7. International Immersive Projection Technologies Workshop
9. Eurographics Workshop on Virtual Environments (2003)
J. Deisinger, A. Kunz (Editors)

Fast Approximate Visible Set Determination for Point Sample
Clouds

Stephan Mantler and Anton L. Fuhrmann

VRVis Center for Virtual Reality and Visualization
(mantlerlfuhrmann) @vrvis.at

Abstract

We present a fast, efficient method to determine approximate visible sets for vegetation rendered as point sample
clouds. A hardware accelerated preprocessing step is used to determine exact visibility for a selected set of views;
at runtime the current view is rendered using an approximate visible set constructed from the three closest pre-
calculated views. We will further demonstrate how this method leads to a significant per-frame reduction of the

original data size.

Categories and Subject Descriptors (according to ACM CCS): 1.3.3 [Computer Graphics]: Visibility Determination

1. Introduction

When rendering large numbers of trees for terrain flyover or
realtime GIS visualizations, a tree’s leaf is typically smaller
than a single pixel. Therefore, rendering these leaves as in-
dividual quadrilaterals (maybe even textured) is wasteful. In
this case, clustering techniques (groups of leaves are approx-
imated by a single polygon) or image based techniques with
a similar strategy are usually employed? # 3. Point based and
hybrid techniques have been also explored®- 1. We will follow
the point based approach, as it allows for an almost seamless
transitions to higher levels of detail. The representation of
foliage as a cloud of point samples implies that the proposed
method can also be applied to other data of similar nature
(such as laser range data, for example).

Since point sample clouds are a very large number of in-
dependent and disjoint samples, traditional occlusion based
acceleration methods such as backface culling or spatial
schemes can not be applied easily. Still, the large number of
samples necessitates some means of simplification in order
to achieve realtime rendering performance.

Our proposed algorithm uses a preprocessing step to de-
termine the exact visible set for a number of views; at run-
time the visible sets of the three closest matches to the ac-
tual view are combined for rendering. Point budgets can be
assigned, so that distant objects are rendered with less detail.

(© The Eurographics Association 2003.

163

1.1. Related Work

The rendering of plants has been quite thoroughly investi-
gated in recent years, and a number of innovative algorithms
have been published for rendering realistic plants in real-
time. IDV, Inc. has developed a commercial product that
renders groups of leaves as a single polygon for efficiency
2, Meyer et al. render trees with hierarchical image based
rendering and bidirectional texture functions. Their method
also supports shading and shadowing*. Deussen et al. present
a hybrid polygonal and point based technique for rendering
various levels of detail of plants in realtime!. Their system
supports importance reduction, which renders visually im-
portant parts of a scene at a higher quality than the rest.

In their landmark paper, Weber and Penn propose a hy-
brid solution for rendering their highly detailed trees. Their
approach to levels of detail is not the generation of multiple
distinct models, but reinterpretation of a particular model, by
rendering leaves either as textured polygons or point sam-
ples. Also, branches can be rendered either polygonally or
as simple lines3.

Apart from the system proposed by Meyer et al.#, none of
these systems use view direction based data reduction meth-
ods, and rely on orientation independent methods for LOD
generation. Meyer et al. sample view directions to generate
a hierarchy of bidirection texture functions, and also include
shading and shadowing in their image based rendering sys-
tem.

delivered by
|

www.eg.org

EUROGRAPHICS

DIGITAL LIBRARY
diglib.eg.org

http://www.eg.org
http://diglib.eg.org

Stephan Mantler and Anton L. Fuhrmann / Approximate Visible Sets

Figure 1: Identifying closest available view directions. For
an arbitrary viewpoint (light grey arrow), the three clos-
est precalculated directions (dark arrows) are identified and
rendered.

Jakulin’s Slicing and Blending algorithm? uses a view di-
rection based method to blend between different views of
a tree model. However, his approach uses a small number
of parallel “slices” (textured quadrilaterals) to represent fo-
liage.

The current view direction is also used in point based ren-
dering systems for solid models, such as Qsplat®, for back-
face culling and splat size estimation. When approximating
leaves through individual point samples, there is no continu-
ous surface or solid, making backface culling inadequate.

Another method for rendering point based data is to use
a randomized approach® 7. In this case, a (possibly view de-
pendent) heuristic selects arbitrary samples from the data set.
Special care must be taken to make sure that holes and arti-
facts do not occur, for example by using a poisson disc dis-
tribution function.

2. Preprocessing

Visible set determination can be performed very efficiently
in hardware. First, a number of views is generated by se-
lecting points on the unit sphere. Since trees cannot usu-
ally be viewed from directly underneath, this can also be
constrained to a hemisphere. Our implementation employs
a simple tetrahedron subdivision scheme to generate view
directions.

The entire data set is then rendered from each view, but in-
stead of using the original color information each leaf is ren-
dered with a unique color. Individual leaves are rendered as
single point primitives. To avoid unwanted artifacts, the data
set is rendered without antialiasing, attenuation, or lighting.

164

The frame buffer is then read back and each pixel’s value is
used to identify the visible sample at this point.

For graphics hardware that supports occlusion querying,
reading back the frame buffer can be avoided: The data set
is first rendered in full as before. It is then re-rendered in
chunks of n samples with occlusion query enabled, and the
depth test set to ’less or equal’. If no pixels have been up-
dated, the entire chunk was invisible and can be discarded.
Otherwise it is subdivided and processed recursively to iden-
tify all visible samples.

2.1. Sample Identification

To be correctly identified after the frame buffer has been read
back in, each sample needs to be assigned an unique color.
For simplicity, we use the sample’s array index in the data
set. Of course, 8-bit RGB colors effectively limit the max-
imum number of samples that can be identified in a single
pass to 2% 1.

However, this limit can be easily avoided by using multi-
ple partitions of 2% 2, reserving the value 2% 1 for the
background (no sample) and O for any samples not within
the current partition. The preprocessing step then needs to
render the entire set more than once, until all samples have
been covered.

2.2. LOD Estimation

By rendering samples with more than one pixel and by re-
rendering the same view from varying distances, a level of
detail estimation can be obtained as follows: For each pixel
that has been covered by a certain id, the contribution of the
corresponding sample is increased by one. After all distances
have been covered, samples with zero contribution are dis-
carded, and the remaining samples are sorted by descending
contribution. This way, leaves which are visible from all dis-
tances end up with the highest contribution count and will be
rendered even if the the total number of points to be rendered
exceeds the allocated budget.

2.3. Alternative LOD Generation

Even though it is tempting to assume that samples which are
visible at larger distances are also visible at a closer range,
this is not always correct for perspective projection. Such
samples may be obscured if perspective views are rendered
from varying distances, rather than at different scales. Fig-
ure 2 illustrates this difference. However, a similar error is
incurred from approximating the view direction; there may
be samples that should be visible from the actual view point
but were not detected in any of the three views.

2.4. Stems and Branches

If desired, stems and branches can be included in this sys-
tem. This is particularly useful if the tree has been generated

(© The Eurographics Association 2003.

Stephan Mantler and Anton L.

(b) ()

Figure 2: Perspective Occlusion. Splat S1, although visible
from viewpoint (a), is occluded by splat S2 when viewed from
viewpoint (b) as it is seen at a slightly different angle.

automatically and includes a great number of small twigs.
We have implemented this by assigning a separate range of
identifier values to polygons; the sample identification pro-
cess only requires minor changes to accommodate this. Al-
though the resulting polygonal data does not lend itself very
well to triangle striping or similar acceleration schemes, it
greatly reduces the data to be rendered while still maintain-
ing good visual quality.

2.5. Alternative LOD Method

As an alternative to sorting samples by contribution alone,
they can be arranged by view distance first. The advantage
of sorting samples by decreasing distance is precise control
over how many points need to be rendered: an upper bound is
the splat count for the next (closer) view (see figure 3). Inter-
polation could be used for smooth transition between view
distance steps, although ideally this should not be necessary,
as the closer view does already provide coverage for all vis-
ible samples. We have therefore chosen not to implement
smooth transitions as they are already quite unobtrusive.

A straightforward implementation of this method would
require storing additional information for each sample, or
searching through the previously determined (greater) dis-
tances to determine if this sample has been seen already (ob-
viously, each sample should be rendered only once). How-
ever, this time consuming step can be avoided:

Each view direction is rendered from various distances,
beginning with the greatest distance. Samples that have al-
ready been visible at an earlier iteration are not assigned
their original id, but simply rendered with the reserved back-
ground id. They will therefore still correctly obscure other
samples, but remain invisible to the following sample iden-
tification process.

3. Rendering

During rendering, the three closest view directions are de-
termined for each object. This can be done naively by find-
ing the dot product of the actual view vector and the vec-

(© The Eurographics Association 2003.

Fuhrmann / Approximate Visible Sets

165

View distance

(closest) 1
(2.4)

Current View Distance

Figure 3: Sorting point samples by distance. For the current
view distance, all point samples up to and including view
distance ’2’ would be rendered.

tor stored for each view direction. A more efficient method
would be to precompute the three closest views in a cube
map or similar lookup table.

Figure 4: Rendering of the reduced “Oak” model from an
arbitrary view point.

Next, the number of samples to be rendered is found as a
function of object distance and the total number of samples
for this view direction. The samples can then be rendered
efficiently as a single vertex array. For the original algorithm,
since samples are ordered by contribution more important
(ie. highly visible) data is guaranteed to be rendered even
if only few samples are displayed. The alternative method
always renders a sufficient number of point samples through
the use of a distance based lookup table for the appropriate
sample count.

3.1. Rendering Multiple Instances

If a model is reused several times, for example to produce
a group of trees, a slight variation in color and texture will
greatly enhance the visual quality. However, this is not easily
possible since sample data - including color information - is
stored in vertex array for efficient rendering. For color varia-
tion, this array would either have to be copied and modified
for each instance, or walked through “by hand” and each
sample rendered individually. In both approaches, the advan-
tage of using a vertex array is lost.

Stephan Mantler and Anton L. Fuhrmann / Approximate Visible Sets

We circumvent this problem by reusing the same vertex
array, including color information. The variation of appear-
ance is achieved by adjusting light source color and intensity
instead, which can be regarded as adding an individual per-
instance bias (see Figure 12).

4. Results

We have implemented preprocessing and rendering of the
leaves of various models of trees; the tree models were gen-
erated through an algorithm similar to the one proposed by
Weber and Penn8. Lighting was precalculated by ray casting
through a regular volume grid; the density of each cell was
estimated through a heuristic function based on the number
of enclosed leaves. The stems, although certainly necessary
for a realistic impression, have been omitted for the proto-
type implementation described in this abstract, but should
be available for the final paper.

Figure 5 displays the preprocessing results for one partic-
ular tree model. 26 views were generated through a tetraeder
subdivision scheme, and the total and relative count of vis-
ible samples found with the original algorithm. This model
only contains a dense set of leaves and no polygonal stems or
branches. Loading the original data set (10 MB) and prepro-
cessing took about 35 seconds on an 1.4GHz Intel Pentium 4
with GeForce4 graphics. The total number of samples for all
views is 86265, each consisting of a vector and color infor-
mation, for 15 bytes/sample and 1.3MB total per tree model.
Data structure overhead is about 20 bytes per view direction.
If polygonal data is stored as well, it can be estimated with
an additional 45 bytes/triangle.

For comparison, Meyer et al. report “a few tens of
Megabytes” for their method, and a preprocessing time of
about 75 minutes using an Onyx2 Infinite Reality.

In Figure 6, a complete tree model has been preprocessed
with the alternative, distance-sorting algorithm. Each col-
umn represents a particular view direction, and the indi-
vidual view distances are stacked from distant (bottom) to
close-up (top). The upper graph represents triangular data
(ie. stem and branches), and the lower graph displays point
samples (ie. leaves). In this case, the total time for I/O and
preprocessing was about three minutes. The total data file
size is about 12MB.

The model, an oak-like tree, has a much less dense leaf
cover than the “Balsam” model, and therefore also a higher
percentage of visible leaves in comparison. A number of
things can be seen in these graphs: For some view directions,
there are distance steps that do not reveal any new samples.
This may be in part due to the use of the OpenGL Point Pa-
rameter extension to adjust the point size according to dis-
tance.

Figure 4 shows the oak model rendered from an arbitrary
viewpoint. Three out of 70 view directions have been ren-
dered, resulting in a total of 22897 points (25.15%) and 763

166

polygons (1.47%). Assuming that triangles are three times as
expensive as points to send to the graphics pipeline, the rela-
tive bandwidth usage can therefore be estimated at 10.19%.
Figure 7 tracks this value over time as the viewpoint is
moved about the model. As can be seen, it drops significantly
- to less than 0.3% - as the view distance increases.

Due to the nature of our algorithm, overdraw can be al-
most completely avoided while still providing guaranteed
bounds on visual fidelity. This mostly depending on how
many view samples have been generated, as well as any other
parameters such as point size. Consequentially, these cannot
be changed dynamically and need to be chosen carefully at
the preprocessing step.

Also, since our implementation only uses the view direc-
tion and position for visibility determination, the camera’s
field of view is one of these fixed parameters. While this
may be an acceptable solution for most cases, a more flexi-
ble solution may be desirable to achieve better visual quality
if these parameters do need to be changed dynamically.

view visible pct. view visible pet.
1 2617 1.02% 2 1650 0.64%
3 4495 1.76% 4 2428 0.95%
5 4360 1.70% 6 3809 1.49%
7 2465 096% 8 1238 0.48%
9 3983 1.56% 10 2321 0.91%
11 2751 1.07% 12 3763 1.47%
13 2751 1.07% 14 2429 0.95%
15 4113 1.61% 16 3838 1.50%
17 3980 1.55% 18 2135 0.83%
19 3546 1.39% 20 3687 1.44%
21 3974 1.55% 22 4295 1.68%
23 3783 1.48% 24 4114 1.61%
25 4315 1.69% 26 3425 1.34%

total 26 86265 33.69%

Figure 5: Preprocessing results for tree “Balsam” (total
points 256024, splat size 4 pixels, viewport 600 * 600).

5. Conclusion and Future Work

We have presented a new algorithm for view direction based
data reduction of disjoint point sample clouds. Our method
is fast (using commonly available hardware acceleration),
memory efficient, and easily adaptable to other data with
similar properties. Preliminary results have been presented,
illustrating a large savings in memory, preprocessing and
rendering load.

The benefit of this method is that it can handle objects
and static object groups where traditional occlusion based
algorithms fail due to high complecity.

(© The Eurographics Association 2003.

Stephan Mantler and Anton L. Fuhrmann / Approximate Visible Sets

Percent Visible

Percent Visible

Figure 6: Visible branches (ie. triangles, top) and leaves
(point samples, bottom) for tree “Oak” (total points 91054,
triangles 52076).

Percent Visible

2

0

Figure 7: Percentage of total bandwidth used over time for
a number of views.

5.1. Future Work

Obviously, this algorithm is not inherently restricted to point
sample clouds and should be easily generalized to other data
such as disjoint polygons or entire objects (which can be
approximated as bounding spheres or bounding boxes for
speed).

As an immediate improvement, the polygonal stems could
also be identified by the same process, leading to a fully us-
able tree rendering model. To improve near field rendering
quality, the preprocessing step could be made with polygo-

(© The Eurographics Association 2003.

167

nal leaves. By counting the pixels covered by each leaf, there
would be an immediate metric for selecting the appropriate
level of detail for each leaf (more than a few pixels: polygo-
nal; only few pixels: point; zero: discard). Each view would
then consist of several arrays: a stem list, a polygonal leaves
list, and the original point sample list.

5.2. Acknowledgements

Most of this work has been done at the VRVis research cen-
ter, Vienna, Austria (http://www.vrvis.at/), which
is partly funded by the Austrian government research pro-
gram Kplus. The authors would also like to thank Andreas
Reichinger for his tree model generation software.

References

1. Oliver Deussen, Carsten Colditz, Marc Stamminger,
and George Drettakis. Interactive visualization of com-
plex plant ecosystems. In IEEE Visualization ’02, Oc-
tober 2002.

Interactive Data Visualization, Inc.
product homepage. web
http://www.idvinc.com/speedtree/.

Speedtree
page, 2002.

Aleks Jakulin. Interactive vegetation rendering with
slicing and blending. Eurographics Conference Short
Paper, 2000. http://zeus.fri.uni-lj.si/ aleks/slicing-and-
blending/.

Alexandre Meyer, Fabrice Neyret, and Pierre Poulin.
Interactive rendering of trees with shading and shad-
owing. In Workshop on Rendering, Eurographics.
Springer-Verlag Wien New York, July 2001.

Szymon Rusinkiewicz and Marc Levoy. QSplat: A mul-
tiresolution point rendering system for large meshes. In
Kurt Akeley, editor, Siggraph 2000, Computer Graph-
ics Proceedings, Annual Conference Series, pages 343—
352. ACM Press / ACM SIGGRAPH / Addison Wesley
Longman, 2000.

Gevorg Grigoryan University. Probabilistic surfaces:
Point based primitives to show surface uncertainty.

M. Wand, M. Fischer, and F. Meyer. Randomized point
sampling for output-sensitive rendering of complex dy-
namic scenes, 2000.

Jason Weber and Joseph Penn. Creation and rendering
of realistic trees. In Robert Cook, editor, SIGGRAPH
95 Conference Proceedings, Annual Conference Series,
pages 119-128. ACM SIGGRAPH, Addison Wesley,
August 1995. held in Los Angeles, California, 06-11
August 1995.

168

Stephan Mantler and Anton L. Fuhrmann / Approximate Visible Sets

i

Figure 8: Reduced “balsam” model rendered from an arbi- Figure 11: Per-pixel difference image between original and
trary viewpoint. Rendered with 9017 point samples (3.5% of reduced “balsam” models. Red pixels indicate the difference
the original size). between pixel values of the reduced and full models.

i

Figure 9: Full “balsam” model, rendered from the same
viewpoint as Figure 8 for direct comparison (256024 point
samples).

Figure 12: 400 instances of the “Oak” tree model, with in-
dividual orientation and color bias, rendered at 15-20Hz on
a GeForce4.

Figure 10: Difference image between original and reduced
“balsam” models. Red pixels identify places where a differ-
ent splat would have been rendered in front by the full model.

(© The Eurographics Association 2003.

333

