IPT & EGVE Workshop (2005)
R. Blach, E. Kjems (Editors)

A Game Engine-based Multi-Projection Virtual Environment

with System-Level Synchronization

Naoki Hashimoto, Yoshihiko Ishida and Makoto Sato

Precision and Intelligence Laboratory, Tokyo Institute of Technology, Japan
E-mail: naoki@hi.pi.titech.ac.jp

Abstract

In multi-projector displays, which surround users with high-resolution images, a PC-Cluster is often used for
realistic and real-time image generation. However, developing applications that support parallel processing on
the PC-Cluster is quite troublesome. It is also difficult to acquire sufficient rendering performance because of the
limited bandwidth of the PC-Cluster. Therefore, we aim to achieve affordable and accessible software environments
for the multi-projector displays. In this paper, we describe a self-distributing software environment for inheriting
existent game engines which provide basic functions of realizing virtual environments. This environment achieves
minimum data communication based on a master-slave model. The communication mechanism is automatically
applied to target applications by intercepting APIs. Hence we can directly exploit high-capability of the existing
game engines on the multi-projector displays.

Categories and Subject Descriptors (according to ACM CCS): 1.3.2 [Computer Graphics]: Graphics Systems
C.2.4 [Computer-Communication Networks]: Distributed Systems 1.3.7 [Computer Graphics]: Three-Dimensional

Graphics and Realismn

1. Introduction

Recently, a number of immersive projection displays have
been developed that surround users with high-resolution and
stereoscopic images [CNSD93]. Such displays are used as
display devices for Virtual Reality (VR). Immersive projec-
tion displays require multiple projectors, for high-resolution
image projection, and a PC-Cluster, which is a set of PCs
connected by a commodity network, for real-time 3-D Com-
puter Graphics (CG) generation. Today’s rapid evolution of
PC and projector technologies has greatly contributed to
achieve powerful and high-quality display systems.

On the contrary, recent VR applications have been making
a challenge to use game technology for affordable and ac-
cessible virtual environments [JLO5]. Computer games with
the most advanced simulation and graphics usually adopt
a game engine, a commercially available software package
that provides basic functions for realistic 3-D graphics, a
built-in physics engine and robust networking for shared en-
vironments. This technology is quite helpful to achieve high-
quality virtual environments.

(© The Eurographics Association 2005.

However, most of VR software resources including a
game engine have been developed for a stand-alone PC
environment. Although the latest hardware facilitates the
achievement of the multi-projector displays, the software
that controls the hardware and creates 3-D contents requires
additional support in order to operate such special hardware
using multiple PCs and projectors. In the display system us-
ing a PC-Cluster, distributed-memory type parallel process-
ing between PC nodes is essential, for basic surface-based
CG generation. When these software resources are used on
PC-Cluster-based display systems, their source codes must
be modified and special software that is adapted to PC-
Cluster-based systems must be developed. In addition to the
extra development costs, we also encounter difficulty in ac-
quiring the source codes of existent applications, including
useful and commercial software. The network bandwidth of
a common PC-Cluster also causes performance problems.
In parallel processing, the network bandwidth strictly gov-
erns the overall performance. Common PC-Clusters have
100 Mbps Ethernet, which is relatively narrow for parallel
processing. Therefore, in PC-Cluster-based display systems;

delivered by
o @’m EUROGRAPHICS

= DIGITAL LIBRARY

www.eg.org diglib.eg.org

mailto:naoki@hi.pi.titech.ac.jp
http://www.eg.org
http://diglib.eg.org

70 N. Hashimoto, Y. Ishida and M. Sato / A Game Engine-based Multi-Projection Virtual Environment with System-Level Synchronization

| Render Server |

..-__pp!'ilﬁ“lo[! —kf :
User Input —*_J_ —

s [o 21
Client —»J e
[Render Server -

Server Sereen

Figure 1: Client-Server model.

| '..-\"pphu:}lu'wh o e e

-t et ol [

\Application] — :1:\11 \]luullnnl—————_—r- ir= f

User Input _-_J r{Application| |-/]
— —— -t
Master —| - » } t
H :.'\]r|l||c'.|[im\ = e
Slave Sereen

Figure 2: Master-Slave model.

effective communication processes between PC nodes are
required for real-time image generation.

In this paper, we aim to achieve game engine-based multi-
projection virtual environments. In order to utilize exist-
ing game engines, we introduce a self-distributing software
environment for system-level synchronization without any
additional modifications. This environment achieves a low-
latency communication model with 100 Mbps Ethernet, and
automatically distributes existent applications over all of the
PC nodes. Using this software environment, we can easily
inherit game engines technology, and extend the applicabil-
ity of multi-projector displays.

2. Previous Works

Several software development and execution environments
have been proposed for multi-projector displays using a PC-
Cluster. As parallel processing architecture, they are catego-
rized into two models, a Client-Server model and a Master-
Slave model [SWNHO3].

In the Client-Server model shown in Figure 1, applica-
tions are executed on a client node and rendering infor-
mation, such as OpenGL or Direct3D command stream,
is generated. The information is sent to server nodes
and is used for image generation. WireGL [HEB*01] and
Chromium [HHN*02] are famous implementations using
this model. They achieve parallel rendering by replacing an
OpenGL driver with a special driver that can automatically
distribute rendering commands to the server nodes. This spe-
cial driver has the same APIs as the standard OpenGL driver.
Hence, OpenGL applications can be used without any spe-
cial modifications of their source codes. However, in large,
complicated 3-D scenes used in practical applications, the
amount of communication data between the client and the
server increases dramatically as the network bandwidth of

the PC-Cluster becomes a bottleneck of total rendering per-
formance.

In the Master-Slave model shown in Figure 2, same appli-
cations work on all of the PC nodes. The statuses of the ap-
plications are synchronized through a network, and the ren-
dering regions thereof are suited to the creation of a seam-
less image on a large screen. CAVELib [VRC92] and VRJug-
gler [BJH*01] adopt this architecture for parallel rendering.
In this Master-Slave model, it is of critical importance to
achieve precise synchronization between all of the PC nodes
so as not to incur a gap in image update timing. The syn-
chronization is carried out with minimum network commu-
nication between the PC nodes. The amount of data commu-
nication is very small, as compared with that of the Client-
Server model, and is not dependent on the target 3-D scenes.
Therefore, this model is suitable for environments that have
a relatively narrow-band network, such as a PC-Cluster us-
ing commodity network interfaces.

However, in the software environment based on the
Master-Slave model, the synchronization mechanism is usu-
ally implemented manually by programmers. In CAVELib
and VRJuggler, modifications of existent applications are
necessary because these software environments, including
the synchronization mechanism, are provided as libraries or
frameworks that are presumed to be used by application de-
velopers. This means that we cannot fully inherit previous
application resources because most of the source codes of
the commercial applications that we use in daily life are not
released. The cost of additional development using the li-
braries that are newly provided with the software environ-
ments is also considerable.

As an other absorbing approach, J. Jacobson et al. devel-
oped CaveUT [JLO5] based on the commercialized game en-
gine of Unreal Tournament [EpiO4]. This approach cleverly
exploits the game’s open source code for supporting multi-
projector environments. The modification of the source code
is just few lines. However this method heavily depends on
the game engine itself. When we want to use other game en-
gines, the same approach is not guaranteed to be used on that
game engines. In VR applications, many kinds of functions
are requested to be used on multiple display systems. Hence
we need to support various software environments including
the game engines to provide appropriate functions for the
requests.

3. Self-distributing Software Environment

In the section, we describe a self-distributing software en-
vironment that enables existent applications to be used on
multi-projector displays without the need for special mod-
ifications. Our system is an attempt to achieve high trans-
parency independent from the architecture of the PC-Cluster
and the network bandwidth.

(© The Eurographics Association 2005.

N. Hashimoto, Y. Ishida and M. Sato / A Game Engine-based Multi-Projection Virtual Environment with System-Level Synchronization T1

3.1. Basic Concept

In order to reduce the communication between PC nodes,
which causes network bandwidth limitation, the proposed
system adopts the Master-Slave model as parallel processing
architecture. All of the slave nodes execute the same appli-
cation, and they are well-synchronized via Ethernet, which
is equipped in each PC node.

In addition, the synchronization mechanism is not inte-
grated into the application itself, but rather into the proposed
software environment. In previous systems using the Master-
Slave model, developers had to write special codes support-
ing synchronization between the PC nodes. However, in the
proposed system, which provides synchronization functions
to the application, without the need for any special modifi-
cations, the extra cost of the additional development is re-
duced, and most applications, the source codes of which are
not released, are also available.

3.2. API Interception

In order to apply the synchronization mechanism to the ex-
istent stand-alone applications, we exploit the characteris-
tics of Application Programming Interfaces (APIs), which
interface the application with its environment, including a
system kernel, some libraries and the input devices. In gen-
eral applications, special functions, such as accelerated 3-D
graphics rendering, disk I/O, and system event handling, are
called through the APIs provided by the software environ-
ment. When an application calls some functions through the
APIs, the substance of the APIs is actually executed. These
important APIs are usually released as a dynamic link li-
brary. Hence, we can execute arbitrary functions by replac-
ing either the reference table of the API or the API itself.

In the proposed system, the functions including the syn-
chronization, which are required for parallel image genera-
tion on the PC-Cluster, are applied by replacing the import-
table of the target APIs. This application module, which can
achieve the API interception, is called the “API adapter”.
Applying the API adapter to the existent applications, the
proposed system adapts the existent applications automat-
ically to the PC-Cluster-based parallel image generation
without the need for special modification by the user. The
working process of the API adapter is shown in Figure 3.

The architecture of the proposed system is illustrated
in Figure 4. Each node has the same application and API
adapter, and they are executed simultaneously. In the exe-
cution process, the API adapter stealthily builds a commu-
nication layer on the network and achieves synchronization
between the applications working on all of the PC nodes.

3.3. Synchronization via API

In general applications, the results of the exchange toward
the outside, such as user I/O or system event handling, de-
cide the only status of applications. These communications

(© The Eurographics Association 2005.

® APl call without interception

Application System Library,
Graphics Library

Program code

Func ()

Func) call T ode

® APl call with interception

Application System Library,
Program code APl Adapter Graphics Library
: Func' () [Func()

FU"C.() call q code i code

Figure 3: Intercepting API calls.

Master Slave
‘ Application ‘ Application
|
APL | ya

Adapter | @”‘h’ :G‘VEhrcni_ZQQ"Od'@)
el

onizd) (modity
(modify)

Network

Operating Gfaphics Operating Gfaphics
System I Library | System | Library
User Input

Figure 4: Software architecture.

are processed through the APIs. Hence, we can achieve
system-level synchronization by applying the API adapter
to APIs of which the results affect the execution statuses.

For example, in the execution of the same applications
on each of the PC nodes without synchronization, the return
value of the API may not correspond with that of the other
PCs. A typical example is the time-dependent API, such as
a high-precision timer, the results of which depend heavily
on the CPU clock counter. The order and timing of system
events are also different in each of the PC nodes. Therefore,
the results of some processes that are controlled by event-
driven architecture cause inconsistency of the execution sta-
tus, as shown in Figure 5. These inconsistencies appear as
differences in rendered images and degrade the performance
of immersive projection displays.

In contrast, using the API adapter, the results of some im-
pact APIs are well-synchronized, and the order and timing of
the system events are also harmonized, as shown in Figure 6.

3.4. Supporting Multi-Projector Architecture

In a standard immersive projection display with a PC-
Cluster, the full screen area is divided into a number of rect-
angular regions that are related to each PC node of the PC-
cluster. In order to achieve seamless image projection on
large screens, each of the PCs must render the images for
the appropriate region synchronously. In the proposed sys-
tem, by intercepting 3-D graphics APIs, appropriate view
parameters for each of the PCs are set according to their lay-

72 N. Hashimoto, Y. Ishida and M. Sato / A Game Engine-based Multi-Projection Virtual Environment with System-Level Synchronization

PC1 PC2

process Application 0s oS
time

Application

- <4— RepaintEvent Timer Event —»
Processing Processing

Repaint Event Timer Event
— «— Timer Event APIFunc() :
P(ucessmg returnvaluev. ——® FurAlc() call

Timer Event :
: Repaint Event —» Processing
) — 3y API Func() 3
Fun:c() call < return value V' Repaint Event
H H

Figure 5: Process flow without API adapter.

PC1 (Master) PC2 (Slave)
rocess icati API API Application
{’ime Application Adapter 0S Network ‘Adapte PP
<4———— Repaint RN
Processing | Event | Processing

RepaintEvent | [__________

Repaint Event

— 4——— Timer - "
Processing | Event | Processing
Timer Event . s Timer Event

: L APIFuNc |
Func() call ¢ ——— return 0 i » Func() call
: i value v . :
i
T 1 T I H

Figure 6: Process flow with API adapter:

out, as shown in Figure 7. Preparing various view parameters
beforehand enables the proposed system to support several
kinds of display layouts.

However, in this strategy, the time required for render-
ing is different for each PC node because the rendered con-
tents are decided based on the view parameters. Therefore,
a SwapLock mechanism is crucial to synchronizing the up-
date timing of the rendered images. Although the gap of the
image update timing has no effect on the change of the exe-
cution status of the application itself, this is a difficult prob-
lem for users of multi-projector displays. Therefore, in the
proposed system, SwapLock is also implemented by inter-
cepting and synchronizing 3-D graphics APIs related to the
update of output images.

Although some customized video cards support
SwapLock and SyncLock needed for signal-level syn-
chronization, such special hardware is not accessible for
a commodity PC-Cluster. The particularity also spoils
the PC’s merit that can rapidly introduce latest hardware
including a video card. Supporting SwapLock by software
as our approach is significant to make the multi-projector
displays be widely and easily used in various fields.

4. Implementation and Evaluation

In order to achieve highly realistic virtual environments,
applications for the immersive projection displays are re-
quested to process massive 3-D data in real-time. They are
also required to achieve stable performance regardless of the

Desktop Environment Immersive Projection Display

/& Viewpoint /@ Viewpoint

Figure 7: View parameter modification.

rendering hardware so as to support various screen architec-
tures.

Therefore, in this section, we describe the actual imple-
mentation of the proposed system on a multi-projector dis-
play “D-vision [HITS04], and evaluate the proposed system
with respect to the two factors mentioned above. In order
to investigate the availability on the commodity network in-
terface, we use 100 Mbps Ethernet. Chromium [HHN*02],
which is a typical implementation of the Client-Server
model that can use existent applications without the need for
special modifications by the user, was chosen as a target of
comparison.

4.1. System Implementation

The system as implemented on WindowsXP and supported
OpenGL applications is considered in this section. For
system-level synchronization, we intercepted a handful of
numerous system calls, which can alter application states.
They include the calls to query Windows messages, the sys-
tem timer and the input devices including a haptic interface.
This system also supports multi-threaded programs if each
of the threads works without affecting the internal stage of
the program.

The multi-projector display D-vision used in this section
is illustrated in Figure 8. In D-vision, a flat stereoscopic
screen is used in the central area of the full screen in or-
der to enable high-quality image projection. In the periph-
eral area of the screen, a simple curved screen constructed of
fiberglass reinforced plastic (FRP) is used to achieve a wide
viewing angle [YMT*02]. In this system, the entire image
of rendered scenes is divided into 16 areas for distributed
rendering by the individual PCs connected to each projector.
Eight areas, including the central view and upper and lower
viewing areas, are rendered by 16 PCs for stereoscopic view-
ing using polarized glasses. As a result, a total of 24 PCs are
used for image generation using D-vision. The specifications
of each PC node are shown in Table 1.

4.2. Synchronization procedure

In our implementation, we use “Detours” [HB99] for hook-
ing APIs. It enables us to hook most APIs with same process.

(© The Eurographics Association 2005.

N. Hashimoto, Y. Ishida and M. Sato / A Game Engine-based Multi-Projection Virtual Environment with System-Level Synchronization 13

Projectors
for Flat Screen
(Back Projection)

Figure 8: Multi-projector display “D-vision”.

Table 1: Specifications of PC nodes.

CPU Pentium4 2.4 GHz

Memory 512MB

(0N Windows XP HomeEdition
Graphics board | RADEON9700 Pro 128 MB

In actual hooked API as shown in Figure 9, the original API
is called as a first step. Next the result of the master node
is broadcasted to all of the PC nodes. This broadcast means
that all PCs share the result of the original API executed on
the master node. Finally, the API returns the shared results to
applications. This whole process achieves the synchroniza-
tion of the result of the APIs. All of the communication is
based on UDP protocol. The overhead of this process de-
pends on the structure of applications and those execution
states. In our trials, the overhead is almost within 0.5ms.

The APIs acquiring the system-dependent information
like timeGetTime() and QueryPerformanceCounter() are
necessary to be hooked, and its results must be shared with
all of the PC nodes. The event messages sent to each process
also affect the execution states. Therefore the APIs related
to the message handling like a PeekMessage() have to be
hooked. In multi-threaded processes, we have to manage the
state of each thread. By hooking APIs generating threads
like a CreateThread(), we can assign an independent com-
munication port for thread-level synchronization. Because
the number of these APIs is limited, this hooking process is
the practical approach to synchronize the working processes
on different PC nodes.

The synchronization procedure is shown in Figure 10.
In Figure 10, Master node and Slave node are working
with synchronization. The API_x(), API_y() and Swap()
are hooked APIs. The execution states are synchronized,
and same APIs are called in same order. A timer interrup-
tion function named “receiver” is used for the polling of
the UDP-based communication. At first, in Figure 10(a),
API_x() is called first at Slave node. Slave node waits for

(© The Eurographics Association 2005.

hooked_API()

result = original _API();
new_result = BroadCast(result, host_ID);

return new_result;

Figure 9: Structure of hooked API.

process : process

i [receiver]S APIx()

@ APLx) = [wait
v send -

(b) APLY() ——— lreceiver] ;
I v
: APLy()
; [receiver]e—send % 00

(© Swap(M wait

<Synchronize at this state>
= timer interrupt

Figure 10: Synchronization procedure between Master and
Slave.

the communication from Master node. At Master node, the
results are immediately sent to Slave node, and without wait-
ing time, the execution process is continued. After that in
Slave node, the result from Master node is received, and the
paused process is resumed. Next, in Figure 10(b), APL_y()
is called first at Master node. Master node sends the results
without waiting. At that time, the process of Slave node does
not reach APIL_y(), so the receiver receives the communica-
tion instead. API_y() called at Slave node refers the receiver
and acquires the results from Master node. In this process,
there is no waiting time for Slave node.

Although these procedures are asynchronous at the time
axis, the execution states are synchronized with sharing
the API results from Master node. Needless to say, some
APIs require synchronization at timing-level. For example,
glxSwapBuffers() have to be processed at the same time in
all PCs for seamless image projection. In our implementa-
tion, these kinds of APIs adopt more complex communica-
tion procedure different from the method described above.

In Figure 10(c), Slave node sent a message to inform Mas-
ter node about the achievement to the Swap(). After the re-
ceipt from Slave node, Master node send a trigger message to
all Slave nodes. In Figure 10(c), Slave node have to wait for
the trigger message because Slave node’s Swap() is called
first. If Master node’s Swap() is called first, Master node
have to wait for the achievement message from Slave node.
This trigger message releases so-called "SwapLock". After
this process, all PCs are synchronized at timing-level.

T4 N. Hashimoto, Y. Ishida and M. Sato / A Game Engine-based Multi-Projection Virtual Environment with System-Level Synchronization

450

400 o —=— Proposed system
- 350 —*— Chromium m
§ 300 (Immeqiate mode) ||
3 \ —&— Chromium
@ 250 x (Retain mode)
Q200 T
n
[

150
FNN
@ 100 .\’\\‘\

>0 Koo v s

. ! - ‘

0 25000 50000 75000 100000
Number of polygons

Figure 11: Number of polygons and frame-rate.

100
. 9% W
& 80 [=—
S 70 —=— Proposed system ||
8 60 — Chromium L
= (Immediate mode)
5 50 —+— Chromium m
'E 40 (Retain mode)]
2 30
g 20 &

10 AN
0 '\:\\2\‘:—&.‘_

0 25000 50000 75000 100000
Number of polygons

Figure 12: Number of polygons and network utilization ra-
tio.

As shown in above, categorizing target APIs into two
groups, one requires only order-level synchronization and
another requires both order-level and time-level synchro-
nization, greatly contributes to reduce communication delay.

4.3. Number of Polygons vs. Performance

First, we evaluated the rendering performance with respect
to changes in the amount of target 3-D data. As a target ap-
plication, we prepared a simple OpenGL application using
GLUT [Kil98]. This application can freely control the num-
ber of polygons than must be rendered. In addition, this ap-
plication involves no interaction with users during the eval-
uation process.

In this evaluation, we focused on the rendering modes of
OpenGL: an immediate mode and a retain mode. While the
immediate mode processes issued rendering commands im-
mediately, the retain mode caches the commands beforehand
and then calls them upon actual rendering requests. The im-
mediate mode is a multipurpose mode because it imposes

180
160 Proposed
x\x\x\x system
T 140
S 120 ____ Chromium
b (Immdiate mode)
. 100
v
3 8o ;:...,4 Xemnn Chromium
g0 e LI (Retain mode)
£ 40
20 x 10368 polygons
= 20736 pol
0 Erssgossscc g cmmmm g polygons
0 5 10 15 20 25
Number of nodes
Figure 13: Number of nodes and frame rate.
920
80 B g gam=====R Proposed
8 - system
S
=70
.5 60 ____ Chromium
® (Immdiate mode)
X 50
_z 40 Chromium
g Y, e (Retain mode)
@ 20
= 0 x 10368 polygons
! = 20736 polygons

0 5 10 15 20 25
Number of nodes

Figure 14: Number of nodes and network utilization ratio.

no restriction on application architecture. Although the re-
tain mode can achieve high rendering performance, the tar-
get 3-D contents must be fixed in advance, as in a 3-D model
viewer. We examined the adaptability of the proposed sys-
tem to both the rendering modes. The results are shown in
Figure 11 and Figure 12. Figure 11 indicates the rendering
performance by the frame-rate (frames per second: fps) for
the change in the amount of 3-D data, represented by the
number of polygons. The network utilization ratio, i.e. the
ratio of the input/output traffic to the total network band-
width, is also illustrated in Figure 12. In the proposed sys-
tem, almost no different was observed between the result
obtained with the immediate mode and that obtained with
the retain mode. Therefore, we illustrate only the results ob-
tained with the immediate mode, which is considered to be
useful for several different kinds of applications.

In Figure 11 and Figure 12, the proposed system achieves
better performance, as compared with Chromium, regardless
of the number of polygons. For example, the proposed sys-
tem performed rendering with over 40,000 polygons at over
40 fps, which is practically acceptable performance for gen-
eral VR applications. Although the application used in the
present evaluation has two synchronization processes per
frame, the network utilization is approximately 0.65% at
maximum, because synchronization requires a small amount

(© The Eurographics Association 2005.

N. Hashimoto, Y. Ishida and M. Sato / A Game Engine-based Multi-Projection Virtual Environment with System-Level Synchronization 15

160
e 140 Plupu:cd
§ 120 ‘\‘\\’Lﬁcm
g 100 —
g 80
o 60
E 40 -
I 20 Chromium

0 | S = =

0 10 20

Number of nodes

Figure 15: Frame-rate for Quake I1I.

g100 T R— P =
.E 80 Chromium
T
N 60
2 40
g 20 Proposed
9] system
z
0
0 10 20

Number of nodes

Figure 16: Network utilization ratio for Quake II1.

of data, the range of which is from four to a few tens of bytes
per process.

In contrast, Chromium gave different results in the im-
mediate mode and the retain mode. Although Chromium
achieved approximately 20 fps for 1,500 polygons in the
immediate mode, the performance for over 5,000 polygons
dropped to 5 fps or less. This is because the numerous com-
munication data, which increase according to the target poly-
gons, must be sent sequentially using the limited network
bandwidth. This was also indicated by the high network
utilization ratio, which was over 80%, as shown in Fig-
ure 12. However in the retain mode, rendering commands are
cached at rendering servers, and the amount of data sent to
the servers is vastly reduced. As such, high rendering perfor-
mance is achieved by the reduced network utilization. From
the results shown in Figure 11, Chromium performed at 36
fps and over with 40,000 polygons or less, which is sufficient
performance for practical use.

The immediate mode is more important than the retain
mode because it can be widely used in several kinds of ap-
plications. Therefore, the application fields of Chromium are
restricted because of its insufficient performance in the im-
mediate mode. In addition, in the retain mode, Chromium
had worse performance than the proposed system with
50,000 polygons or less, because of the overhead of the com-
press and decompress phases in the communication proto-
col used in Chromium. Although these phases reduce the
amount of data actually transferred, they also cause new

(© The Eurographics Association 2005.

50
M Number of
Z 40 oo polygons
2 F———————————————————=A--—-{—0—10368
£¥ M PP —m— 20736
-
g 20 | —h—41472
° ,W,,, — _ — 1 —<—62208
£ M 60fps
- 10 M’
0
0 5 10 15 20 25

Number of synchronizations per frame

Figure 17: Number of synchronizations and frame-rate
(number of nodes = 24).

e S = 30fps| Number of
£ nodes
g 30 // ——4
£ _— =38
g //:/"/ 16
o 26 24
=24 ¥ 40fps
22
0 5 10 15 20 25

Number of synchronizations per frame

Figure 18: Number of synchronizations and frame-rate
(number of polygons = 41,472).

time-consuming processes. Especially in situations in which
the rendering task is not so heavy, for example, within
50,000 polygons, such communication overhead is domi-
nant with respect to the total performance. In other words,
the efficient communication performance of the proposed
method is suitable for such 3-D applications on limited net-
work bandwidth.

4.4. Number of Nodes vs. Performance

Next, we compared the proposed system with Chromium on
four different PC-Clusters, having 4, 8, 16 and 24 nodes,
respectively. We measured the rendering performance (fps)
and network utilization ratio with the same application used
in Section 4.3. The results are shown in Figure 13 and Fig-
ure 14.

Based on these results, we determined that both perfor-
mances are reduced according to the increase in the number
of nodes. In multi-projector displays, a greater number of
nodes is used in order to generate images for the peripheral
areas surrounding the viewer. Therefore, we must consider
that an increase in the number of nodes does not simply de-
crease the number of rendering tasks per node, as in the case
of general parallel processing on a PC-Cluster.

In the proposed system, the time required for communi-

76 N. Hashimoto, Y. Ishida and M. Sato / A Game Engine-based Multi-Projection Virtual Environment with System-Level Synchronization

Figure 19: In the proposed system, an application that was developed for stand-alone use (left image) can be used as-is on a
multi-projector display. The center image shows the entire screen of D-vision executing the same application as that shown in
the left image. Users can see the images in human-scale in the right image.

Figure 20: Complicated applications, such as commercial game software, are also adapted to multi-projector displays with a
commodity PC-Cluster using 100 Mbps Ethernet. Applications projected in human-scale achieve novel interaction with users

and helps to expand the fields of applicability.

cation between the nodes is lengthened according to the in-
crease in the number of nodes. However, the performance
does not decrease in a linear manner because the communi-
cation processes are carried out in O(logy (n)). Although the
network utilization ratio with 24 nodes is also approximately
1.5 times that with four nodes, it is only approximately 0.6%
of the entire network bandwidth. The proposed communica-
tion process does place some burden on the network band-
width.

In multi-projector displays, increasing the number of
nodes means increasing the screen area. As mentioned
above, many more pixels have to be generated for high-
resolution images. In the immediate mode, such a situation
leads directly to a dramatic increase in network communica-
tions between each of the nodes. The time required for the
communications dominates the overall process time as the
network utilization reaches 80% or over for more than eight
nodes. Therefore, the performance decreases relative to the
increase in the number of nodes.

The performance of Chromium in the retain mode, which

is robust to changes in the parallel rendering strategy, also
decreases. It is because the increase of the nodes causes
the increase of the communication frequency between the
nodes. However, the rendering commands are stored at
server nodes, and the network utilization is approximately
10% at maximum. Therefore, the network bandwidth can
only be a bottleneck for a large-scale PC-Cluster.

5. Game Engine-based VR on Multi-Projector Display

Finally, in order to verify the capability of the proposed
system for game engine-based applications, we executed
commercial game software using both the proposed sys-
tem and Chromium. Commercial game software called
“Quakelll” [1d 01], which is categorized as a first-person
shooter, was selected as the target application. Quakelll pro-
vides a realistic virtual environment with a high degree of
interaction with the user, such as free movement using a joy-
stick. As a recent challenge, the game engine of Quakelll
is applied to low-cost animation production, testbed for Al,
interactive walkthrough for architecture, etc. This software

(© The Eurographics Association 2005.

N. Hashimoto, Y. Ishida and M. Sato / A Game Engine-based Multi-Projection Virtual Environment with System-Level Synchronization 17

Figure 21: Quakelll’s game engine is used for an entertainment application with human-scale interaction, and an architectural
evaluation system. Human-scale locomotion and haptics interfaces are connected with API intercepting techniques. We can use
haptic and simple gesture interaction with virtual characters (left image). 3-D contents are easily imported from other software

like CAD (right image).

has also been used in the evaluation of Chromium. There-
fore, this software has typical characteristics of practical ap-
plications that may be used with multi-projector displays.

5.1. Performance on Scalable PC-Cluster

In our implementation on D-vision, Quakelll could be exe-
cuted in both environments without the need for additional
modifications. Figure 19 shows the scalability of our ap-
proach, and Figure 20 shows Quakelll as executed on D-
vision, which has a surrounding screen. The frame-rate and
network utilization ratio are also illustrated in Figure 15
and Figure 16. The target scene is constructed with approx-
imately 10,000 polygons. For reference, a stand-alone PC
node can render the target scene of Quakelll at 156 fps.

Because Quakelll used only the immediate mode, the net-
work utilization ratio was extremely high in Chromium, as
shown in Figure 16. As a result, Chromium achieved only
approximately 4 fps, even for four nodes, having minimum
data communication in this evaluation. That is to say, the
user was not able to interact naturally with Quakelll.

In the proposed system, the APIs that require synchro-
nization were called approximately 15 times per frame. In
total, 70% of the API calls was performed in order to obtain
the precise system-time. In the proposed system, the band-
width of the network did not become a bottleneck because
the amount of communication data per synchronization was
quite small. However, such successive synchronizations at
approximately 15 times per frame causes considerable delay
for real-time rendering processes. In the result for 24 nodes,
which is the standard structure of D-vision, the total per-
formance deteriorated by approximately 40%, as compared
with the result obtained using a stand-alone PC.

In elaborate, high-quality applications, it is expected to
use several APIs requiring synchronization. Therefore, we

(© The Eurographics Association 2005.

evaluated the performance according to the number of syn-
chronizations per frame. For this additional evaluation, we
prepared an application that can arbitrarily control the num-
ber of synchronizations, based on the application used in
Section 4.3. The results are shown in Figure 17 and Fig-
ure 18.

The increase in the number of synchronizations leads to
the increase in the amount of data transferred through the
network. Therefore, the increase in the number of synchro-
nizations loses the characteristics of the Master-Slave model,
which requires low data communication between nodes. For
Quakelll, the proposed method achieved more than 90 fps,
which is sufficient for practical performance, and there was
no noticeable reduction in performance. However, based on
the above results, the number of synchronizations greatly af-
fects the execution performance. Therefore, the application
fields of the proposed system must be examined carefully.

5.2. Examples of Game Engine-based Application

We used the game engine-based virtual environment for
two practical applications. One is an entertainment applica-
tion on D-vision. This application aims to achieve human-
scale interaction with virtual objects and characters. We in-
troduced a locomotion interface with walk-in-place motion
and a human-scale haptic interface “SPIDAR-H” [HRJS04].
These devices are connected to the game engine by inter-
cepting its various /O APIs. In our implementation, we can
use the haptic interface as a 3-D position tracker, and there-
fore simple gesture interaction is also accepted.

Another is an architectural evaluation system. Creating a
virtual environment requires many techniques for its users.
Therefore architectural researchers are not good at crystalliz-
ing their excellent ideas in interactive virtual environments.
In this evaluation system, we used the game engine as an

78 N. Hashimoto, Y. Ishida and M. Sato / A Game Engine-based Multi-Projection Virtual Environment with System-Level Synchronization

easy authoring system of virtual environments. Architectural
3-D data designed with CAD is easily accepted. Human-
scale interfaces are also available as same as the entertain-
ment application.

The overviews of these trials are shown in Figure 21. Al-
though almost same environments are provided with com-
mercial software, game engines are extremely cost-effective,
and they always provide newest technology with easy-to-use
style.

6. Conclusions and Future Works

In this paper, we achieved a game engine-based virtual envi-
ronment on multi-projector displays. In order to realize that,
we developed a self-distributing software environment with
API interception for system-level synchronization. This en-
vironment achieved low data communication based on the
master-slave model. Applying this communication mecha-
nism by intercepting significant APIs, the developed sys-
tem executed existent game engines on multi-projector dis-
plays without the need for additional modification by the
user. Based on evaluation results, we also clarified the char-
acteristics of the proposed system through comparison to
Chromium, a similar well-known system. Finally, we actu-
ally developed practical applications for entertainment and
architectural evaluation with our proposed system.

As our future work, we have a plan to evaluate our pro-
posed system with Gigabit Ethernet environment, widely
spreading as a recent standard network interface of commod-
ity PCs, and discuss about the effectiveness of that system
as compared with previous approaches. We will also try to
examine the possibility of game engine-based human-scale
virtual environments by applying it to many kinds of fields.

References

[BJH*01] BIERBAUM A., JusT C., HARTLING P,
MEINERT K., BAKER A., CRUZ-NEIRA C.: VR Jug-
gler: A Virtual Platform for Virtual Reality Application
Development. Proc. of IEEE VR 2001 (2001), 89-96.

[CNSD93] CRUZz-NEIRA C., SANDIN D. J., DEFANTI
T. A.: Surround-Screen Projection-Based Virtual Reality:
The Design and Implementation of the CAVE. In Proc. of
SIGGRAPH 93 (1993), pp. 135-142.

[Epi04] Epic GAMES INC.: Unreal Tournament 2004.
http://www.unrealtournament.com/ (2004).

[HB99] HUNT G., BRUBACHER D.: Detours: Binary in-
terception of win32 functions. In The 3rd USENIX Win-
dows NT Symposium (1999), pp. 135-143.

[HEB*01] HUMPHREYS G., ELDRIDGE M., Buck 1.,
STOLL G., EVERETT M., HANRAHAN P.: WireGL:
A scalable graphics system for clusters. Proc. of SIG-
GRAPH 2001 (2001), 129-140.

[HHN*02] HUMPHREYS G., HOUSTON M., NG R.,
FRANK R., AHERN S., KIRCHNER P. D., KLOSOWSKI
J. T.: Chromium: A Stream Processing Framework for
Interactive Rendering on Clusters. Proc. of SIGGRAPH
2002 (2002), 693-712.

[HITS04] HASHIMOTO N., JEONG S., TAKEYAMA Y.,
SATO M.: Immersive Multi-Projector Display on Hybrid
Screens with Human-Scale Haptic and Locomotion Inter-
faces. Proc. of International Conference on CyberWorlds
2004 (2004), 361-368.

[HRJS04] HASHIMOTO N., RYU J., JEONG S., SATO
M.: Human-Scale Interaction with a Multi-projector Dis-
play and Multimodal Interfaces. Advances in Multime-
dia Information Proceedings - PCM2004 Part I1I, Springe
(2004), 22-30.

[Id01] ID SOFTWARE INC.: Quakelll Arena. http://
www.ldsoftware.com/games/quake/quake3-arena/
(2001).

[JLOS] JACOBSON J., LEWIS M.: Game Engine Virtual
Reality with CaveUT. IEEE Computer 38, 5 (2005), 79—
82.

[Kil98] KILGARD M. J.: The OpenGL Utility
Toolkit Ver 3.7. http://www.opengl.org/resources/
libraries/glut/glut_downloads.html (1998).

[SWNHO03] StAADT O. G., WALKER J., NUBER C.,
HAMANN B.: A Survey and Performance Analysis of
Software Platforms for Interactive Cluster-Based Multi-
Screen Rendering. Proc. of IPT/EGVE 2003 (2003), 261—
270.

[VRC92] VRCO INc.: CAVELIib. http://www.vrco.
com/CAVELib/OverviewCAVELib.html (1992).

[YMT*02] YAMASAKI M., MINAKAWA T., TAKEDA H.,
HASEGAWA S., SATO M.: Technology for Seamless
Multi-Projection onto a Hybrid Screen Composed of
Differently Shaped Surface Elements. In Proc. Sev-
enth Annual Immersive Projection Technology symposium
(2002).

(© The Eurographics Association 2005.

http://www.unrealtournament.com/
http://www.idsoftware.com/games/quake/quake3-arena/
http://www.opengl.org/resources/libraries/glut/glut_downloads.html
http://www.vrco.com/CAVELib/OverviewCAVELib.html

