
7. International Immersive Projection Technologies Workshop
9. Eurographics Workshop on Virtual Environments (2003)
J. Deisinger, A. Kunz (Editors)

Detecting Dynamic Occlusion in front of Static Backgrounds
for AR Scenes

Jan Fischer,1 Holger Regenbrecht2 and Gregory Baratoff2

1 WSI/GRIS, University of Tübingen, fischer@gris.uni-tuebingen.de
2 Virtual Reality Competence Center, DaimlerChrysler Ulm, {holger.regenbrecht,gregory.baratoff}@daimlerchrysler.com

Abstract
Correctly finding and handling occlusion between virtual and real objects in an Augmented Reality scene is essen-
tial for achieving visual realism. Here, we present an approach for detecting occlusion of virtual parts of the scene
by natural occluders. Our algorithm is based on a graphical model of static backgrounds in the natural surround-
ings, which has to be acquired beforehand. The design of the approach aims at providing real-time performance
and an easy integration into existing AR systems. No assumptions about the shape or color of occluding objects
are required. The algorithm has been tested with several graphical models.

Categories and Subject Descriptors (according to ACM CCS): H.5.1 [Information Interfaces and Presentation]:
Artificial, augmented, and virtual realities

1. Introduction

In Augmented Reality, virtual objects are combined with
a real environment. Video see-through AR systems perma-
nently acquire camera images of the real surroundings in or-
der to perform this mixing process 1. After determining the
current position and orientation of the user within the scene,
corresponding projections of the virtual graphical objects are
then rendered on top of the camera image.
Whereas this method of mixing real and virtual elements is
easy to implement and fast enough for real-time systems, it
also has major drawbacks. Because all pixels of the graphi-
cal virtual elements are drawn over the camera image, they
completely occlude the real environment. In many cases this
does not represent the actual situation in the AR scene. It is
possible that virtual objects should be behind real objects. A
common example for this situation is user interaction within
the AR scene. The user’s hands and pointing devices are hid-
den by virtual objects although they normally are closer to
the camera.
Several types of occlusion in AR scenes can be distin-
guished. On the one hand, occlusion can be characterized
by what kind of object is hidden by what kind of occluder.
A good overview of this has been given by Klinker 14. In our
research, we were only interested in virtual objects being oc-
cluded by real ones. This can again be split into two cases.

In the first case, the exact geometry and location of the real
objects are known. We call this static occlusion.
By contrast, in dynamic occlusion nothing is known about
the shape, size or position of an occluding natural object.
Thus it is necessary to detect potential occluders for graphi-
cal objects in the camera image. A simple approach for find-
ing dynamic occluders in an AR scene would be to assume
that occluding objects have a certain color. Our algorithm
does not rely on any such assumption about the occluders.
They may be of any geometry or texture.
In order to be able to find pixels belonging to dynamic oc-
cluders in the input camera image, our approach requires a
graphical model for certain parts of the scene. This graph-
ical model consists of a set of textured polygons, in front
of which occlusion can be detected. These polygons have to
correspond to surfaces in the real world. By comparing the
camera image with the projection of the graphical model,
dynamic occluders are found. Several steps are necessary to
perform this operation. They are described in Section 4.
Any object occluding one of the given static backgrounds
is assumed to be in front of the graphical elements of the
AR scene. The occluder can then be drawn over the virtual
objects for a more realistic display of the AR scene. Note
that this method can not deliver any real depth information
for the scene. This would be necessary for correctly han-
dling more complex spatial relationships between the vari-

c© The Eurographics Association 2003.

153

http://www.eg.org
http://diglib.eg.org

Fischer et al / Dynamic Occlusion

ous kinds of objects. The limitations that are imposed on our
approach by this are discussed in more detail in Section 7.

2. Related work

Detecting occlusion for Augmented and Mixed Reality has
been an area of active research for several years. Breen et
al. have suggested a model-based method for handling static
occlusion in AR 3. This method has also been extended by
combining a previously acquired geometric model with po-
sitional data from a tracking system for determining how vir-
tual objects are hidden by the user’s body 6.
Several approaches for stereo camera AR systems have been
described. Some solve the occlusion problem in general us-
ing depth information delivered by stereo matching 11, 22.
The method developed by Gordon et al. 7 can correctly ren-
der interaction devices into the scene.
The AR system of Malik et al. 16 detects the occlusion of
black and white marker regions by the user’s hand. This is
achieved using a histogram-based thresholding process re-
fined by a flood-fill algorithm.
Some research has also been done into occlusion in non-real-
time Augmented Reality. Correctly handling occlusion while
adding virtual objects to stored video sequences was exam-
ined by Berger and Lepetit 2, 15.

3. Acquisition of the graphical model

Our method requires a graphical model of surfaces in the
user’s environment. Each surface is described by a number
of textured coplanar polygons. We call such a surface dy-
namic occlusion background (DOB). Before the algorithm
for detecting dynamic occlusion can be used in a given AR
scene, the dynamic occlusion backgrounds for the relevant
parts of the scene have to be acquired.
In order to generate the DOB models, we have implemented

Figure 1: Part of AugmentEd’s menu system.

an interactive tool for editing AR scenes. With this software,

AugmentEd, it is possible to define a complete AR scene
consisting of virtual objects, phantom models for static oc-
clusion 3 and dynamic occlusion backgrounds (see Figure 1).
AugmentEd uses Open Inventor 21 as I/O file format.
For defining a dynamic occlusion background from scratch,
we designed a simple process spanning all steps from tak-
ing a digital image of the surface in the scene to correctly
positioning the model in world space. Using this method,
we have created a number of simple occlusion backgrounds,
mostly cockpit instruments used in automotive and aircraft
design (see example in Figure 2).

Figure 2: Example DOB (aircraft instrument).

4. Overview of the algorithm

We propose an algorithm for detecting dynamic occlusion
in front of static backgrounds. This algorithm is based on
the comparison of the graphical model with the current
camera image. Where the camera image is different from the
expected appearance suggested by the graphical model, the
background is assumed to be occluded. If the camera image
is (nearly) identical with the expectation, the background
can be seen without occlusions. In order to make such a
comparison possible, a number of pre-processing steps must
be performed.
The fundamental idea of our approach is to render the
graphical image for each DOB into an offscreen buffer. The
camera position and orientation used for this rendering step
are taken from our AR system’s marker tracking 12. Due to
inaccuracies in this computed camera pose, the generated
internal DOB image then has to be adapted. The reason
for this is the fact that the final comparison is done on a
per-pixel basis. Thus it is necessary that position and shape
of the internal image exactly match the DOB in the camera
image. A simple overview of the algorithm is the following:

a) Render DOB to offscreen buffer
b) Adapt internal DOB image to match

camera image
c) Compare adapted internal DOB and cam-

era image

c© The Eurographics Association 2003.

154

Fischer et al / Dynamic Occlusion

The result of the final step is an occlusion mask. This is a
bitmap in which a bit is set for every pixel where occlusion
has been detected. This entire process has to be repeated for
each dynamic occlusion background. The resulting final oc-
clusion mask can be obtained by combining all individual
occlusion masks using the binary OR as shown in Equation
1.

occMask =
N
∨

i=1
partialOccMaski (1)

Here, partialOccMaski is the occlusion mask computed for
the i-th dynamic occlusion background. The total number of
DOBs in the scene is N.
In order to adapt the internal DOB to the camera image, a
template matching method similar to the one used in the
markerless tracking system demonstrated by Kato et al. 13 is
applied. This method again consists of several steps, which
determine how the internal image has to be transformed so
that it matches the position of the background surface in
the camera image. First salient points in the internal DOB
image are detected. Then positions in the camera image
corresponding to these salient features are searched. The
result of this matching process is an array of displacement
vectors describing the transformation of the internal DOB
to camera image space. This 2D transformation is then
calculated using standard numerical techniques. After that,
the computed transformation is applied to the DOB image.
In more detail, the steps of our algorithm are the following:

1. Render DOB to offscreen buffer
2. Detect salient points in the DOB im-

age
3. Find correspondences for salient

points in camera image
4. Filter correspondences according to

their confidence
5. Compute 2D transformation
6. Transform internal DOB image
7. Compare adapted internal DOB and cam-

era image
8. Perform final filtering of occlusion

mask

The individual steps of our algorithm as listed above are
discussed more comprehensively in Section 5.

5. Implementation details

For our research we developed an implementation of the al-
gorithm for detecting dynamic occlusion. This implementa-
tion is based on fundamental AR system components devel-
oped at the VRCC. It uses a marker tracking similar to AR-
ToolKit 12. The basic AR system has been described more
comprehensively by Regenbrecht et al. 18.

5.1. Offscreen rendering of the DOB image

Each DOB is rendered into an offscreen buffer. The descrip-
tion of the dynamic occlusion background is taken from the
graphical model (see Section 3). For the offscreen render-
ing process, the Mesa graphics library is used 17. (The ob-
vious solution of using standard OpenGL and reading back
the framebuffer was rejected because buffer readback is ex-
tremely expensive on most hardware.) Each textured poly-
gon is drawn using 3D position and orientiation information
from the marker tracking.

5.2. Finding salient points on the DOB

In the offscreen image buffer, salient points on the DOB
are searched. This is done using the structure tensor 20,
which is a basic image processing operation for finding two-
dimensional structures (like corners). We assume that such
points in the image are well suitable for finding correspon-
dences in the camera image.
The structure tensor is defined as the following matrix:

S =

[

∑ I2
x ∑ IxIy

∑ IxIy ∑ I2
y

]

(2)

In Equation 2, Ix and Iy are the partial derivatives of the im-
age. The summations are made over a rectangular area in the
image, which is centered at the pixel that is currently looked
at. After this matrix has been computed, its eigenvalues are
calculated. If the smaller of the two resulting eigenvalues is
greater than a threshold value, there is a sufficiently inter-
esting two-dimensional structure at this pixel 10, 20. Only this
smaller eigenvalue is important for further considerations.
The candidates for salient points delivered by the structure

Figure 3: Salient points detected on a DOB.

tensor are filtered because they often are too numerous. A
specialized function of the Intel OpenCV library is used for
this 10. First of all, all points with a non-maximal eigenvalue

c© The Eurographics Association 2003.

155

Fischer et al / Dynamic Occlusion

in 3x3 neighborhoods are ignored. After that, the maximum
of the eigenvalues of all remaining points is calculated. Only
points which have an eigenvalue big enough relative to this
maximum are further considered. Finally, a minimum dis-
tance between the salient points is ensured.
Subsequently another filtering step is necessary which is
specific to our algorithm. The reason for this is that along
the edges of the DOB polygons there can be many two-
dimensional structures which in fact are aliasing artifacts of
the renderer. Therefore we remove all salient points on the
DOB borders. An example for salient points on a DOB is
shown in Figure 3.

5.3. Establishing point correspondences

For each detected salient point pi on the DOB, a correspon-
dence is searched in the camera image. This is done us-
ing template matching. The template used is the quadratic
area with side length templateLength centered at the salient
point. A correspondence for this template is looked for in a
quadratic area with side length searchLength in the camera
image. This search area is centered at the same coordinates
that the salient point has in the internal DOB image. This
requires the DOB image in the offscreen buffer to have the
same resolution as the camera image.
For template matching we use the normalized correlation co-
efficient, which is a similarity measure based on the cross
correlation 10, 19. The correlation coefficient is computed for
every pixel in the search area. It has a value of 1 for maxi-
mum similarity (i.e. identity) and a value of -1 for minimum
similarity. It is computed as follows 10:

R̃(x,y) =

h−1
∑

y′=0

w−1
∑

x′=0
T̃ (x′,y′)Ĩ(x+ x′,y+ y′)

√

h−1
∑

y′=0

w−1
∑

x′=0
T̃ (x′,y′)2

h−1
∑

y′=0

w−1
∑

x′=0
Ĩ(x+ x′,y+ y′)2

(3)
In Equation 3, T̃ (x′,y′) is the difference in intensity between
a template pixel and the average brightness T̄ of the en-
tire template, i.e. T̃ (x′,y′) = T (x′,y′)− T̄ . Correspondingly,
Ĩ(x+x′,y+y′) is the difference between a pixel in the image
and the average brightness Ī of the search area. The numer-
ator of the fraction is simply a cross correlation over differ-
ences from the average brightness. Because the differences
are used, template/image pairs with different overall bright-
ness have comparable correlation coefficients. The denomi-
nator normalizes the result of the cross correlation, thus al-
ways delivering a R̃(x,y) ∈ [−1;1].
In our algorithm, both w and h always have a value of
templateLength. Note that Equation 3 is only defined for
single-channel images. Therefore both the template image
and the camera image are converted to grayscale before cal-
culating the correlation coefficient. R̃(x,y) is computed for
the entire search area. The pixel with the maximum coeffi-
cient is defined as the correspondence qi for the currently
considered salient point pi. The lines connecting each pi to

its corresponding qi can be drawn as displacement vectors as
shown in Figure 4.

Figure 4: Point correspondences shown as displacement
vectors.

5.4. Computing the 2D transformation

The detected point correspondences are then used for calcu-
lating a 2D transformation. This transformation will later be
applied to the internal DOB image. The input data for com-
puting the transformation are the pairs of salient points pi
and their correspondences qi. A matrix describing the trans-
formation from DOB image space to camera image space is
to be determined. Equation 4 expresses this relationship.

qi = A · pi, i = 1, . . . ,m (4)

A homogeneous transformation is required since there can
be a translational component when comparing the DOB and
camera images. Thus the pi and qi points have to be extended
by a homogeneous coordinate. Transformation matrix A is a
3x3 matrix. This is shown in Equation 5.





qi

1



 = A ·





pi

1



 , i = 1, . . . ,m, A ∈ <3x3 (5)

There is one equation for each pair of salient point and corre-
spondence. The combination of these is an over-determined
equation system. This equation system is to be solved for
matrix A. In order to do this using standard numerical meth-
ods, equation system (5) has to be reshaped in terms of the
vector of unknowns â = (a1,a2, . . . ,a9)

T , the entries of the
transformation matrix A:

M̂ · â = 0 (6)

In Equation 6, M̂ is a matrix containing all data of the salient
points and their correspondences. A detailed derivation for

c© The Eurographics Association 2003.

156

Fischer et al / Dynamic Occlusion

M̂ can be found in 4, as well as a more general explanation
in 8. Here, it is defined as shown in Equation 7.

M̂ =










xp1 yp1 1 0 0 0 −xp1 · xq1 −yp1 · xq1 −xq1
0 0 0 xp1 yp1 1 −xp1 · yq1 −yp1 · yq1 −yq1

xp2 yp2 1 0 0 0 −xp2 · xq2 −yp2 · xq2 −xq2
0 0 0 xp2 yp2 1 −xp2 · yq2 −yp2 · yq2 −yq2
.
.
.

.

.

.
.
.
.











(7)
In Equation 7, the xpi , xqi , ypi and yqi are the respective coor-
dinates of the salient points and their correspondences. The
equation system is then solved using a numerical method
based on the singular value decomposition 20. The vector
â is given by the eigenvector corresponding to the small-
est eigenvalue of M̂, which is the solution with the smallest
residual error.
Since the values in M̂ can become very large depending on
the image resolution used, there can be numerical problems
when calculating the singular value decomposition. Thus be-
forehand all 2D coordinates appearing in the equation sys-
tem are normalized to be in the interval [−1;1]. This is ex-
plained in more detail in 8 and 4.
Another important pre-processing of the pairs of salient
points and correspondences is done even before the con-
struction of M̂. When searching correspondences for the
salient points, it is possible that no satisfying result is found.
There is a number of possible reasons for this. Since the
search area is of fixed size, marker tracking inaccuracies
which are too big prevent the algorithm from finding a cor-
respondence. Also if the relevant part of the camera image
is hidden by other objects, no corresponding point can be
detected. In order to distinguish valid correspondences from
incorrect ones, a confidence measure ci for each point pair is
defined, which is simply the correlation coefficent calculated
for the correspondence point. Only point pairs with a given
minimum confidence con f T hresh are taken into account for
the equation system (see Equation 8) .

ci = R̃(qi), i = 1, . . . ,k

{(pi,qi)}
m
i=1 = {(pi,qi) | ci ≥ con f T hresh}k

i=1 (8)

This usually reduces the number of point pairs from k to a
smaller m. At least five point pairs have to remain after this
selection. Otherwise, we cannot compute a solution for the
equation system.
Note that we only compute a 2D transformation for the DOB
image, although the underlying marker tracking inaccuracies
can be three-dimensional. Nonetheless, a homogeneous tran-
formation in 2D image space is sufficient for correcting the
DOB image. The reason for this is the fact that both in the
graphical model and in reality all DOB polygons lie on a
plane 4.

5.5. Applying the transformation

The computed transformation is then applied to the internal
DOB image. This is done on a per-pixel basis using a spe-
cialized function of the Intel IPL image processing library 9.
Every pixel in the original internal DOB image is copied to
its new position in a new image buffer according to transfor-
mation matrix A. Averaging or interpolation of pixel values
are performed when necessary.
Note that not all vectors â that can be returned by the sin-
gular value decomposition are valid transformations in this
context. The IPL function only works with projective trans-
formations. Thus matrix A is tested for its validity before-
hand. Degenerated matrices are computed if wrong or con-
tradictory point correspondences are found in the preceding
steps of the algorithm.

5.6. Performing the image comparison

After the DOB image has been transformed to eliminate the
effects of marker tracking inaccuracy, the actual image com-
parison can take place. Position and orientation of the in-
ternal DOB image should now match the real DOB in the
camera image. For the entire area of the DOB a pixelwise
comparison criterion is evaluated. The criterion determines
whether a pixel in the internal DOB is identical with the real
DOB pixel. Depending on this, either 0 or 1 is stored in the
occlusion mask for this pixel. We tested a number of differ-
ent pixel comparison criteria in our research. They are de-
scribed in Section 5.7.
After the entire occlusion mask has been computed as de-
scribed, a final filtering step is executed. This is done so that
"outlier" pixels which are not part of a coherent occluding
object are removed from the mask. Therefore morphological
operators 19 are applied to the occlusion mask. A sequence of
Opening and Closing over 3x3 neighbourhoods is repeated
several times.

5.7. Pixel identity criteria

We have evaluated a number of different criteria for pixel
comparison. Among them there are rather simple and
straightforward ones like a comparison of absolute intensity
values. The complete list of criteria can be found in 4. Here,
we will elaborate only on two more complicated ones.
The first criterion is the comparison of the difference from
average intensity in a window area. For computing this crite-
rion, at first both images are converted to grayscale. Then for
every pixel in both images a square window area surround-
ing it is defined, the size of which is fixed. The difference
between the average intensity in this window and the pixel’s
intensity is computed. This is done both for the DOB and the
camera image. The two differences are then compared, and
their difference is thresholded for the criterion. The entire

c© The Eurographics Association 2003.

157

Fischer et al / Dynamic Occlusion

process is shown in Equation 9.

Īdob(x,y) =

h
∑

y′=1

w
∑

x′=1
Idob(x+ x′−w/2,y+ y′−h/2)

w ·h

∆Idob(x,y) = Idob(x,y)− Īdob(x,y)

Īcam and ∆Icam are calculated correspondingly

occ(x,y) =

{

1, |∆Idob(x,y)−∆Icam(x,y)| > threshold
0

(9)
In Equation 9, Idob and Icam are the intensity of pixels in
the DOB and camera images. This criterion is very ex-
pensive because the local average intensity must be deter-
mined for every pixel. This generates an overall complex-
ity of O(n2m2) (with n being an approximation for the local
window’s side length and m an approximation for the image
side length). But it is possible to arrange the summations for
the calculation of the local averages so that a complexity of
O(m2) is achieved 4.
The original motivation for this criterion was to eliminate the
influence of local brightness variations during image com-
parison. Such variations can result for example from shad-
ows cast upon the DOB. Another common cause are differ-
ences in lighting between the DOB texture in the graphical
model and the camera image. Several tests have proven this
criterion as unable to produce satisfying occlusion masks.
The reason for this is a strong depedence on the size of the
averaging window. A large averaging window prevents the
criterion from reacting to local changes in lighting. When
using a small averaging window the criterion actually com-
putes the spatial derivation of the image function and cannot
determine differences in homogeneous areas.
A sufficiently good occlusion mask is calculated by the

Figure 5: Example camera image. A DOB (the bright rect-
angle) is partly occluded by an object (a black briefcase).

"Adaptive HSV" criterion. This criterion also makes use of
the pixel color information. In a first step both the DOB and
the camera image are converted to HSV images. HSV im-
ages contain the relevant color information in their H (Hue)
and S (Saturation) channels 5. The problem is that color
information delivered by the camera is almost random for
very dark pixels. Therefore, we decided to adaptively bal-
ance the influence of color and intensity differences based
on the pixel brightness. For brighter pixels, color differences
play a bigger role.

∆H(x,y) = |Hdob(x,y)−Hcam(x,y)|

∆S and ∆V are calculated correspondingly

α(x,y) = β ·min(Vdob(x,y),Vcam(x,y))

o(x,y) = α(x,y)·
∆H(x,y)+∆S(x,y)

2
+(1−α(x,y))·∆V (x,y)

occ(x,y) =

{

1, o(x,y) > threshold
0

(10)

In Equation 10, α(x,y) is the function determining the bal-
ancing factor. Color difference is calculated as the average
difference in the H- and S-channels. Variable β is a user-
defined parameter for setting the maximum influence that
color differences can have.
We have found the "Adaptive HSV" criterion to deliver fairly
good results in most cases, and it is the best of six criteria
which we tested for the occlusion detection algorithm. Still,
in some scenes finding DOB and camera image identity is
not completely reliable.
Figures 5 and 6 show an example of an occlusion mask gen-
erated by the "Adaptive HSV" criterion.

Figure 6: Occlusion mask computed by the algorithm for the
camera image in figure 5. White pixels in the bitmap indicate
detected occlusion.

c© The Eurographics Association 2003.

158

Fischer et al / Dynamic Occlusion

6. Evaluation of the algorithm

We have devised several methods for evaluating the perfor-
mance of the algorithm. One important measure of course
is the runtime of the algorithm for a single frame. We have
found our approach to take between 800 and 1500 millisec-
onds on the computer that it was developed and tested on.
The runtime analysis for an example of a typical camera im-
age is given in Table 1. Note that the detection of correspon-
dences accounts for more than half of the execution time.
The quality of the results produced by the algorithm is an-

Offscreen rendering of DOB 20 msecs

Salient points detection 70 msecs

Searching point correspondences 560 msecs

2D Warping 40 msecs

Findung occlusion (identity criterion) 300 msecs

Filtering occlusion mask 110 msecs

Total time 1100 msecs

Table 1: Typical execution times for algorithm steps

other important information. There are two aspects of algo-
rithm quality that can be examined. The first aspect is the
correctness of the computed 2D transformation. The better
it maps the internal DOB image to its actual position in the
camera image, the more reliable is the image comparison.
In order to make such an evaluation possible, a software tool
for manual identification of DOBs in camera images was de-
veloped. Using this manual DOB definition and the DOB
appearance suggested by the 2D transformation, a similarity
measure can be computed. This similarity measure is in the
interval similarity ∈ [0;1].
Using the DOB similarity measure, we performed a number
of experiments. In these experiments, we examined the in-
fluence of the confidence threshold (see Section 5.4) on the
quality of the 2D transformation. In each experiment, the
DOB similarities were calculated for a given series of still
camera images. The confidence threshold was changed for
each test run. Statistical data on the resulting DOB similari-
ties is shown in Figure 7.
All datasets were tested with confidence thresholds of 0.1,

0.3, 0.5, 0.7 and 0.9. Of these, 0.7 obviously is the best value.
If a smaller threshold is chosen, it is possible that incor-
rect point correspondences are added to the equation system.
This decreases the quality of the computed 2D transforma-
tion. If the threshold is too high, too few correspondences
are taken into account, even if they are valid. Then the qual-
ity of the transformation can also become poor, or it can even
become impossible to compute it at all due to lack of point
correspondences.

Figure 7: DOB similarity depending on confidence thresh-
old for three image sequences.

Another useful quality measure for the algorithm is the sim-
ilarity between the computed occlusion mask and the actual
occluders. This requires manual identification of the occlud-
ers in the camera image. We have not yet experimented with
that kind of measure.

c© The Eurographics Association 2003.

159

Fischer et al / Dynamic Occlusion

7. Limitations and drawbacks of the approach

There are some limitations to the approach and our imple-
mentation. First of all, it’s important to understand that our
algorithm is not able to deliver actual depth information for
the scene. Whenever a real occluder is detected in front of
any DOB, it is assumed to also be in front of all virtual ob-
jects. In reality, this is not always the case. A natural object
in the scene can be between two virtual objects. Thus, our
occlusion detection approach is not suitable for all types of
applications. It is primarily designed for interaction with the
AR scene using hands or pointing devices, which can mostly
be assumed to be closer to the user than virtual objects. An-
other limitation is that occlusion is only detected in front of
DOBs. This can make occluding objects appear clipped at a
DOB edge.
The algorithm performance described in Section 6 appears
to be not good enough for real-time applications. But given
the fact that state-of-the-art computers are several times as
fast as the one used for development and testing, and after
improvements discussed in Section 8, a considerable speed-
up should be possible.
Problems can also arise from the way that the point corre-
spondences are detected. Because of the fixed-size search
window, very large marker tracking inaccuracies prevent
correspondences from being found at all. How to make the
algorithm more stable in this respect is also described in the
following section. Finally, the pixel comparison criteria that
we have examined do not always deliver flawless occlusion
masks. Alternatives are described in Section 8.

8. Possible improvements and future research

Many possibilities for improving the algorithm can be con-
ceived. The detection of salient points can be done in a sep-
arate pre-processing step, which stores the points in a sepa-
rate file. In each frame, the stored points then only have to be
projected according to the marker tracking pose. This speeds
up the algorithm and allows for more sophisticated detection
heuristics.
For the detection of correspondence points there are several
alternatives to using a fixed-size search window. The win-
dow size could be adaptively increased to account for large
marker tracking inaccuracies. Alternatively, detected corre-
spondence points can be iteratively refined on a Gaussian
pyramid or using different sub-sampling distances. Salient
features could also be detected in the camera image as candi-
dates for the template matching. These methods can increase
both the stability and the speed of the correspondence detec-
tion, which currently is the most expensive algorithm step as
mentioned in Section 6.
The selection of point correspondences can be improved by
using the RANSAC method 8 instead of confidence thresh-
olding. A true 3D pose estimation 20 could be performed
based on the correspondences instead of computing a 2D
transformation.

Finally, the pixelwise image comparison could be perfected
by combining several simple comparison criteria. Another
promising criterion seems to be the color quantisation ap-
proach, in which all colors on the DOB are mapped to a
discrete color lookup table. This might speed up the pixel
comparison and make it more reliable. Moreover a method
for finding coherent occluder areas could be employed. This
can be done using a flood-fill algorithm or an image segmen-
tation method like region growing.
Apart from improving the algorithm for detection of dy-
namic occlusion, another direction of research is also con-
ceivable. The steps of the approach that estimate the trans-
formation between internal DOB and camera image could
be used for a simple markerless tracking system. Pre-defined
surfaces in the user’s environment would then take the place
of artificial markers. A combination of these tasks could pro-
vide both markerless tracking and occlusion handling based
on the techniques described in this paper.

Acknowledgements

We would like to thank Alexander Neubeck for suggestions
on some of the math presented here. Valuable support while
writing this paper was provided by Dirk Bartz and Ángel
del Río, who did the proof reading and commented on its
structure.

References

1. R. Azuma. A survey of augmented reality. Presence:
Teleoperators and Virtual Environments, 6(4):355–385,
1997.

2. M.-O. Berger. Resolving occlusion in augmented real-
ity: a contour based approach without 3d reconstruc-
tion. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR ’97),
pages 91–96, 1997.

3. David E. Breen, Ross T. Whitaker, Eric Rose, and
Mihran Tuceryan. Interactive occlusion and automatic
object placement for augmented reality. Computer
Graphics Forum, 15(3):11–22, 1996.

4. J. Fischer. Interaktive Spezifikation von Domänen
und Detektion partieller dynamischer Verdeckungen in
Augmented-Reality Umgebungen. Diplomarbeit, Uni-
versität Ulm, 2002.

5. J. Foley, A. van Dam, S. Feiner, and J. Hughes. Com-
puter Graphics - Principles and Practice. Addison-
Wesley, second edition, 1997.

6. Anton Fuhrmann, Gerd Hesina, François Faure, and
Michael Gervautz. Occlusion in collaborative aug-
mented environments. Computers and Graphics,
23(6):809–819, 1999.

7. G. Gordon, M. Billinghurst, M. Bell, J. Woodfill,

c© The Eurographics Association 2003.

160

Fischer et al / Dynamic Occlusion

B. Kowalik, A. Erendi, and J. Tilander. The use of
dense stereo range data in augmented reality. In Pro-
ceedings of IEEE International Symposium on Mixed
and Augmented Reality (ISMAR), September 2002.

8. R. Hartley and A. Zissermann. Multiple View Geometry
in computer vision. Cambridge University Press, 2000.

9. Intel Corporation. Intel Image Processing Library Ref-
erence Manual, 2000.

10. Intel Corporation. Open Source Computer Vision Li-
brary Reference Manual, 2001.

11. M. Kanbara, T. Okuma, H. Takemura, and N. Yokoya.
A stereoscopic video see-through augmented reality
system based on real-time vision-based registration.
In IEEE Virtual Reality 2000 International Confer-
ence(VR 2000), pages 255–262, March 2000.

12. H. Kato and M. Billinghurst. Marker tracking and hmd
calibration for a video-based augmented reality confer-
encing system. In Proceedings of IEEE and ACM In-
ternational Workshop on Augmented Reality, pages 85–
94, October 1999.

13. H. Kato, K. Tachibana, M. Billinghurst, and M. Grafe.
Real-time tracking system based on matching tem-
plates generated from image texture (demo). In IEEE
and ACM International Symposium on Mixed and Aug-
mented Reality (ISMAR), September 2002.

14. G. Klinker. Praktikum augmented reality - oc-
clusion handling between real and virtual ob-
jects. http://wwwbruegge.in.tum.de/teaching/ss01/AR-
Praktikum01/presentation/occlusions.pdf, 2001.

15. V. Lepetit and M.-O. Berger. A semi-automatic method
for resolving occlusion in augmented reality. In Pro-
ceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, June 2000.

16. S. Malik, C. McDonald, and G. Roth. Hand tracking
for interactive pattern-based augmented reality. In Pro-
ceedings of IEEE and ACM International Symposium
on Mixed and Augmented Reality (ISMAR), September
2002.

17. B. Paul. Mesa 4.0.4 (readme file).
http://mesa3d.sourceforge.net/docs/mesa.html, 2002.

18. H. Regenbrecht, M. Wagner, and G. Baratoff. Mag-
icMeeting - a collaborative tangible augmented reality
system. Virtual Reality - Systems, Development and Ap-
plications, 6(3), 2002.

19. M. Sonka, V. Hlavac, and R. Boyle. Image processing,
Analysis and Machine Vision. Chapman & Hall, 1993.

20. E. Trucco and A. Verri. Introductory Techniques for
3-D Computer Vision. Prentice-Hall, 1998.

21. J. Wernecke. The Inventor Mentor (Release 2).
Addison-Wesley, 1994.

22. M. Wloka and B. Anderson. Resolving occlusion in
augmented reality. In Symposium on Interactive 3D
Graphics, pages 5–12, 1995.

c© The Eurographics Association 2003.

161

162

