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Abstract
We present a survey of different software architectures designed to render on a tiled display. We provide an in-depth
analysis of three selected systems, including their implementation of data distribution, sort-first rendering, and
overall usability. We use various test cases to analyze the performance of these three systems.
Categories and Subject Descriptors (according to ACM CCS): C.4 [Performance of Systems]: Performance
Attributes, I.3.2 [Computer Graphics]: Distributed/Network Graphics, I.3.4 [Computer Graphics]: Graphics Pack-
ages, I.3.7 [Computer Graphics]: Virtual Reality.

1.  Introduction

Traditionally, multi-screen display environments have been
driven primarily by powerful graphics supercomputers, such
as SGI’s Onyx systems. With features including shared-mem-
ory multi-processing and multiple synchronized graphics
pipelines, they provided a stable and flexible development
platform for high-performance virtual reality and visual simu-
lation applications. Unfortunately, these features come at high
cost. Hence, the use of multi-screen projection environments
has been limited to a small number of users. 

During the past several years, high-performance and fea-
ture-rich PC graphics interfaces have become available at low
cost. This development enables us to build clusters of high-
performance graphics PCs at reasonable cost. An important
issue, however, is that the programming model for shared-
memory systems and clusters differ significantly. In shared-
memory graphics systems, the programmer does not have to
worry about issues such as sharing data amongst different pro-
cessors or distributing rendering information to different
graphics engines. In cluster environments, it is necessary to
deal with these issues explicitly. The use of clusters for com-
putationally intensive simulations and applications benefits
from the development of interface standards such as the Mes-
sage Passing Interface (http://www.mpi-forum.org) and
OpenPBS (http://www.openpbs.org). We focus on rendering

in a multi-display environment. There are two important
application areas where multi-display environments are used
14:

• displaying images at very high resolutions exceeding
those of available monitors and/or graphic cards and

• providing a larger field-of-view and better immersion
into the scenery. 

A larger image can be obtained by using special purpose
video processors that split the incoming video signal and dis-
tribute it to the connected display systems. This approach,
however, increases the area covered by a single pixel, which is
not always desired. Increasing the resolution of a displayed
image requires the combination of several display-devices
into a single display-environment, providing a higher resolu-
tion by combining several images. In the past, high-perfor-
mance computers, such as SGI’s Infinite Reality with multiple
graphics pipes have been used to drive multi-tiled displays.
With the availability of affordable PC-based high-perfor-
mance graphics cards like the NVidia GeForce- or the 3DLabs
Wildcat-series, high-quality rendering is available at relatively
low cost. Using a cluster-based approach requires the solution
of problems like data-management and -distribution, output-
synchronization and event handling. Solving these problems
for an application can be very tedious, time-consuming and
error-prone, so the usage of libraries providing the necessary
support should be considered.
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The design and development of platforms for cluster-based
multi-screen rendering has become increasingly popular dur-
ing the past few years 1,4,5,6,7,10,15,16, but a standard solution
has yet to be found. Nevertheless, many developers are eager
to port existing applications to cluster environments or to
develop new ones. Although development of those platforms
has only begun recently, various different architectures have
been proposed, some are available as open-source software
1,7,10,15,16.

We provide a survey of different systems designed to ren-
der on a tiled display and discuss potential implications on the
application development as well as advantages and disadvan-
tages of these designs. We present detailed descriptions of
three systems followed by a performance analysis. We defined
a set of test-cases and conducted a quantitative evaluation of
the usefulness of these systems for different kinds of applica-
tion scenarios. Our goal is to help developers with the selec-
tion of a software platform that is appropriate for their
particular application requirements. We do not discuss hard-
ware-related issues, which are also important for building
commodity clusters for rendering. We refer the reader to 19 for
an overview of different hardware architectures. 

The remainder of this paper is structured as follows: After
discussing different applications for cluster-based rendering
environments in Section 2, we will present the survey of dif-
ferent software platforms in Section 3. Three selected plat-
forms will be evaluated in detail in Section 4. Section 5
contains the results and interpretations of our performance
analysis, followed by conclusions in Section 6. 

2.  Cluster-based Rendering

Cluster-based rendering in general can be described as the use
of a set of computers connected via a network for rendering
purposes, ranging from distributed non-photorealistic volume
rendering over ray tracing and radiosity-based rendering 17 to
interactive rendering using application programming inter-
faces (APIs) like OpenGL 18 or DirectX 11. We use the same
terminology as is used by X-Windows. A client runs the appli-
cation while the server renders on the local display.

Most of the recent research on cluster-based rendering
focuses on different algorithms to distribute the rendering of
polygonal geometry across the cluster. Molnar et al.9 classi-
fied these algorithms into three general classes based on
where the sorting of the primitives occurs in the transition
from object to screen space. The three classes are

• sort-first,
• sort-middle, and
• sort-last.
In sort-first algorithms, the display is partitioned into dis-

crete, disjoint tiles. Each rendering node of the cluster is then
assigned one or more of these tiles and is responsible for the
complete rendering of only those primitives that lie within one
of its tiles. To accomplish this, primitives are usually pre-
transformed to determine their screen space extents and then

sent only to those tiles they overlap with. The required net-
work bandwidth can be high when sending primitives to the
appropriate render server, but utilizing knowledge of the
frame-to-frame coherency of the primitives can reduce the
amount of network traffic significantly. Sort-first algorithms
suffer from load balancing due to primitive clustering.
Samanta et al. 13 investigated methods to improve load bal-
ancing by dynamically changing the tiling. Sort-first algo-
rithms also do not scale well when the number of nodes in the
cluster increases. Every primitive that lies on the border of
two tiles must be rendered by both tiles. As the number of tiles
increases, the number of these primitives increases. Samanta
et al. 12 solved this problem by using a hybrid sort-first, sort-
last approach.

Sort-middle algorithms begin by distributing each graphics
primitive to exactly one processor† for geometry processing.
After the primitive has been transformed into screen space, it
is forwarded to another processor for rendering. Similar to the
sort-first approach the screen space is divided into tiles, but
each processor is only responsible for rasterization of primi-
tives within that tile. This approach requires a separation of
rasterization engine and rendering pipeline, so that primitives
can be redistributed. Currently this approach can only be
implemented using specialized hardware, such as SGI’s Infi-
niteReality engine.

In sort-last approaches, each primitive is sent to exactly one
node for rendering. After all primitives have been rendered,
the nodes must composite the images to form the final image.
This usually requires a large amount of bandwidth because
each node must send the entire image to a compositor. 

Tiled displays lead naturally toward a sort-first approach.
The screen is already partitioned into tiles, with each tile
being driven by a single cluster node. Other approaches
require to distribute the primitives to the rendering nodes and
distributing the final image to the nodes responsible for tile-
rendering. For these reasons the majority of software systems
designed for rendering on a tiled display implements a sort-
first algorithm.

3.  Systems Survey

In our survey we analyzed systems designed to support ren-
dering on a tiled display. All systems evaluated implement to
some extent a sort-first method. They vary widely with
respect to the way data is distributed among the cluster nodes.
Chen et al. 2,3 first looked at the problem of data distribution.
Two general models have emerged:

• client–server and
• master–slave. 
In the client–server model a user interacts with a single

instance of the application that runs on a client node. This cli-

†The term processor is used in a more general sense, not re-
stricted to CPUs or GPUs.
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ent is responsible for generating the geometry and distributing
it to the render servers (see Figure 1a). We can distinguish
between two rendering modes – immediate mode and retained
mode. In immediate mode the client sends the primitives over
the network every frame. In retained mode each render server
stores primitives it has already been sent to locally for re-use.
The client then needs to send only changes to the geometry.
This method is usually accomplished through the use of a
scene graph.

In the master–slave model the application executes on
every cluster node. Execution of the application on all nodes
must be synchronized to insure consistency among all appli-
cation instances. Typically, a master node handles all user
interaction and synchronizes state changes between all other
nodes (see Figure 1b).

The master–slave approach usually requires the least
amount of bandwidth. The results of user interactions and
other state changes are sporadic and relatively simple to trans-
mit over a network. This approach, however, is not transpar-
ent as everything affecting program execution must be
considered as input. Timers, random number generation, sys-
tem calls, or any variables influencing program execution
need to be distributed and synchronized among the nodes.

The client–server approach is usually fairly transparent to
the programmer. The program can be implemented as if it
were running on a single machine and the system will handle
the rest.

In the next section, we will present software systems from
each of the two classes. We will describe their intended uses,
how they implement the sort-first algorithm, and potential
performance impacts.

3.1.  Client–Server

Aura (Broadcast). Aura 16 is a multi-platform API designed
for scientific visualization on a tiled display. In Broadcast-
mode it implements a client-server model. It provides the user
with a scene graph interface to take advantage of frame to
frame coherency. In addition to Broadcast-mode, Aura also
provides a master-slave configuration called Multiple Copies;
see Section 3.2 for details. The Broadcast implementation rep-
licates the scene graph on all cluster nodes. Any changes to

the scene graph are then broadcast to every node to insure
consistency across the nodes. Aura uses MPI for communica-
tion between nodes.
Syzygy (Scene Graph). Syzygy 15 is a VR library designed
specifically to run on a cluster. It provides support for sound
and input device handling. Syzygy provides two programming
interfaces, a scene graph API and a master-slave framework;
see Section 3.2 for details. The scene graph is implemented as
a distributed database that is modified using Syzygy’s own
messaging protocol, allowing Syzygy to run as a multi-
threaded application. The user may add and remove render
servers during application execution. It is also possible to
reuse existing clients when switching applications.

Parallel iWalk. iWalk 4 is a system for visualizing extremely
large models for Linux or Windows. It uses an out-of-core
algorithm and storage scheme to visualize models that are too
large to be loaded into main memory. A client application
handles user interaction; each rendering server executes the
basic iWalk code which uses the prioritized-layered projection
algorithm 8 to determine a set of nodes visible only to that
server.

For and in-depth analysis of OpenSG 10 and Chromium 8

see Section 4.1 and Section 4.2, respectively.

3.2.  Master–Slave

Aura (Multiple Copies). Like its broadcast counter part, the
multiple copies version of Aura 16 also provides a scene graph
API. Following the master–slave model all cluster nodes run
an instance of the application. All supported user interactions
are broadcast to every slave and frame-buffer swaps are syn-
chronized.
Syzygy (Master–Slave). Syzygy 15 presents an alternate
framework for when the scene graph approach is inappropri-
ate. The master-slave framework provides automatic sharing
of certain data across multiple instances such as user input,
timestamps, random number seeds, and a viewing matrix.
Syzygy also provides a mechanism for sharing other types of
data as well.

VRJuggler 1 will be discussed in Section 4.3.
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rendering
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Figure 1:  Different setups for interactive rendering cluster: a) client–server setup. b) master–slave.

a) b)

263



Staadt et al. / Performance Analysis of Software Platforms for Interactive Cluster-Based Multi-Screen Rendering

© The Eurographics Association 2003

4.  Systems Evaluation

We chose three systems for an in depth comparison and per-
formance analysis. The systems were chosen for the following
reasons:

• They were designed to execute on a multi-platform, het-
erogeneous cluster. 

• They were designed to be used with little or no modifica-
tion by the user. 

• They were all being widely used by members of the
graphics community. 

• They were all open source.
We discuss how the system implements the sort-first algo-

rithm and potential performance ramifications. We also dis-
cuss ease of use and flexibility, i.e., whether the system
supports trapezoidal or overlapping tiles that are useful for
tiled displays in which the projector’s tiles are trapezoidal or
overlapping projection tiles. Finally we discuss how the three
systems compare to each other.

4.1.  OpenSG

OpenSG 10 is a scene graph API, similar to Open Inventor and
OpenGL Performer, designed to support simultaneous multi-
threading in a scene graph. Whenever the user makes changes
to the scene graph it must explicitly be stated which nodes and
fields have been changed. Each of the threads can then use
this information to update their local copies of the scene
graph. The mechanisms used to support simultaneous multi-
threading are easily extended to support rendering on a clus-
ter. OpenSG uses a client-server setup with the scene graph
replicated on every node. The user interacts with the client,
manipulating the scene graph. These changes are stored in a
change list and broadcast to every cluster node every frame.

OpenSG provides a sort-first algorithm to use a cluster to
display an image on a single display, and an algorithm for ren-
dering on a tiled display. The sort-first algorithm dynamically
changes the tile extents to balance the rendering load across
all cluster nodes. When rendering on a tiled display, OpenSG
divides the screen into M x N evenly spaced rectangular tiles
with a render server assigned to each tile. OpenSG also sup-
ports trapezoidal or different sized tiles, but the configuration
of these tiles is difficult. It is also difficult for OpenSG to sup-
port a cluster that does not easily fit into a M x N configura-
tion.

Rendering is performed by the cluster servers. Each server
is assigned a single tile of the display and adjusts its viewing
frustum accordingly. Bounding boxes are calculated for each
geometry node and view frustum culling is performed on a
per-node basis. This can lead to problems when the complete
geometry is in a single node, e.g., when rendering an isosur-
face. In this case every server must push the entire geometry
through the pipeline and rely on OpenGL to perform clipping.
This results in a big performance loss when servers need to
process and render geometry that do not lie in their tile.

By storing the scene graph on each server and transmitting
only changes to the scene graph, OpenSG does not require a
high bandwidth for static scene graphs. The cost to transmit a
few transformation matrices is small when compared to the
cost of transmitting the geometry every frame. A highly
dynamic scene graph with changing geometry and textures
results in a large amount of information being sent every
frame, putting a strain on networking resources. 

4.2.  Chromium

Chromium 7 is the successor to WireGL 5,6, a system to sup-
port OpenGL applications on a cluster. Chromium replaces
the system’s OpenGL library with its own, directly operating
on the stream of OpenGL graphics commands. Chromium
provides Stream Processing Units (SPU). Each SPU has as its
input a stream of graphics commands, performs some opera-
tion on these commands, and passes them on. SPUs can be
chained together to perform combined operations. Some basic
SPUs include render which passes the stream to the system’s
local implementation, pack which packs the stream into a
buffer for transmission to cluster servers, and print which out-
puts the stream in a human readable format.

By replacing the OpenGL library Chromium can theoreti-
cally run any application using OpenGL. In the current ver-
sion Chromium does not completely implement all features of
the OpenGL 1.2 specifications. Chromium does not imple-
ment OpenGL 1.2 imaging functions related to histogram,
min/max, convolution and colortables, and display lists are
not completely conformant (Chromium tracks changes to the
OpenGL state, and changes to the state within a display list
are not visible to the state tracker). Any OpenGL extensions
the user uses must also be implemented by Chromium.

Chromium supports rendering on a tiled display via the
tilesort SPU. The user can specify rectangular tiles of differ-
ent sizes, overlapping tiles, and tiles that do not lie on a grid. It
is also possible to specify a geometric transformation in the
form of a matrix to support trapezoidal and sheared tiles.

To render geometry Chromium pre-transforms each vertex
and maintains a screen-space bounding box of all geometries.
When the send-buffer is filled, Chromium determines which
tiles the bounding box overlaps with and sends the data to
those tiles. The send-buffer can be explicitly flushed using
glFlush. Chromium assumes that geometry which lies
together temporally also lies together spatially. This is a rea-
sonable assumption when rendering an isosurface or other
types of mesh data. In the worst case, the bounding box of the
geometry covers all tiles, requiring the data be transmitted to
all tiles. Since Chromium transmits the geometry every frame,
it is possible that substantial network traffic is generated.

4.3.  VRJuggler

VRJuggler is a framework for virtual reality applications that
handles window and viewport management, user interactions
via various input devices, sound, and cluster support1.
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VRJuggler implements a master-slave model for cluster
support. The application is started on each cluster node; one of
the nodes is designated as a master and waits for all slaves to
connect. The master node is responsible for synchronizing
execution of all slave nodes, user input can occur at any node.
The input is then broadcast to all other nodes in order to main-
tain a consistent application state. VRJuggler provides support
for a large number of commercial interaction devices, such as
trackers by Ascension, Polyhemus, and InterSense. It does not
provide inherent support for random number generators or
system calls. For any input device that is not supported by
VRJuggler, an input device interface must be provided. Cur-
rently three types of input devices are supported: digital, ana-
log, and positional.

Each cluster node can drive one or more tiles. The four cor-
ners of each tile are specified by the user, allowing the use of
overlapping tiles and trapezoidal tiles.

VRJuggler does not perform any geometry culling; it sim-
ply lets OpenGL clip to the window borders. This means that
running VRJuggler on a cluster will show little to no perfor-
mance improvement. Each tile must still send the complete
geometry through the pipeline. 

4.4.  Comparison

Of the three systems compared VRJuggler is expected to be
running at the most consistent frame rates, running at about
the same rate as running on a single machine, not faster and
not much slower. Broadcasting user interactions requires very
little bandwidth and should not affect the performance of
VRJuggler at all. VRJuggler’s lack of geometry culling results
in a lot of duplication and unnecessary work being done. Tiles
render geometry that does not lie within their viewing volume.

OpenSG performs well when rendering static geometry
that is distributed among several nodes. Nodes will only be
rendered by tiles their bounding boxes overlap with. With
increasing bounding box size, more tiles will be forced to ren-
der that node and more redundant work must be done. In the
worst case the bounding box covers all tiles and it takes as

long to render on a cluster as it does on a single machine. If
the geometry changes, these changes must be broadcast to all
cluster nodes. Frequent changes can significantly slow down
system performance.

Since Chromium transmits the geometry every frame it
requires a large amount of bandwidth. By creating bounding
boxes for the geometry and transmitting it to only those nodes
it overlaps with, Chromium attempts to speed up rendering
and reduce the amount of data sent over the network. This
only works if the primitives lie close together spatially and
temporally. If they do not the data must be sent to all servers.

5.  Performance Analysis

We split our analysis in two parts. The first part covers system
behavior and performance with a static number of polygons
(Section 5.2). For the second part we used a highly dynamic
environment with objects being created and deleted every
frame (Section 5.3). 

5.1.  Test Environment

Our test-environment comprises 5 Linux-PCs, each running
RedHat 7.3 with a GeForce3 graphics card, a 2GHz Intel Pen-
tium Processor, and 512 MByte of memory. The machines
were connected to a 100 MBit switch. While one PC was used
to control the application, the remaining four were used to
drive a two-by-two tiled display wall (see Figure 2), with each
tile driven at a resolution of 1280 x 1024.

For each system we used OpenSG as the underlying ren-
dering API. This is possible because OpenSG uses OpenGL as
its underlying graphics API. Since Chromium replaces the
OpenGL library, Chromium is able to support OpenSG appli-
cations. VRJuggler also supports OpenSG as a possible graph-
ics API. Using OpenSG on all systems insures that any
performance differences are the same on all systems. For
instance, when OpenSG loads certain geometric model files it
attempts to optimize the geometry by turning individual trian-
gles into triangle strips. Since each of the test systems use

Figure 2:  Setup of our test bed showing the two-by-two tiled display wall and the rendering cluster.
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OpenSG to load the model, all of them make use of the geom-
etry optimization.

Figure 3 shows frame rates for each system running locally
on a single machine when rendering a single static object that
overlaps every tile. The results show that there is virtually no
difference in performance between each of the three systems
when rendering on a local machine, independent of the num-
ber of triangles per object. It can be seen that Chromium is
slightly slower on the smaller models. A possible reason for
this slight performance hit on programs with high frame rates
is the fact that Chromium must monitor all changes to the
OpenGL state. This overhead for monitoring state changes is
mitigated by longer rendering times on high-resolution mod-
els. However, it becomes significant when rendering times
become shorter and a relatively larger amount of time is spent
monitoring the state and not doing rendering. 

5.2.  Tests with Static Numbers of Objects

These tests are used to analyze how the systems’ performance
and network utilization scale when the number of polygons
increases, how they handle synchronization between cluster
nodes during runtime, and how long it takes to load and ini-
tialize all cluster nodes.

W chose three different models, two of them at different
resolutions, giving us 5 different objects with different com-
plexity to use. This way we could see how system-perfor-
mance correlated to model size and complexity. Table 1
contains an overview of the number of vertices and triangles
of the static models used during performance analysis. 

We carried out five different tests for each model, each test
lasting 500 frames. The tests can be described as follows (see
Figure 4 for illustrations):
1a: Rendering a static model overlapping every tile, provid-

ing us with a good baseline. 
1b: Rendering a single model overlapping every tile, this

time rotating around a central axis. Rotating the model
allows us to detect synchronization problems between

cluster nodes and balances the rendering load by con-
stantly changing the number of polygons each cluster
node has to render.

1c: Rendering a single object, initially centered in one of the
tiles. The model is then moved from tile to tile in straight
lines. This indicates how the systems handle geometry
distribution.

1d: Rendering four identical objects, each instance is initially
centered in a different tile; the objects move from tile to
tile, following straight lines. This tests geometry distri-
bution, but requires four times the number of polygons to
be rendered.

1e: Rendering four identical objects, each instance centered
in a different tile; each instance rotates in place. This
comparison determines the impact of objects lying on the
boundary of two tiles.

Figure 5 shows the frames-per-second measured for each
system and every model when rendering a single static model
in cluster mode. We noticed a large performance drop of
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Figure 3:  A baseline comparison of the three test systems.
The table shows the average frames per second for each
system rendering a single static model on a single machine.

Model # Vertices # Triangles

Skeleton Hand, low res 5356 2178

Stanford Bunny, low res 6135 3155

Stanford Bunny, high res 81539 74457

Skeleton Hand, high res 808654 719594

Dragon 1120192 981038

Table 1:  Models used for performance analysis, sorted by
number of triangles (models are available at Georgia Insti-
tute of Technology, Large Geometric Models Archive
(http://www.gatech.edu/projects/large_models).

Figure 4:  Tests performed for each model: a) static, b) ro-
tating, c) moving from tile to tile, d) moving between tiles, e)
rotating in each tile. 

b)a)

e)

d)c)
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Chromium when compared to the other two systems. OpenSG
and VRJuggler perform almost identically, but Chromium
runs 91%–98% slower. All three systems showed similar
results for all five tests, with OpenSG and VRJuggler achiev-
ing the same frame rate and Chromium clocking in at over
90% slower.

The primitives in the model are not organized spatially. As
a result Chromium must transmit every primitive to every
cluster node every frame. This fact can be verified by enabling
rendering of Chromium’s bounding boxes. Network traffic
accounts for 100% of the slowdown in Chromium.

Chromium’s inability to handle certain function calls
within display lists was the main motivation for not using
them in our tests. Chromium however is the most likely sys-
tem to benefit from the use of display lists. In retained mode
applications such as rendering a high resolution model, creat-
ing a display list on each cluster node can speed up rendering.
For Chromium a display list could be generated on each node
during the first frame; for each subsequent frame only the
view transformations would then need to be sent to each node,
saving a large portion of the frame time. In OpenSG and
VRJuggler the display lists would also be created on each
cluster node. The only performance gain would be the typical
gain achieved when using a display list as opposed to issuing
all commands every frame.

When comparing the results of test 1a on the cluster (Fig-
ure 5) to the results on a single machine (Figure 3), there is no
performance gain for tests run on a cluster. In an ideal situa-
tion with n cluster nodes, each cluster node should render 1/
nth of the scene and the entire rendering time should be n
times faster. Since all of the geometry for a single model is
located inside a single scene graph node, none of the geometry
is culled out by OpenSG. As we discussed earlier, since the
geometry is not organized spatially, Chromium also does not
experience any speedup when using a cluster.

Test 1b showed no different results than test 1a. When
comparing test 1c to test 1a, there was no remarkable differ-
ence for OpenSG and VRJuggler, whereas Chromium showed

an average speedup of a factor of three, with a speedup of four
when the object was in one tile only, and a speedup of two
when the object was crossing tile boundaries.

Tests 1d and 1e were designed to measure each systems’
ability to render multiple objects in different tiles. Figure 6
shows the speedup for each system running test 1e on a cluster
when compared to running it on a local machine. In this case
each node of the cluster is responsible for rendering exactly 1/
4th of the entire scene. OpenSG and VRJuggler show the
expected speedups of a factor close to four, especially for high
polygon models. The speedup from VRJuggler is due com-
pletely to using OpenSG as its underlying API. Chromium,
which is still hindered by network performance, does not
show an improvement when compared to running on a single
machine; network bandwidth is still the limiting factor. Com-
paring the results of test 1d with the results of test 1e shows
that Chromium performs bucketing correctly. In test 1d, when
the bunnies overlap tiles, rendering slows down to approxi-
mately 50%.

Figure 7 shows the average number of kilobytes sent per
frame for test 1d. OpenSG and VRJuggler both show a con-
stant amount of network traffic for all models. OpenSG only
has to update four transformation matrices every frame, and
VRJuggler only has to synchronize execution of the program.
Both operations are model-size independent.

Chromium, as explained earlier, has to transmit the geome-
try every frame. In this test it sends only the geometry for each
object to one tile, except during times when the object spans
two tiles. In this case it must send the geometry for each
object to both tiles.

Table 2 shows the average number of kilobytes per second
sent from the client to the cluster nodes during test 1d. Chro-
mium is close or over the theoretical limit for a 100 Mbps
Ethernet network. The two low-resolution models are slightly
below the limit, but all three high resolution models com-
pletely saturate the network. OpenSG and VRJuggler both
show a decreasing number of bytes per frame as the rendering
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Figure 5:  Average number of frames-per-second for each
system rendering a single static model on the tiled display.
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Figure 6:  The speedup for each system rendering four ro-
tating models on the tiled display over a single machine
(test 1e).
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time for a single frame is increasing, while the amount of net-
work data being sent remains constant. 

By multiplying the average number of bytes per frame
required by Chromium with the theoretically achievable
frame rate of OpenSG, we can calculate the required network
bandwidth in order to eliminate the network as a bottleneck.
The smallest bandwidth required to run any of the five tests
and models is 36 Mbytes per second. This is required to ren-
der a single, low-resolution hand model moving from tile to
tile. The bandwidth required to display a single, static, low res
hand in full screen is 110 Mbytes per second, barely below the
capacity of gigabit Ethernet. In order to display the dragon in
full screen, a network capable of 894 Mbytes per second is
required.

We also tried to determine system initialization time, but
measuring this value is very difficult. Each system requires
starting up each of the render servers and the application cli-
ent. All synchronization for Chromium is performed before
the application begins executing its first line of code. OpenSG
uses a function call within the application to connect to each
of the cluster nodes, but the scene graph is not synchronized
between all of the nodes until the first frame is rendered. For

VRJuggler, each of the slave nodes synchronize with the mas-
ter before any execution of application code, while the scene
graph is synchronized after executing some of the applica-
tion’s code.

We decided to measure the amount of time it takes from
executing the first line of code in the application until the first
frame has been rendered. All render servers are started first,
then the application client is started. This method of measur-
ing startup time insures that we include the scene graph syn-
chronizations of OpenSG and Chromium.

Figure 8 shows the times required by each system to syn-
chronize for test 1d. These numbers were calculated by first
measuring the time it takes from the first line of code until the
end of rendering the first frame for both cluster and a single
machine. In order to eliminate the time it takes to render the
scene we subtracted the average time per frame from the star-
tup time for the cluster. Finally, we used the difference
between that number and the startup time for a single machine
to eliminate the time it takes to load and process the model
files.

Chromium performs no synchronization of data, and there-
fore shows no extra start-up time. Any extra time appearing in
Figure 8 is due to random variations in loading the file, opti-
mizing the geometry and rendering.

OpenSG requires virtually no additional time when loading
the low resolution models, but it does require a significant
amount of time to transmit the high resolution models to each
of the cluster nodes. OpenSG, however, is able to compress its
internal data structures for transmission over the network,
allowing OpenSG to send almost four million triangles to four
different machines in under forty seconds.

5.3.  Tests with Dynamic Number of Polygons

This test is designed to measure how well the systems handle
a dynamically changing environment and how they synchro-
nize these geometry changes among the cluster nodes. The
emphasis here is on runtime performance and network usage
and less on initialization.

Model OpenSG
Kbytes / sec

Chromium
Kbytes / sec

VRJuggler
Kbytes / sec

Skeleton Hand, low res 115 10206 1266
Stanford Bunny, low res 89 10480 955
Stanford Bunny, high res 45 11324 485
Skeleton Hand, high res 8 11506 91
Dragon 6 11517 62

Table 2:  The average number of bytes per second sent over
the network for each system rendering a single static model on
the tiled display.

1.0000

10.0000

100.0000

1000.0000

10000.0000

100000.0000

1000000.0000

Stanford Bunny,

low res

Skeleton Hand,

low res

Stanford Bunny,

high res

Skeleton Hand,

high res

Dragon

Average Network Traffic (Kbps)

OpenSG

Chromium

VRJuggler

Figure 7:  The average number of Kbytes per frame sent
over the network when rendering four moving objects on
the tiled display.
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Figure 8:  The amount of time (in seconds) required to con-
nect to and synchronize each of the cluster nodes.
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We decided to implement Conway’s “Game of Life” 20.
The “Game of Life” is a simple, but highly dynamic simula-
tion of objects populating a screen. The simulation starts with
a set of seed-objects, and after each frame objects are gener-
ated and removed according to the algorithm shown below.

Depending on the starting configuration the simulation sta-
bilizes after a relatively small number of steps. A stable world
is defined as a configuration where the number of objects
remains constant. For our simulation we used the R-pen-
tomino configuration which is known to stabilize after 1103
steps. Figure 10 shows the initial configuration and the result
after running two iterations. We let the simulation run for
1200 frames with one step per frame.

The “Game of Life” was run on a 100 x 100 grid. The scene
graph consists of a root node with 10 children. Each child is a
transformation node that forms the top row of the grid. Each
of these 10 children has a daisy chain of children forming the
columns of the grid. Pointers to each grid cell are stored in an
array for direct access. Every time a new sphere is created in
the simulation, the geometry for the sphere is regenerated and
stored as a new geometry node. This node is then attached to
the appropriate transformation node. Every time a sphere is
removed in the simulation it is detached from the transforma-
tion node and its memory is deallocated. This requires all
changes to the scene graph be sent over the network.

Figure 11 shows the average frame rate for each system
running the simulation on the cluster. Once again Chromium

is the slowest, but this time OpenSG is much slower than
VRJuggler.

Chromium once again must transmit all geometry informa-
tion every frame. The spheres are each contained within a sin-
gle scene-graph node which means that Chromium performs a
screen space bounding box test per sphere. Chromium sends
each sphere only to the node responsible for rendering that
sphere. Despite this efficiency there is still too much data sent
over the network for Chromium to avoid network bandwidth
as the bottleneck.

Since we decided to create and delete spheres instead of
reusing geometry or sharing geometry nodes, OpenSG is
forced to send a lot of data over the network. OpenSG must
send the geometry for all spheres that are going to be added to
all cluster nodes. It must also send the ID of all spheres that
are going to be deleted. Since each sphere is contained within
its own node, frustum culling allows each of the render server
to render only the spheres within its tile. This results in a
speedup on rendering, however the geometry must still be sent
to every cluster node.

Since the application is deterministic there is no data
VRJuggler needs to synchronize between cluster nodes other
than synchronizing the frames. If this program were based on
random numbers then the random number would be declared
as an input device and synchronized between each of the
nodes. Synchronizing a single random number however
requires much less network traffic than sending large amounts
of geometry.

6.  Conclusions

We have presented a survey of software systems designed to
render on a tiled display. We have provided an in-depth analy-
sis of three of the more popular systems. For each of these
systems we have ran a series of performance analysis tests to
measure their performance in different circumstances.

VRJuggler produced the fastest frame rates on all tests by
keeping network traffic to a minimum. However VRJuggler

Figure 9:  “Game-of-Life”-algorithm

for each square do
if (object in square)
then

if (2 or 3 objects in neighborhood)
then

object remains
else

object dies
fi

else
if (3 entities in neighborhood)
then

create new object
fi

fi
done

Figure 10:  Configurations for ‘”Game of Life”-simulation:
a) start-configuration, b) step 1, c) step 2. Deleted objects
shown with white circles, created objects shown in grey.
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Figure 11:  The average number of frames rendered per
second by each system running the “Game of Life.”
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was only able to produce frame rates consistent with OpenSG
on tests 1d and 1e because VRJuggler was able to make use of
OpenSG’s node culling abilities. Without OpenSG as an
underlying API VRJuggler’s frame rates will not improve as
the number of cluster nodes increases. VRJuggler also took an
order of magnitude longer than OpenSG, and two orders of
magnitude longer than Chromium to initialize the cluster.

OpenSG produced the second best frame rates of the three
systems tested. Frame rates for tests with static geometry
equal those produced by VRJuggler, and the frame rates scale
with the number of cluster nodes provided the screen space
size of the bounding boxes of the geometry is comparable to
the size of a single tile. The frame rate of applications with
dynamically changing geometry were much lower than that of
VRJuggler, and the network became saturated. OpenSG
required an order of magnitude longer than Chromium to ini-
tialize the cluster.

Chromium was able to run the OpenSG application with
very few modifications, and it’s startup times were the best of
all systems. Chromium produced the slowest frame rates of all
systems tested. In all cases, the available bandwidth was too
small to support the network traffic generated by Chromium,
and the network became a severe bottleneck.

Both, VRJuggler and OpenSG are well suited for applica-
tions with complex and large geometries, while Chromium
can only be used for smaller models or in connection with a
high-speed network. While VRJuggler performed best, it
requires similar machines driving the tiles, as the applications
run fully replicated. For applications where large datasets
need to be transmitted on a regular basis or computing power
is not available, OpenSG would be the best solution in con-
nection with a high-performance node running as client and
several servers running the render-engine only.
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