
IPT & EGVE Workshop (2005)
R. Blach, E. Kjems (Editors)

Augmented Reality Interaction for Semiautomatic Volume
Classification

A. del Río† J. Fischer‡ M. Köbele D. Bartz and W. Straßer

WSI/GRIS-VCM, University of Tübingen, Germany

Abstract
In the visualization of 3D medical data, the appropriateness of the achieved result is highly dependent on the
application. Therefore, an intuitive interaction with the user is of utter importance in order to determine the
particular aim of the visualization. In this paper, we present a novel approach for the visualization of 3D medical
data with volume rendering combined with AR-based user interaction. The utilization of augmented reality (AR),
with the assistance of a set of simple tools, allows the direct manipulation in 3D of the rendered data. The proposed
method takes into account regions of interest defined by the user and employs this information to automatically
generate an adequate transfer function. Machine learning techniques are utilized for the automatic creation of
transfer functions, which are to be used during the classification stage of the rendering pipeline. The validity of
the proposed approach for medical applications is illustrated.

Categories and Subject Descriptors (according to ACM CCS): H.5.1 [Information Interfaces and Presentation]: Mul-
timedia Information Systems — Artificial, augmented, and virtual realities; I.2.6 [Artificial Intelligence]: Learning
— Knowledge acquisition; I.3.6 [Computer Graphics]: Methodologies and Techniques — Interaction techniques

1. Introduction

The application of visualization techniques to medical data
has been a topic of intense research during the last decades.
This interest has experienced an important impulse in re-
cent years, due to the fast development and improvement
of scanning devices such as computed tomography (CT) or
magnetic resonance tomography (MRT) scanners. These de-
vices provide a three-dimensional reproduction of the pa-
tient anatomy. Direct volume rendering provides a pow-
erful alternative for displaying scanned volume data in a
three-dimensional environment. Since all the data is directly
processed and incorporated to the scene, it generates a valu-
able global overview of the whole dataset at once. However,
even though such a general insight of the volume can be of
great interest as a first approach to its visualization, usually
only some regions within the dataset are of specific con-
cern and must be highlighted with respect to the rest of the
anatomy. Taking into account that this is highly dependent
on the specific application, identifying and displaying these
regions or features of interest can become a very challeng-
ing task. Classification is associated with direct volume ren-
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dering and consists on the assignment of certain renderable
optical properties (typically color and opacity) to different
regions within the inspected dataset. This is normally per-
formed through the application of a transfer function, which
defines the correspondence between internal parameters of
the analyzed data (i.e. intensity value) and the color and
opacity values to be used during rendering.

An appropriate classification is mandatory in order to
achieve a successful visualization. In medical applications,
the aim of the visualization is to provide an informative in-
sight of the scanned data. Since the information sought af-
ter varies on each specific case, user interaction is important
to generate a proper classification. By translating the inter-
action between the user and the analyzed data into an aug-
mented reality environment, a better and more direct manip-
ulation of the volume is enabled. Moreover, given the inher-
ent three-dimensional nature of the data, the definition of a
key factor for its visualization, such as the transfer function,
clearly benefits from a direct real-time interaction in 3D.

In this work, we propose a novel semi-automatic strategy
for informative volume classification, based on user interac-
tion in an AR environment. The remainder of this paper is
structured as follows: In the following section, we provide
a brief overview of related work. In Section 3, we introduce
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ARGUS, our medical AR system. Following in Section 4,
the transfer function definition process is described in detail.
Results obtained with real clinical data are presented in Sec-
tion 5. Finally, we summarize the most relevant aspects of
our work in Section 6.

2. Related Work

Finding a good transfer function for volume classification is
one of the key problems in direct volume rendering. Despite
its crucial relevance, it has not been until recent years that a
considerable research effort has been put on addressing this
problem [PLB∗01]. In the simplest case, a transfer function
has a one dimensional domain (intensity), while its range can
be characterized by one (opacity) or four dimensions (color
and opacity). Even in this simple scenario, the standard ap-
proach of trial and error is a complex and time consuming
task. This has resulted in several efforts being proposed to
simplify this exploration process. He et al. [HHKP96] treat
the search for a proper transfer function as a parameter op-
timization problem and employ heuristic search techniques,
either based on user selection of intermediate thumbnail ren-
derings, or automatically controlled by some objective im-
age fitness function. Marks et al. [MAB∗97] address the gen-
eral problem of computer-assisted parameter setting with a
Design Gallery interface, which generates a selection of im-
ages obtained with a broad selection of all possible transfer
functions. A similar approach is presented in [KG01], where
thumbnail renderings are also employed to assist the user,
but decoupling the different search domains (data range,
color, opacity) and benefiting from the use of the VolumePro
technology [PHK∗99] to provide real-time visual feedback.

All these techniques propose alternatives to facilitate the
design of one-dimensional transfer functions. However it has
become clear that the use of multi-dimensional transfer func-
tions can drastically benefit the success of volume visualiza-
tion [PLB∗01]. Such approaches, first proposed by Levoy in
1988 [Lev88], incorporate additional parameters to the do-
main of transfer functions, hence increasing their cappabil-
ity to visually discern between different materials and struc-
tures. Kindlmann et al. [KD98] use first and second deriv-
ative information in the transfer function design in order to
semi-automatically isolate structures within the volumetric
dataset correlating with a material boundary model. An in-
teractive approach is presented in [KKH01], where the gra-
dient magnitude is also computed together with the Hessian
matrix. This information is then incorporated into the trans-
fer function design process by a set of manipulation wid-
gets that the user can employ to select and highlight features
within the dataset. A relevant aspect of this method is the
concept of dual-domain, which connects the spatial and the
transfer function domains. However, even for this interactive
system proposed by Kniss et al. [KKH01] a considerable ex-
pertise from the user is necessary to achieve a meaningful
visualization in a reasonable amount of time. In a medical
scenario this would imply the necessity of a computer graph-

ics expert assisting the physician during the transfer function
definition, which is not practicable in most situations.

The concept of direct interaction with the rendered re-
sult instead of with a representation of the transfer func-
tion domain has been taken one step further by Tzeng et
al. [TLM03], which served us as inspiration for our ap-
proach. In this case, the transfer function space is kept com-
pletely hidden to the user, who only interacts with the vol-
ume itself by painting on sample slices of the dataset. The
classification itself is performed by one multilayer percep-
tron (MLP) neural network for each predefined material
class. In our interface proposal, we borrow the idea of using a
multi-dimensional transfer function, while limiting the user
interaction to the spatial domain. We also combine the result
of the user interaction with machine learning methods in or-
der to produce the final transfer function in an automated
way. However, our approach clearly differentiates by em-
ploying an augmented reality paradigm on which a real 3D
interaction with the volume is guaranteed, in contrast with
a 2D slice-based solution. Moreover, our automatic classifi-
cation process defines a standard multi-dimensional transfer
function for the whole volume and does not require an extra
neural network for each sought after material.

The method presented in this paper uses interaction in
augmented reality for an easy-to-use semi-automatic vol-
ume classification procedure. Augmented reality denotes
techniques which combine images of the real environment
with three-dimensional computer-generated graphics. An
overview of augmented reality is given by Azuma [Azu97].
The system described in this text was implemented using our
medical augmented reality framework ARGUS [FNFB04].
The application of augmented reality in medical diagnos-
tics and treatment has been in the focus of active re-
search for many years. An early system for supporting
ultrasound-guided needle biopsies was presented by State et
al. [SLH∗96]. Figl et al. have described a head-mounted op-
erating microscope which is capable of overlaying additional
graphical information over the conventional microscopic
view [FBH∗01]. A high performance video see-through aug-
mented reality system for medical applications was pre-
sented by Vogt et al. [VKS∗03]. Schmalstieg et al. developed
the Studierstube project, a collaborative augmented reality
system [SFH∗02].

Augmented reality user interfaces have recently been
used as a tool for defining transfer functions in a man-
ual way [RZBB04]. The proposed paradigm corresponds,
however, to a traditional one-dimensional transfer function,
where the user manually combines a set of predefined func-
tions in a trial and error manner, in order to determine a cor-
rect opacity transfer function for a gray-scale representation.

In this paper, we present a novel volume classification
approach that combines the abilities of multi-dimensional
transfer functions with a user friendly AR-based user inter-
face. This type of interaction has the advantage of providing
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a better understanding of the actual three-dimensional struc-
ture of the dataset, enabling a deeper integration of the user
into the transfer function specification process. The actual
transfer function design is kept transparent to the user by
employing machine learning classifiers.

3. Medical AR

Our new system for semi-automatic volume classification
uses an augmented reality environment for displaying the
volume datasets. Moreover, intuitive three-dimensional user
interaction is provided by a specialized AR-based user in-
terface. The system has been realized using our frame-
work for medical augmented reality, ARGUS (Augmented
Reality based on Image GUided Surgery). Unlike many
other experimental setups for medical augmented real-
ity, ARGUS uses existing, commercially available medical
equipment [FNFB04]. A VectorVision R© intraoperative nav-
igation device is the basis for our AR setup (see Fig. 1(a)).
This device is equipped with a highly accurate infrared
tracking system. We utilize the information delivered by
these infrared cameras to track the video camera which de-
livers the augmented reality background images.

(a) VectorVision R© (b) Example application.

Figure 1: Medical AR. (a) IGS device produced by the
BrainLAB company (Heimstetten, Germany). (b) 3D user
interaction based on intraoperative navigation: operation
plan drawings on a plastic skull.

The intraoperative navigation system is capable of track-
ing several objects simultaneously. A rigid configuration of
two or three reflective spheres is attached to each object. De-
pending on the number of attached spheres, 5-DOF or 6-
DOF position and orientation information can be obtained
for the objects. Using these capabilities, we have designed
and implemented a user interaction library based on our
medical AR framework [FB05]. We use different pen-like
and pointer-like tools as wireless interaction devices, which
are tracked by the image guided surgery equipment. Our user
interface system automatically detects different basic click
gestures for the definition of points in 3D. Moreover, a full-
fledged menu system with freely placeable menu items is
provided. An example application of the interaction library
is illustrated in Fig. 1(b).

4. Volume Classification

Our work proposes a new approach for generating a multi-
dimensional transfer function that liberates the user from the
internal complexity of the tedious design process. Following,
the functional pipeline is described.

• Render volume in AR environment: The original dataset
is rendered with a standard linear ramp transfer function
for all color and opacity channels producing a gray-scale
representation. The obtained result is displayed using 3D
texture mapping.

• Inspect volume: The rendered volume can be directly ex-
amined in the AR environment using a clipping plane wid-
get (see below).

• Select sample points: Combining the use of the clipping
plane widget together with a pointer tool, sample points
representing features of interest can be easily selected.

• Generate transfer function: The information correspond-
ing to the selected points is processed and utilized to auto-
matically generate an appropriate transfer function. This
automatic process is achieved with the help of machine
learning algorithms on the basis of a 2D histogram (voxel
intensities and gradient magnitudes).

• Render classified volume: Once a satisfactory transfer
function has been obtained, the volume is classified and
a final rendering image is produced.

4.1. User Interaction

Figure 2: AR interaction tools: clipping plane (lower image)
and pointer tool (upper image).

In our system, the user can directly manipulate and in-
teract with the volume in an AR environment. The correct
positioning of the scanned dataset (CT, MRI) is guaranteed
by the registration process provided by the image-guided
surgery (IGS) system [FNFB04]. Two simple tools are then
employed by the user to inspect the volume and define re-
gions of interest. Figure 2 shows both interaction tools to-
gether with their virtual representation in an AR environ-
ment: a clipping plane and a pointer tool.

The clipping plane tool (see lower part of Figure 2) is
tracked with the help of three non-aligned reflecting spheres
(6-DOF) in such a way that its position and orientation can
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be retrieved from the IGS system. With this information a
plane containing the three reflecting spheres can be easily
modelled. An intersection test between this plane and the
volume bounding box provides the information necessary to
cull off all voxels above the defined plane. This way the user
can browse through the volume rendered in the AR environ-
ment by just moving the clipping plane tool in any direction,
providing a direct insight of the data.

The second interaction tool is a pointer. As can be seen in
the upper part of Figure 2, the pointer tool is tracked using
two spheres (5-DOF). The position of these two points de-
termine a vector that can be used to represent the direction of
a straight line. A simple plane-line intersection test between
this straight line and the plane defined by the clipping plane
tool can be used to indicate a position within the dataset. In
order to complete the type of interaction needed by our sys-
tem we need to be able to generate an activation click event
informing that the current position corresponds to a region
of interest and should be used for the transfer function de-
sign process. We solved this problem with our AR user in-
teraction library (see Section 3). By holding the pointer still
during a predefined time (∼2 seconds), the user generates an
event informing the system that the point selection process
must be activated.

(a) Point Selection. (b) Color Selection.

Figure 3: Sample point selection process.

Once a point has been selected (see Figure 3(a)) a dialog
allows the user to select color and opacity values (see Fig-
ure 3(b)), as well as an identifying name for the class corre-
sponding to the current material. This point selection process
can be repeated either to select new points corresponding to
already defined material classes, or to introduce new mate-
rials to be taken into account during the classification of the
volume.

As mentioned above, the points selected by the user con-
stitute the input to the automatic transfer function genera-
tion. In order to minimize the number of points that must
be defined by the user and to make the point selection more
robust against noise in the dataset and inaccuracies during
the point selection, a larger set of sample points is gener-
ated out of the initial subset defined by the user. For each
point selected with the interaction tools, a small surround-
ing region around the point is determined. The user has
the opportunity to choose between two different specifica-
tions for this surrounding region: A 3D neighborhood and

a planar neighborhood. The 3D neighborhood is formed by
the 3× 3× 3 first order neighbors along the three orthog-
onal directions (X,Y,Z). The planar neighborhood is a two-
dimensional 3× 3 set of points on the intersection polygon
determined by the clipping plane tool. In either case, the
computed set of points is taken and the average values for
both intensity and gradient magnitude are calculated. This
way, even if noise is present in the dataset, the user can rely
on the fact that the selected point does correspond to a repre-
sentative value of the spatial region which has been pointed
to.

Next, for each of these average points representing the re-
gion selected by the user, a small two-dimensional interval in
the transfer function domain is taken around the given val-
ues, and the cartesian product of these two subsets is em-
ployed to generate the set of points that are passed to the
actual classifier.

[Ii−∆I, |∇Ii|−∆|∇I|]× [Ii +∆I, |∇Ii|+∆|∇I|] (1)

Equation 1 illustrates this set of points, where Ii and |∇Ii|
denote, respectively, the voxel intensity and the gradient
magnitude of the average point representing one region se-
lected by the user.

After several tests, we have found that, for 8 bits/voxel
datasets, an interval width (∆I) of 6 HU (Hounsfield units)
in intensity and 3 in terms of gradient magnitude (∆|∇I|)
are enough to obtain a proper representation of the selected
points. Hence, 72 sample points are generated for each user
selection, ensuring a sufficient amount of input data for the
automatic classification process. Due to this procedure, the
spatially guided selection performed by the user is combined
with a data centric generation of similar points in the transfer
function domain.

4.2. Machine Learning Classifiers

The actual transfer function design process is performed au-
tomatically using machine learning methods. In this work,
we have tested two different approaches in order to generate
a 2D transfer function. The first is based on the utilization of
an artificial neural network, more specifically a Multi-Layer
Perceptron (MLP), while the second employs a k-Nearest
Neighbors classifier.

4.2.1. Multi-Layer Perceptron Classifier

Artificial neural networks are composed by simple process-
ing elements (artificial neural cells) organized in architec-
tures characterized by a high degree of interconnection in-
spired by the parallel architecture of animal brains. They re-
sult specially attractive due to their ability to approximate
functions based on sparse data through a training process and
to apply this to solve new problems of similar nature. This
training process adapts the weights modulating the value
across each connection until the network implements a de-
sired function.
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Figure 4: Structure of a three-layer perceptron.

For our purposes, we have chosen a three-layer perceptron
topology, using the supervised training method known as
Feed-Forward Back-Propagation algorithm. Figure 4 shows
an illustration of such a network. Our network is composed
by one input layer of two cells, one for each value in the
domain of the transfer function (Ii, |∇Ii|), one output layer
with as many cells as material classes have been defined by
the user, and one hidden layer. After several tests, we have
determined that a hidden layer of 15 cells is able to prop-
erly discern among the user defined classes (typically 4− 8
materials).

For the implementation of the neural network, a third
party library (LTI-Lib from the University of Aachen (Ger-
many)) was selected. The functioning principle is simple:
The set of sample points created out of the user selected posi-
tions is utilized as a training set for the neural network. Once
the network has been properly trained, each voxel intensity
and gradient magnitude are fed to the network and an output
value is produced at each cell of the output layer. As men-
tioned above, the output layer has one cell for each material
class. The value generated at each of these cells indicates
the probability that the input voxel belongs to the material
associated to the output cell. This way, a probability thresh-
old can be set so that each voxel producing a probability
over the threshold be classified with the color and opacity
of the corresponding material, while the remaining voxels
with probabilities below the threshold can be either ignored
(opacity = 0), or classified with the initial standard transfer
function.

4.2.2. k-Nearest Neighbors Classifier

A k-nearest neighbors (kNN) analysis provides a different
alternative for the automatic classification of new objects out
of a number of known examples. In our approach we use a 1-
nearest neighbor classifier (k = 1). The operation routine is
very simple, though effective. The known examples consti-
tute classes defined by the position of a prototype. The initial
position of each prototype is given by the first sample point
corresponding to a material class being passed to the input
of the classifier. Each subsequent sample point is assigned to
the class whose prototype is at the lowest Euclidean distance
computed on the transfer function domain. Once the assign-
ment has been completed, the prototype is recomputed as

the average position of all the points belonging to the class
it represents. When the next sample point arrives, the same
process is repeated until all the points generated as a result of
the direct user interaction have been classified and the corre-
sponding prototypes have been respectively repositioned to
their final location. Then the kNN classifier can be utilized
to perform the classification of the volume, voxel by voxel.
Figure 5 illustrates a simple example of this process. The

Figure 5: Structure of a kNN Classifier (k=1). The red point
illustrates an example of a voxel belonging to class B.

labels A,B,C,D,E show the prototype position correspond-
ing to five different material classes selected by the user with
the AR-based interaction tools. In this scenario, each voxel is
classified as belonging to the material class whose prototype
is the closest in terms of intensity and gradient magnitude.
The red point in Figure 5 represents a voxel being classified.
Since its nearest neighbor (k = 1) is prototype B, the voxel
will be classified with the color and opacity associated to this
material.

Even though the kNN classifier does not provide a di-
rect measure of the probability for each voxel to belong to
a specified material class, the distance to the closest proto-
type can be used for this purpose. This way it is possible to
set a threshold again in order to decide whether all voxels
should be classified (assigned to one of the defined classes),
or those which are not close enough to any prototype should
be ignored (opacity = 0) or classified with the initial gray-
scale linear ramp transfer function.

5. Results

(a) Unclassified Volume. (b) Insight View.

Figure 6: Rendering of unclassified MRI head.

A first prototype implementation of our proposed method
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has been realized in a master project. Based on this prototyp-
ical implementation, we have performed tests with several
scanned medical datasets (CT, MRI). Due to space restric-
tions, only one representative example is analyzed in detail
here (see also video). Results for other datasets are graphi-
cally presented to demonstrate the effectivity of our method.
The example dataset is an MRI scan of a human head with
8 bits/voxel of resolution and size 256× 256× 124 voxels.
Our test system is a PC with an Intel R© XeonTM proces-
sor running at 2.66 GHz and a graphics card based on an
NVidia R© GeForceTMFX 6800 chipset.

Figure 6 shows the starting point for our approach. The
volume is first rendered in an AR environment using a stan-
dard linear ramp one-dimensional transfer function for all
color and opacity (alpha) channels. The volume rendering is
performed with 3D texture mapping using preclassification
(classification previous to interpolation) to apply the trans-
fer functions. As can be seen on the images (see Figures 6(a)
and 6(b)), the initial rendering does not provide a sufficient
insight of the structures present in the scan volume and a new
classification must be performed in order to reveal the infor-
mation it contains. Using our direct interaction tools (clip-
ping plane and pointer tool), we define five different materi-
als as described in Table 1.

Material Color Opacity # Points
air black 0.0 3

brain blue 0.8 3
ventricle red 0.5 2

skull dark yellow 0.4 5
edges white 0.6 6

Table 1: Material classes defined for the MRI head dataset.

For each material class, a color and opacity value has been
defined. The selected sample points are reproduced in Fig-
ure 7(c) over the 2D histogram of the dataset. Each colored
rectangle illustrates the size of the intervals in terms of inten-
sity and gradient magnitude employed for the generation of
the input to the automatic classifiers. Since these labelled re-
gions define a color and opacity for those voxels represented
below the respective areas on the histogram, a preliminary
manual classification can be performed. The Figures 7(a)
and 7(b) show the volume after classifying these voxels with
the selected color and opacity values. Obviously, the result
is still not satisfactory enough, but gives an idea of the type
of information the automatic classifiers receive.

Using these 19 sample points, a training set for the
MLP neural network is generated as described above. For
this example, we have configured the training process to
a maximum length of 400 epochs (iterations of the back-
propagation algorithm). Under these conditions, the network
was trained after approximately 2 minutes. A threshold of
70% was set as the minimum probability to consider a voxel
as belonging to one of the defined material classes. Vox-
els with a probability inferior to 70% are rendered using

(a) Pre-Classified Volume. (b) Insight View.

(c) Histogram with user defined sample
points.

Figure 7: Result of manual classification with user defined
sample points (MRI head).

the initial linear ramp transfer function. Figure 8 shows the
obtained result after applying the transfer function gener-
ated by the MLP neural network. The transfer function it-
self is represented in Figure 8(c) over the 2D histogram of
the dataset. Each point on this histogram corresponds to one

(a) Classified Volume. (b) Insight View.

(c) Histogram showing transfer function.

Figure 8: Result of automatic classification with MLP
neural network (MRI head).

voxel in the volume, while the colors indicate the distribu-
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tion of the classes produced by the automatic classification
process. As can be seen in Figures 8(a) and 8(b), the inner
structure of those materials selected by the user during the
direct manipulation stage has been successfully highlighted
and the dark cloud produced by the air surrounding the head
has also been effectively removed.

(a) Classified Volume. (b) Insight View.

(c) Histogram showing transfer function.

Figure 9: Result of automatic classification with kNN clas-
sifier (MRI head).

In order to be able to perform a fair comparison of both
automatic classifiers, we use the same set of sample points
(see Figure 7(c)) for the initialization of the kNN classifier.
This setup consists in the creation and proper location of the
class prototypes. Given the reduced amount of sample points
(19) that must be processed and the limited number of mater-
ial classes (5), this initialization step is accomplished almost
instantaneously. In this case, no threshold was set, letting the
classifier act over the whole volume. The obtained result is
illustrated in Figure 9. Figures 9(a) and 9(b) clearly show the
ability of the kNN classifier to emphasize those features ex-
plicitly selected by the user in the AR environment. Specif-
ically, the ventricle system has been clearly highlighted and
the external circumvolutions of the brain have been made
visible too.

Two additional illustrations of results obtained with our
semiautomatic volume classification approach are shown in
Figure 10 for another MRI scan of a human head and a CT
acquisition of a human thorax. The setup utilized in both
cases is analogous to that described above for the first MRI
head example dataset.

Comparing the results obtained with both automatic clas-
sification methods, the outcome produced is surprisingly
similar for both the MLP artificial neural network and the

kNN classifier, specially considering their completely differ-
ent internal structure. Both approaches have been proven to
be effective removing undesired elements of the dataset (e.g.
surrounding air) and also highlighting materials and features
of interest (e.g. ventricular system) over uninteresting back-
ground regions. However it is also possible to recognize
some characteristical differences between them. The artifi-
cial neural network, probably due to its more complex struc-
ture, produces a slightly more accurate classification of the
data than the k-nearest neighbor classifier. This is particu-
larly true for fine structures like the circumvolutions of the
brain in the MRI head datasets or the bronchi in the CT tho-
rax dataset (see Figure 10). On the other hand, the simplicity
of the kNN classifier makes it also attractive given its shorter
runtime and similar visual performance. In any case, further
testing should be performed before a definitive evaluation of
both classifiers can be proclaimed, since at the current state
both alternatives have proven their adequateness.

6. Conclusions and Future Work

An appropriate transfer function is crucial for an effective
visualization of a volume with direct volume rendering.
Specially in medical routine, the aim of the visualization
is highly dependent on the application. Thus, in order to
achieve a successful volume classification in a reasonable
period of time, part of the knowledge of an expert user must
be introduced in the transfer function design process. This
makes user interaction a first order priority for any useful
volume classification method. Augmented reality can be em-
ployed to provide intuitive manipulation tools, allowing the
user to directly interact in 3D with the volume to be visu-
alized. This way, an intrinsic volumetric problem like vol-
ume visualization can be addressed in a three-dimensional
environment. In this paper, we have presented a novel ap-
proach for semi-automatic transfer function design which is
based on direct interaction between the user and the rendered
volume in an AR environment. Based on a set of sample
points defined by the user directly in the volume, an auto-
matic volume classification process is carried out using ma-
chine learning techniques. Specifically, an artificial neural
network (multi-layer perceptron) and a k-nearest neighbor
classifier have been implemented and tested. Both alterna-
tives have proven to be appropriate for the transfer func-
tion design process. As future work, we would like to per-
form a deeper comparative analysis of the presented and
probably other machine learning solutions (e.g. RBF neural
networks) in order to determine which techniques are bet-
ter suited for which particular applications. We also plan to
improve the volume renderer implementation by adopting a
post-classification scheme, hence reducing interpolation ar-
tifacts and producing more appealing images. Even though
this does not have a direct effect on the proposed methodol-
ogy, we believe that a more accurate rendering quality can
benefit the proper evaluation of the different classification
methods.
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(a) MRI Head (MLP Class.) (b) MRI Head (kNN Class.) (c) CT Thorax (MLP Class.) (d) CT Thorax (kNN Class.)

Figure 10: Results of automatic classification with MLP ((a), (c)) and kNN ((b), (d)) classifiers for a second MRI scan of a
human head ((a), (b)) and a CT scan of a human thorax ((c), (d)).
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