only – can be assigned. On a global
level, renderings of objects are combined using com-
positing based on accumulated transparencies.

The subdivision of the volume into ”objects”, struc-
tures of interest, allows simple inclusion of segmen-
tation information and fusion of data from multiple
volumes. Each object is rendered using its own set
of rendering parameters, like transfer function, shad-
ing model, non-photorealistic shading [CMH∗01a]),
and compositing modes, like direct volume render-
ing, maximum intensity projection. Thus it is possi-
ble to choose the most appropriate rendering method
for each object, depending on the visualization goal
and the structure of the object itself. Clipping can
also be performed on a per-object basis, which allows
effective use of clipping for revealing structures con-
tained within other objects. For providing context in-
formation, RTVR allows clipped parts of objects to
be rendered using a separate set of rendering parame-
ters. For example, showing clipped data with very low
opacity, or displaying just contours of objects using a
non-photorealistic shading technique.

In summary, four major reasons can be given why
a RTVR has been chosen to provide volume rendering
functionality instead of a hardware based approach:

• The ability to fuse data from multiple, reasonably
large volumes

• Efficient rendering of time-varying data
• Performance comparable to and even higher than

methods based on texture mapping for typical visu-
alization scenarios.

• High flexibility with respect to visualization para-
meters, e.g. two-level volume rendering.

• Stereo pairs of images can be rendered in parallel,
since RTVR supports multi-threading on PCs with
multiple CPUs or hyperthreading.

3.2. Studierstube

Studierstube [SFH∗02] is a multi-user augmented en-
vironment, which we already applied to problems in
the area of scientific visualization [FLS97, FG98]. It
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Figure 4: The hardware set-up used for the illustra-
tions in this paper. For documentation purposes, a
front-projection, monoscopic installation was used.

implements basic interaction methods like position-
ing objects by dragging them with a 6-DoF pen as
well as conventional 2D interaction elements, like slid-
ers, dials, and buttons for parameterizations of vi-
sualization methods. These purely virtual interface
elements are positioned on the Personal Interaction
Panel (PIP [SG97]), a handheld tablet (figure 1).
Users hold this board in their non-dominant hand
while they make adjustments to the interface elements
with the same pen they use for 6 DOF interaction (fig-
ure 1).

Studierstube supports a wide range of input and
output devices and is thus configurable for many dif-
ferent hardware setups. For reasons described in sec-
tion 3.4 we selected a projection setup. The user
stands in front of a stereo-projection screen, wearing
polarized glasses and interacts with the virtual en-
vironment using the magnetically tracked tablet and
pen combination described above (figure 1). The same
magnetic tracker (an Ascension Flock of Birds) is used
to track the user’s head position, so that the projec-
tion can be updated accordingly when the user moves.

Studierstube relies on polygonal rendering via
OpenGL. A previous implementation of volume visu-
alization in Studierstube [WSE00] employs OpenGL
Volumizer [Sil], a library distributed by SGI, which
uses textured polygons for volume visualization. The
disadvantages of this approach are well-known: even
when the OpenGL 3D texture extension is supported
on the particular graphics hardware, aliasing artifacts
appear. Furthermore, advanced rendering modes like
surface shading or non-photorealistic contour render-
ing cannot easily be simulated using this approach.

We circumvented these problems by combining

Interaction Panel

Pen

User Impostor

Clipping Cube

L

R

Figure 5: Impostor rendering of volume data (top
view). Two quads act as impostors, displaying different
views of the volume object to the user’s eyes. Interac-
tion elements (pen, pad, & clipping cube) are modelled
as polygonal geometry.

polygonal rendering with direct volume rendering, us-
ing an image-based approach.

3.3. Image-Based Rendering of Volume
Objects

We apply image-based rendering to integrate the vol-
ume visualization into our polygon-based OpenGL
rendering of our virtual environment. This means that
the images sent from the server are used as textures
on a quad which is used as an impostor for the volume
object. The server receives the two directions – one for
each eye – for which the volume has to be rendered.
The size of the impostors does not have to be varied,
since normal perspective rendering of the quads takes
place afterwards.

Actually we have to use two impostors: one for each
of the two stereoscopic views. These two quads are
turned around their center so that their surface nor-
mal always faces the respective eye of the user (figure
5). When the user changes his (or her) position, the
head-tracker (see section 3.2) reports this change to
the impostors, which update their orientation accord-
ingly and send a request for new volume renderings
to the server. As soon as the image pair is delivered,
they are displayed on their respective quads. The main
problem besides the rendering rate of the server was
the network delay (lag, section 3.5), which resulted
in a delayed response when manipulating the volume
data.

This update process happens asynchronously in a
background thread, which has the advantage of not
impairing responsiveness of the virtual environment:
during the update time – which, depending on the
complexity of the volume data set and the rendering
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mode can vary from 20ms up to 500ms – the envi-
ronment does not freeze but continues to update ac-
cording to the users interactions, the pen graphical
feedback keeps moving smoothly.

The disadvantage of this decoupling between im-
age update and impostor display becomes visible when
turning the volume object quickly: The impostors re-
orient themselves in real-time, strictly speaking with
the update rate of the polygonal environment, which
in our case comes to approximately 60Hz. The tex-
tures on the quads, on the other hand, get updated
only every few frames. When moving slowly, this does
introduce noticeable artifacts, but when a quick ro-
tational change is introduced, artifacts depending on
the re-orientation of the impostor’s geometry in the
image plane can be extremely annoying.

To reduce these artifacts, which appear as saw-
tooth-like rotational movements of the volume object,
one has to minimize the rotation of the quad in the
image plane. This can be done by performing an in-
cremental update of the quad’s orientation: instead of
calculating a rotation matrix between the initial ori-
entation of the quads normal and the viewing direc-
tion (leaving one degree of rotational freedom unde-
fined), we calculate a correctional rotation between the
normals direction in the previous frame and the new
viewing direction. The rotational axis for this update
fixed in the image plane. This minimizes the rotation
of the impostor in image-space and the resulting ar-
tifacts. Since the incremental is always taken between
the correct new position and the previous result, errors
do not add up.

There are changes of viewpoint where the fast up-
date of the impostor images is not so important:
movement directly along the direction to the impos-
tor (front to back) and rotations in the image plane
(tilting the head left or right). In these cases, lower
update rates can be tolerated (or faster movements
can be performed for a given update rate).

3.4. Pseudo-Perspective

Like other fast volume rendering implementations
(e.g. VolumePro [PHK∗99]), RTVR implements par-
allel projection only. While a straightforward imple-
mentation of correct perspective projection in RTVR
is possible, the computational overhead would reduce
frame rates in most cases below the limit acceptable
for VR applications.

Most VR set-ups, on the other hand, depend on
correctly rendered perspective images. To solve this
dilemma, we integrated the volume data as pseudo-
perspective images: The texture maps for the impos-
tors are rendered in parallel projection, while the im-

postors geometry (quads) are rendered perspectively
distorted. So the volume objects appear, while inher-
ently parallel projected, larger or smaller depending
on the distance between the user’s viewpoint and the
impostor. Since the impostors maps are rendered sep-
arately for each eye, the volume object can be viewed
as stereo.

In our projection setup, this proved to be a viable
solution. Head-mounted displays on the other hand
tempt the user to approach the objects or even put
the viewpoint inside the volume, a case where pseudo-
perspective breaks down.

The discrepancies between the pseudo-parallel pro-
jected impostors and the correct perspective of the in-
terface becomes only noticeable when the users view-
point is close to the volume object, e.g. about one
impostor diameter away.

3.5. Networking

We use a client-server approach for two reasons:
Firstly, a network connection provides a flexible cou-
pling between the Java (RTVR) and C++ (Studier-
stube) parts of the application. Secondly, delays in
the volume rendering process do not impair interac-
tion mechanisms in VR if the two processes are ex-
ecuting asynchronously. Furthermore, we gain added
scalability: by distributing client and server-processes
on different machines, multi-user environments can be
implemented without reduction in performance.

One distinction between this system and our pre-
vious experience in distributed visualization [FLS97]
lies in the distributed rendering approach we use here.
While the virtual environment handles all of the user’s
interaction and navigation, volume rendering is per-
formed on another PC and the rendered images are
transferred via the network connection.

We implemented an asynchronous protocol for the
image updates: every change of visualization parame-
ters – e.g. viewpoint or transparency – results in an
update-request message being sent to the server. Dur-
ing volume rendering, the server ignores the packets.
Only when an image pair has been completed, the
server processes the youngest received message and
starts a new rendering. This strategy has a lower la-
tency than a complete request/acknowledge cycle for
each image.

Since we need low network latency as well as high
throughput, we implemented the communication be-
tween Studierstube and RTVR with UDP/IP, the
connectionless, unreliable cousin of TCP/IP [Ste98].
UDP provides unbuffered, message-oriented commu-
nication, thereby minimizing protocol overhead. The
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lower reliability (essentially only of concern when used
in a WAN) was in our case of lesser concern, since
the continuous transmission of images from the RTVR
server guarantees idempotent updates.

4. VR Interactions with Volume Objects

For full interaction with the volume object from within
the virtual environment, we need essentially three dif-
ferent input streams:

• Symbolic input e.g., via a keyboard, is where VR
normally falls short: gesture input or speech recog-
nition are still relatively unstable and computation-
ally expensive. Luckily, we need symbolic input only
when selecting a new data set, which can be done
by selecting a file in a standard ”File open” dialog
on the PIP.

• Scalar parameterization of the volume visualization
needs input elements capable of adjusting contin-
uous or discrete input values. This is described in
detail in section 4.1.

• Direct 3D interaction makes the advantages of in-
teraction in VR apparent, interaction of inherently
three-dimensional properties like position, distance,
or rotation to be precise. The 6DoF input devices
normally employed in VR settings naturally excel
at direct interaction. A detailed description of the
direct interaction techniques we apply can be found
in the following sections.

4.1. Scalar Parameterization

We use the PIP (section 3.2) as primary input device
for all scalar parameterization (as opposed to direct
3D interaction, see section 4). Examples for such in-
teraction are adjustment of transparency or iso-surface
thresholding. These two parameters for example can
be adjusted by moving sliders like the ones depicted
in figure 1. These sliders mimic the action of classical
2D graphical user interface elements in 3D.

Additional input elements are dials, which can be
used for making precise adjustments over wide value
ranges and 3D color selectors. Standard buttons are
used to switch between rendering and interaction
modes (e.g. from ”cutting plane” to ”manipulation”).

All these widgets can be placed on the pad and are
always literally ”at hand” when the user needs them.

4.2. Navigation

The simplest direct interaction technique is navigating
the volume data. When switched to navigation mode,
the user can move the object by simply placing the pen
inside its bounding box and pressing the pen’s button.

Figure 6: Positioning the lighting widget with then
pen. The ”head” data set is displayed as transparent
surface rendering with the threshold at the air/tissue
boundary.The head cavities are clearly visible. The vir-
tual pad of the PIP displays the buttons for mode se-
lection.

As long as the button stays pressed, the objects fol-
low faithfully all motions and rotations of the pen.
The only restrictions in movement are imposed by the
tracker’s range and the pseudo-perspective rendering
(section 3.4).

4.3. Lighting

Changing the light direction is also very simple: in
lighting mode, a sphere indicates the position of the
light source (figure 6). This sphere can be moved in
the same way as the object. Two restrictions apply:
again due to pseudo-perspective rendering, only the
direction of the sphere relative to the center of the
volume object matters, not the distance, and the light
source only affects the volume object. The latter is ac-
tually a feature, not a bug, since wrong lighting could
make the PIP pad unreadable.

4.4. Cutting Plane & Clipping Cube

One visualization technique that we have already em-
ployed [FG98] is focus-plus-context (section 4.6). One
implementation is the selective clipping of the object
to focus on a certain part.

Clipping planes are implemented in OpenGL and
allow hardware accelerated clipping of polygonal ob-
jects. This approach, of course, does not suffice for our
volume objects, since it would only clip the impostor
quad. Since RTVR already supports axis-aligned as
well as oblique clipping planes, we only had to sup-
port the necessary interaction elements on the client.
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A Clipping Cube is represented by a wireframe cube
with spheres at the corners (figure 1). These spheres
light up when the pen enters them and can be moved
arbitrarily. This resizes the cube non-uniformly while
keeping it axis-aligned. The faces of the cube indicate
the six clipping planes inside the volume object.

The action to be taken for the parts of the object
outside the cube can be set differently: if real clip-
ping is needed – when only the cuts through the ob-
ject are of interest – the outside parts can be set to
”invisible”. If a real focus+context visualization is to
be performed, a more subtle approach changes the
outside parts to transparent and/or switches to non-
photorealistic contour rendering (figure 3).

The Cutting Plane works like a single face of the
clipping cube: it divides the volume object into focus
and context along its plane. The main difference is
its arbitrary alignment, which can be used to place
oblique cuts through the volume. As with the clipping
cube it can be used to change the display of the ”cut”
parts of the volume (figure 7).

As interaction method a direct application of the
pad was obviously an intuitive way to place the plane.
After switching to ”cutting” mode, the pad itself acts
as a cutting plane. After placing the plane in the right
position, a click with the second pen button ends the
”cutting” mode, freezing the cutting plane in place.

We had to use an additional button, since we use
the primary pen button for moving the volume object
during the interaction. This means that in ”cutting”
mode, real two-handed interaction can be employed:
one hand moves the cutting plane via the pad and the
other moves the object via the pen.

4.5. Direct Selection of Volume Substructures

As mentioned before (section 3.1), RTVR uses seg-
mented objects to further subdivide a volume data
set. In the case of our ”Torso” data-set (figure 1),
for example, skeleton, kidneys, and stomach are sep-
arately segmented objects. For all these objects, we
can separately – or in groups – specify visualization
parameters. We can select for a focus+context visual-
ization all objects we are not primarily interested in
and switch them to semi-transparent or NPR. We can
also select them and clip their front using the cutting
plane method, while the object we are interested in –
e.g. the kidneys, figure 7 – remains unaffected.

One (trivial) method to implement this selection
was a row of checkboxes on the pad (figure 1, left on
the virtual pad), which can be toggled to indicate the
selection state of their associated volume object. This
approach is easily implemented and works even from a

distance, but is not very intuitive, especially when con-
voluted objects – like vessels – can not always be eas-
ily distinguished in places. A more intuitive approach
would be the direct selection of an object by clicking
the pen inside it.

Occlusion

The combination of image-based rendering with
polygon-based interaction widgets yields some prob-
lems. While the stereoscopic cues work fairly well in
integrating the volume object into the polygonally de-
fined surroundings, e.g., clipping cube, pen & pad, the
occlusion between volume and polygonal objects is dif-
ficult to get right. Since the volume object is only
represented as a single quad in the z-buffer of the
client, occlusion can normally only occur between this
plane and any widget. Especially when trying to select
parts of the volume object directly by clicking inside
the volume, this arbitrary occlusion would be confus-
ing. The pen would half of the time be hidden behind
the impostor plane, which would make the selection
of these parts of the volume object extremely diffi-
cult. Even if we where to integrate z-depths into the
impostor [Sch97], we could still not correctly handle
occlusion between pen and semi-transparent volume
objects.

To enable direct interaction with the volume ob-
jects, we employ a volume rendered pen inside the
volume data set. As soon as the pen enters the bound-
ing box of the volume depicted on the impostors, we
hide the polygonal pen and substitute it by a volume
rendered cylinder. This pen is correctly occluded even
by semi-transparent volume objects. The only disad-
vantage is that this pen now is only updated by the
impostor update rate.

Highlighting

This highlighting can only be performed in coopera-
tion with the server, since only the server knows which
volume object the current pen coordinates belong to.
The client sends the pen position continuously as long
as it is inside the volume objects bounding box. The
server responds by highlighting the sub-object that
touching the current pen position. Highlighting can be
any combination of rendering parameters and modes
and is specified on a per-object basis. In most cases
we simply reduce transparency and lighten the color
of the sub-object. When the object is rendered NPR,
we additionally switch the rendering mode to surface
shaded.

4.6. Focus+Context Visualization

A typical example of how Focus+Context (F+C) vi-
sualization is realized is depicted in figure 1: the user
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Figure 7: Moving a cutting plane (illustrated as black rectangle) with the PIP. Context shown as non-photorealistic
rendered contour. Only the not selected parts are clipped, the kidneys (red) remain shaded.

has switched to ”clipping cube” mode on the PIP, as
is now dragging one corner (highlighted sphere, lower
right) to the left, thereby resizing the clipping cube
widget and moving one of its faces to bisect the data
set of a human torso at the spine. The context part
(i.e. the part outside the cube widget) is displayed
as non-photorealistic rendering, showing only the con-
tours of the clipped data.

Non-photorealistic rendering has been recently in-
troduced to volume visualization [RE01, CMH∗01b].
Bringing more input into the transfer function map-
ping, for example, the viewing vector, advanced ef-
fects like contour rendering can be achieved, indepen-
dently from which direction the data is investigated.
In our case non-photorealistic rendering proved to be
especially useful for rendering the context in a fo-
cus+context mode of volume rendering (focus being
rendered as surface, context as contour, for example).

Figure 7 shows a more sophisticated case, where
only the selected segmented objects are clipped. Using
the PIP as direct interaction tool, a cutting plane is
moved through the visualization. The kidneys (red),
which have been previously unselected by clicking the
pen inside them, are not clipped, but remain shaded
even when the half-space defined by the plane covers
the whole torso (figure 7, right).

In this example we see two different ways of F+C
visualization: first, the direct selection of the focus ob-
ject; second, the geometric placement of the plane. By
placing the plane along the spine, bisecting the torso
(figure 7, middle), we visualize the left kidney in focus,
thereby further refining the previous selection.

4.7. Time-Varying Data

The way RTVR handles volume data for rendering -
storing sets of voxels which represent objects instead
of the entire volume - allows to efficiently render time

Figure 8: The time-varying heart data set consists of
12 animation phases.

varying data avoiding the usual problems with mem-
ory bandwidth. By keeping in memory only voxels be-
longing to objects of interest more time-steps can be
kept in RAM than possible with most other software
renderers. Since RTVR performs purely software ren-
dering, it also does not suffer bandwidth limitations
of the same order as most hardware volume renderers,
which depend on loading data (up to 5 bytes per voxel
for high-quality shaded rendering) into texture mem-
ory for each new time-step. While extremely memory-
consuming, animated volume data from simulations or
sophisticated CT systems (section 5) can be visualized
and interacted with in the same way as static volume
data, as can be seen in figure 8. Our animated heart
data-set (section 5) consists of 12 animation phases,
each stored as separate volume object (figure 2).
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5. Application and Discussion

We evaluated our system using several medical com-
puter tomographic volume data sets:

• head : human head, only one volume object.
• skull : human head, two segmented objects: skin and

skull.
• torso lower human torso, four segmented objects:

bones, liver, liver vessels, kidneys.
• heart human heart, one animated object consisting

of twelve animation phases.

The hardware set-up consisted of two PCs: as server
we used a 1.8GHz Xeon with 1GB RAM, connected
via a 100Mbit LAN to the VR client on a 1.4GHz
Athlon XP with 512MB RAM and a Nvidia geForce3
graphic card. We used a DTrack optical tracker and
a VRex stereoscopic Projector with a resolution of
1024 × 768 for use with polarizing glasses. For doc-
umentation purposes all the photos in the paper were
taken with monoscopic display to avoid artifacts.

A comparison of the realized update rates for the
different data sets is shown in table 1. The monoscopic
update rates are approximately twice the stereoscopic
rates shown in the table. These rates are the updates
of the volume objects only, the polygonal components
of the environment – widgets, pen, pad – were updated
with video rate (i.e. 60Hz).

With the head data-set we tested variations in
threshold, transparency and lighting. Setting the
threshold to display the air/tissue boundary and rais-
ing transparency provided a visualization of the in-
ternal cavities of the head (figure 6). Adjusting trans-
parency and threshold was easily done with the sliders,
and the lighting direction adjusted by positioning the
”light source” widget (section 4.3).

The skull data set consists of two segmented objects.
We generated figure 9 by making the skin transparent
and using the cutting plane only on the skull. Note
the non-photo realistic contours of the skull.

The torso data set contains several segmented vol-
ume objects: liver, liver vessels, kidneys, and bones
(spine and ribs). We used the torso for testing more
complex interaction: direct 3D selection of objects and
clipping of selected objects. One aspect of our imple-
mentation proved to be especially useful in these com-
plex cases: the server retains the previous state for all
not selected objects. When changing any of the para-
meters – e.g. position of cutting plane or threshold – of
the selected objects, the other objects kept their state,
allowing to successively adjust different parameters of
different object sets.

Our only animated data-set consists of twelve
phases of a beating heart with contrast agent, cap-
tured by a CT with ECG synchronization. Here the

Figure 9: Screenshot: The skin of the ”skull” data
set is displayed as transparent surface over bones
clipped with the clipping-cube widget.

frame-rate dropped significantly (see table 1), but we
were nevertheless able to work interactively in placing
the cutting plane (figure 8).

As can be seen from table 1, the rendering time
depends more on the number of the visualized objects
within the volume and on the visualization methods
used than on the size of the volume itself. Typical
setups for medical data which include one or more ob-
jects rendered as surfaces, and small structures (for
example vessels) rendered using a truly volumetric
rendering method can be rendered at frame rates as
shown in 1, thus allowing interactive stereo projection.
Using separate computation servers for left and right
eye images acceptable frame-rates could be possible
even for visualizing objects from 5123 volumes.

As expected, the solution for occlusion between
polygonal widgets and volume objects described in
section 4.5 worked only as a compromise: when the
pen entered a volume object, the conflict between the
occlusion cue – i.e. the pen still hiding the front of
the object – and the stereoscopic depth cue was con-
sidered an irritation by most users. Nevertheless our
solution was better than leaving the occlusion to the
impostor geometry, thereby hiding the pen completely
in the back half of the object.

The direct selection of segmented volume objects
described in section 4.5 works only well in stereoscopic
mode with correctly calibrated head-tracking, other-
wise errors in depth perception lead to ”overshooting”
behavior when selecting small features. This was es-
pecially noticeable while producing images and videos
for the documentation in monoscopic mode.
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data set objects resolution updates/s

head 1 1283 33.7–35.1

skull 2 2563 16.3–17.0

torso 4 2563 9.3–10.6

heart 12(phases) 2563 11.1–12.3

Table 1: Volume Rendering updates for different data
sets. Updates are for stereo pairs per second, min/max
values given.

6. Future Work

As mentioned in section 3.2, the feature of Studier-
stube to provide viewpoints for multiple users can
be integrated by essentially distributing the volume
rendering process on one server per user. A further
speedup – with only slight modifications to the net-
work protocol – can be reached by using one RTVR
server per eye, effectively doubling the frame rate.

Further input widgets can be provided both in 2D
on the PIP or in 3D (6 DoF): a sophisticated widget for
defining the transfer function, like the one developed
by Kniss et.al [KKC01], can be integrated easily into
Studierstube.

Since RTVR exhibits several shortcomings - only
parallel projection, CPU intensive - when applied to
virtual reality, we are currently working on an integra-
tion of our GPU-based volume renderer into VR.

We are planning to test our system as supplemen-
tal teaching aid in basic anatomy in cooperations with
the Vienna General Hospital. Preliminary demonstra-
tions for medical students have resulted in positive
feedback, and the backprojection setup allows us to
demonstrate the volume models to groups of up to 30
students.

7. Conclusions

We have presented a distributed volume visualization
system integrated in a virtual environment. The im-
plementation applied pure software-rendered volume
visualization on a server PC. The client part of the
system enhanced the image-based rendering of the vol-
ume data supplied by the server by 3D interaction
widgets for focus+context visualization and transfer
function definition. The client-side visual feedback was
realized through polygonal widgets and via highlight-
ing of the segmented volume objects.

We discussed the integration aspects of the image-
based volume objects into the polygon based virtual
environment and its interaction methods and con-

cluded the paper with some examples how our system
works on medical CT data.
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