7. International Immersive Projection Technologies Workshop
9. Eurographics Workshop on Virtual Environments (2003)
J. Deisinger, A. Kunz (Editors)

Automated Testing of Virtual Reality Application Interfaces

Allen Bierbaum, Patrick Hartling, Carolina Cruz-Neira

allenb, patrick, carolina@vrac.iastate.edu
Virtual Reality Applications Center, Iowa State University

Abstract

We describe a technique for supporting testing of the interaction aspect of virtual reality (VR) applications. Testing
is a fundamental development practice that forms the basis of many software engineering methodologies. It is used
to ensure the correct behavior of applications. Currently, there is no common pattern for automated testing of VR
application interaction. We review current software engineering practices used in testing and explore how they
may be applied to the specific realm of VR applications. We then discuss the ways in which current practices
are insufficient to test VR application interaction and propose a testing architecture for addressing the problems.
We present an implementation of the design written on top of the VR Juggler platform. This system allows VR
developers to employ standard software engineering techniques that require automated testing methods.

Categories and Subject Descriptors (according to ACM CCS):

1.3.7 [Computer Graphics]: Virtual reality
D.2.5 [Software Engineering]: Testing tools

Keywords: VR Juggler, Extreme Programming, unit testing

1. Introduction

Virtual Reality (VR) applications are being developed and
used in a wide range of domains. These applications provide
new insight into many difficult problems and offer advanced
interaction techniques that may not otherwise be available.
Unfortunately, developing VR applications is still difficult.
Development of VR applications requires handling the many
low-level details of VR systems while simultaneously man-
aging the variety of human-computer interface requirements
for immersive applications.

This complexity makes it infeasible to “get it right” the
first time an application is developed. Instead, VR appli-
cations are developed using an iterative process of devel-
opment and evaluation. Such an iterative methodology al-
lows the application developers to refine the application
as it evolves and gradually accommodate new require-
ments. This parallels many widely used software engineer-
ing techniques!-3, but in the case of VR application devel-
opment, the evaluation aspect is more involved than in other
application domains.

The evaluation process for VR applications usually fo-
cuses on four areas: system performance, usability, value for

(© The Eurographics Association 2003.

107

the task, and correctness’. System performance can be eval-
uated by the developers as new features are added. Usability
and value for the task are evaluated qualitatively by the de-
veloper on a daily basis and more formally using user tests
at key points during development. Correctness is normally
evaluated by systematically testing the application for the
expected responses.

Current correctness testing methods used to evaluate VR
applications include manual tests of the application’s user
interaction and automated tests of the internal application
components. During a manual test, the developer runs the
application to test the behavior of the user interaction for
correctness. Each time a manual test is performed, a basic
routine must be followed. First, the developer starts the ap-
plication with any required configuration options needed for
testing. Next, the developer provides some amount of inter-
action to reach the target state that will be tested. Finally, the
developer manually interacts with the application to see if
it responds as it should. This process can become very time
consuming and error prone if it must be followed every time
a feature is added or a system test is required. As applica-
tions become more feature rich and complex, the problems
with this testing methodology worsen, and systematically

delivered by
.

www.eg.org

EUROGRAPHICS

DIGITAL LIBRARY
diglib.eg.org

http://www.eg.org
http://diglib.eg.org

Bierbaum et al / Automated Testing of Virtual Reality Application Interfaces

testing every feature of the application interface manually
becomes infeasible.

Requiring manual testing has not been a serious problem
in the past because most VR applications have been either re-
search testbeds or small, highly focused applications. As VR
applications have grown to become full production applica-
tions, they have increased in size and complexity. As pro-
duction applications, there exists the development require-
ment that the application be robust. This means that all fea-
tures must be guaranteed to function correctly as develop-
ment continues.

We propose that VR application developers should turn to
standard software engineering testing techniques to reduce
the burden of testing while also increasing the robustness of
the produced code. Many software engineering techniques
rely upon automated testing. Automated testing allows de-
velopers to test an entire code base in a rapid, reliable, and
convenient way.

Automated testing can be applied to VR applications, but
there are currently limits to its applicability. Developers can
directly apply unit testing to VR applications. Unit tests are
small tests that check the behavior of the subsystems and the
low-level classes. For example, unit tests could be used to
ensure that a matrix math class executes correctly or that an
intersection algorithm builds an internal data structure cor-
rectly. When testing user interaction, however, it becomes
difficult to write automated tests because there is no direct
way to test the interaction code in VR applications. Thus,
the existing techniques employed for automated testing of
desktop interaction cannot be used.

The interaction code in a desktop application is frequently
captured by a widget library. A widget library provides a
collection of common graphical interface objects that can
be used by an application to create a graphical user inter-
face (GUI). Examples of widgets include buttons, sliders,
and text entry fields.

Consider a graphical application interface with a button
widget. When a user interacts with the application by press-
ing the button widget, an interface handler within the widget
library processes all the device input (i.e., mouse and key-
board). Since the handler knows the location of the button
widget, it can recognize the interaction with the widget. The
handler converts this interaction into a widget action event
that is delivered to an application callback method.

Common techniques for testing this type of application
have arisen because the application author is only concerned
with implementing widget callback methods. Developers do
not have to worry about writing the code to process device
input because this is handled by the widget library. Devel-
opers write unit tests that simulate interaction by making
the same calls into the application back-end that the widgets
would trigger at runtime. This is done under the assumption
that the developer has configured the user interface callbacks

108

and that the widget library will process the device interaction
correctly. As long as the interaction handler behaves, the de-
velopers can be assured that, at run time, the application will
receive the correct calls.

VR user interfaces are more complex and require a dif-
ferent type of testing. VR applications do not make use of
a common interaction handler to process device data but in-
stead process the device input directly. Much of the core ap-
plication logic revolves around how to process the input to
support immersive interaction. Furthermore, it may be pos-
sible for the user to interact directly with every object in the
virtual environment. To allow for this degree of interactivity,
the application code for each object processes the input data
and responds accordingly.

To illustrate the complexity further, consider an example
of a small application that allows a user to grab and reposi-
tion a cube in a virtual environment. The user interface code
is responsible for letting the user navigate to the cube and for
providing interaction capabilities with the cube. Interactions
could include reaching out and touching the cube, grabbing
the cube, moving the cube, and finally releasing the cube.
The interaction code in this example is not hidden within a
widget library. Developers of immersive applications gener-
ally do not have common widget libraries available. This is
because the open-ended options for immersive interactions
preclude the creation of standards which would limit the
available interaction methods. Instead, the logic for object
grabbing is part of the application code, and it requires pro-
cessing of the device data and examination of the data model
to test the current input state against the current object state.

To automate the testing of VR applications, we need a
way to automate the testing of the interaction code of the
application. Presently, there is no clear way to automate this
type of testing because current methods focus on functional
unit tests instead of interaction tests.

1.1. Contributions

This work focuses on how to allow the creation of automated
interaction tests for VR applications. These tests can be used
as unit tests, acceptance tests, and regression tests through-
out the development and evaluation of an application. This
paper makes three main contributions:

e We identify the need for automated testing of interaction
code in VR applications and describe how it can be used
to create more robust applications.

e We describe the unique challenges that must be addressed
to automate testing of VR applications and propose meth-
ods for overcoming these issues.

e We present the design and implementation of a working
system that demonstrates our testing solutions and discuss
our experiences with using it.

(© The Eurographics Association 2003.

Bierbaum et al / Automated Testing of Virtual Reality Application Interfaces

2. Background

Testing is the process of detecting errors in software. In
this section, we provide background information about test-
ing software including the types of tests, the importance of
testing, and some testing methodologies. We conclude this
section with a review of some existing tools for automating
testing.

2.1. Types of Tests

There are two well-known types of tests used in software en-
gineering: unit tests and acceptance tests. These play differ-
ent roles depending on the test author and the desired results.

2.1.1. Unit Tests

Unit tests are written by the programmers of a software sys-
tem to test individual routines, components, or modules (i.e.,
software units)!-4. Unit tests do not test the system as a
whole. For a given class, a collection of unit tests for the
member functions ensure that the class code executes prop-
erly. This is also described as “confidence testing” because
it provides a degree of confidence that the code in question
will work. Furthermore, it provides a means to assess the
reliability of the software.

Unit tests can be used for a variety of purposes toward
ensuring proper functionality of a piece of software. An ob-
vious use would be to ensure that code functions properly
under normal use cases. However, unit tests can also be em-
ployed to test behavior under abnormal or improper uses. In
this way, programmers can test error handling and recovery.

2.1.2. Acceptance Tests

Acceptance tests, on the other hand, are written by customers
or clients during the development process’. Such tests are
written on a “story-by-story” basis!. Beck defines a story
as “one thing the customer wants the system to do,” and
each customer-defined story should have a test. The results
of these tests, however, are more complex to evaluate than
those of unit tests. Instead of a pass/fail evaluation, accep-
tance tests are usually assessed based on some percentage.
As the software is developed, the result of a given test should
approach 100%. Ultimately, the purpose of acceptance tests
is to demonstrate that the software system as a whole works
as desired.

2.2. Importance of Testing

Testing code plays a critical role in ensuring that the software
works as expected. By testing each new feature as it is added

f Acceptance tests were formerly called functional tests in the Ex-
treme Programming literature. “Acceptance test” is now the standard
term.

(© The Eurographics Association 2003.

109

to an application, the developers can be sure that the new
feature works. Within a unit testing framework, all the unit
tests are run every time testing is performed. In so doing,
testing a new feature also ensures that existing functionality
does not degrade as a result of the addition. Furthermore, a
programmer can run the tests at any time and know whether
each element of the system is working.

2.3. Testing Methodologies

There are many ways to apply the types of testing described
above. We focus on the testing processes defined by two pro-
gramming methodologies that are currently in wide use: Ex-
treme Programming and the Unified Process model.

2.3.1. Extreme Programming

In the Extreme Programming (XP) testing methodology!,
programmers follow a test-driven approach to development.
They work in a short cycle where tests are added and then
made to work. There are two key points regarding how tests
should work:

1. No two tests should interact with each other
2. Testing should be automatic

By keeping the tests distinct, we can avoid problems where
the failure of one test causes other tests to fail, thereby re-
sulting in false negatives. By automating the tests, we can
be assured that the tests will give the accurate results with-
out being affected by outside factors such as stress levels or
time restrictions.

2.3.2. Unified Process Model

The Unified Process (UP) model indicates that testing should
begin when the software architecture is defined and continue
throughout the complete software life cycle?. Testing in the
UP model is based on regression tests that are used to en-
sure that previously tested code still works when new code
is written. During the life cycle, the number of regression
tests will increase steadily.

In the UP model, a test model describes how system com-
ponents are tested. The test model is made up of test cases,
test procedures, and test components. Test cases are designed
to test specific use cases in the project design. As compared
to the XP methodology, testing is not part of the core devel-
opment process and rather is separate from the design im-
plementation.

2.4. Previous Work

Most previous work in the area of testing has focused on
how to guarantee requirements of applications such as per-
formance, response, accuracy, etc. The literature discusses
methods for writing good tests and outlines development cy-
cles for ensuring good incorporation of testing.

Bierbaum et al / Automated Testing of Virtual Reality Application Interfaces

2.4.1. XUnit

In the XP testing methodology, automated unit tests are at
the center of test-driven development. XUnit is a testing
framework based on the principles of XP, and implemen-
tations of it have been written for several different program-
ming languages. These include JUnit* for Java, CppUnit¥ for
C++, NUnit! for the Microsoft .NET Framework, and PyU-
nit! for Python. Programmers using these tools write suites
of unit tests, and a test runner manages the execution of the
tests.

3. Issues of VR Interface Testing

In this section, we describe the primary issues involved in
testing VR applications. First, we describe the differences
between VR interface testing and traditional unit testing.
This serves to identify the shortcomings of unit testing with
respect to VR interface testing. We then relate this to how
VR applications are currently tested and begin building up a
set of requirements for an automated testing system that can
effectively test VR interfaces. We finish by giving a high-
level overview of our proposed solution to automated test-
ing.

3.1. VR Interface Testing Compared to Unit Testing

As we described above, traditional unit tests systematically
test the modules and the components of a software sys-
tem. For object-oriented designs, this commonly means that
each method of a class is tested individually. The test au-
thor devises inputs for each method and then verifies that
the method behaves correctly when called. This may involve
checking the return value of the method or verifying a com-
putation triggered by the method. The author systematically
varies the input in an attempt to test all the use cases and
error states that the object might encounter in a real applica-
tion. In this way, the unit test provides all the input states for
testing an object. These same unit testing methods can be ap-
plied to higher level modules and subsystems to test groups
of collaborating objects. Instead of testing individual meth-
ods, high-level unit tests operate by testing the results of test
scenarios composed of multiple calls to related objects.

In the specific area of desktop GUISs, testing methods do
not normally test the GUI explicitly. Although it is possible,
in many cases it is not necessary. This is because traditional
GUIs are built using interaction toolkits that provide the GUI
widgets for the interface. These toolkits manage the process-
ing of the device input and trigger event handling callbacks
when a GUI interaction occurs. As a result, unit tests can be

¥ http://www.junit.org/

§ http://cppunit.sourceforge.net/
1 http://nunit.sourceforge.net/

I http://pyunit.sourceforge.net/

110

designed that manually create the directly invoke the event
callbacks and test the results.

Testing VR applications differs from this because much
of the VR application code handles user interaction. Most
VR applications do not make use of an interaction toolkit,
instead they typically process device input directly. Hence,
it may not be possible for the test author to deliver input to
the application programmatically. In other words, if a GUI
application were written to process input directly from the
mouse rather than through GUI events, the testing methods
described above for graphical applications would be insuf-
ficient. In order to test the interaction in a VR application,
there must be some way to make the application respond as
though it is receiving actual device input normally.

Test cases for VR must be able to test the application’s
interaction code. When testing interaction code, a unit test
should not directly set the application state since this by-
passes the code it is trying to test. Instead, the unit test needs
to trigger the interaction code by providing input to the appli-
cation. The application’s interaction code then changes the
state of the application in response to the input. Once all of
the input has been processed by the interaction code, the ap-
plication’s state can be tested for correctness. For example,
a navigation test may require the application to respond to a
series of user inputs that navigate through the virtual world.
Once the input has been processed, the test can verify that
the application is at the expected destination coordinates in
the virtual world.

To support testing in this way, tests need a way to monitor
the state of input processing. The tests need to know when
input processing has proceeded up to a predefined point.
We call these input processing points checkpoints, of which
there may be many in an application. A VR interaction test
asynchronously monitors the state of the input processing
waiting for a checkpoint to be reached. When the checkpoint
is reached, the test proceeds to verify that the application has
reached the correct state.

3.2. Design of a VR Interface Testing Framework

A potential design for a testing framework for VR interfaces
is shown in Figure 1. The design uses a test runner that main-
tains a list of tests that it manages. Each of these tests ex-
ternally monitors the state of the VR application, while the
application is being controlled by pre-recorded input data.
When the application reaches a state that requires testing,
the test becomes active and checks the application for the
correct state. The next sections go on to describe this high-
level design in more detail and discuss the reason for this
design structure.

3.2.1. Recorded Input

To test a VR interface, there must be some input for the ap-
plication to process. In order to automate the testing proce-
dure, we must be able to provide input to the application

(© The Eurographics Association 2003.

Bierbaum et al / Automated Testing of Virtual Reality Application Interfaces

Application

TestRunner | TestCase

process()

|
NULL = getState()
e —— ilj

|

| . .
| ate = "statel
|

process() "state1" = getState()

esatgeta?e lstate Y

queryAppStatus()

sertDesiredState

Figure 1: Test monitoring an application

in such a way that it responds exactly as it would if the
user were interacting with it directly. We can achieve this by
recording all device input during an application usage sce-
nario. At key stages during the usage (checkpoints), the in-
put is “stamped,” and user-defined aspects of the application
state are stored. This log of the input data and application
state can then be used later as the basis of a test case.

3.2.2. Test Case Execution

In order to test the VR application, a test case must be cre-
ated to monitor the application. When the test case begins its
execution, it loads the recorded input into the system. This
device input is played back for the duration of the test. Peri-
odically, the test case queries the input playback system and
the application to get the current state of both. When the ap-
plication reaches some checkpoint, the test case verifies that
the application state matches the previously stored state. If
the application state is incorrect, then the test case signals
the test runner, and the test runner alerts the user of the fail-
ure.

Checkpoints during the application execution can be iden-
tified by monitoring the state of the input, by testing the state
of the application, or by using a flag in the input playback
stream. In all three cases, the test case determines if it has
reached a checkpoint by querying the application. The get —
State () application method in Figure 1 is a placeholder
for this operation. In this case, a checkpoint is reached when
the query operation identifies “statel”. At such time, the
procedure described above is performed to verify that the
application state matches the expected result.

The checkpoints within a single test case are arrived at
sequentially. As such, the second checkpoint builds off the
first state and so on. This leads to the issue that test cases

(© The Eurographics Association 2003.

111

should consist only of test states that can build off each other
in sequence.

3.2.3. Test Case Grouping and Management

The test runner is used to manage a group of test cases. It
allows groups of tests to be run in sequence with each of the
individual tests executed in sequence. The test runner also
tracks the results of the tests and is responsible for synchro-
nizing the tests and the application.

When a test starts, it should be guaranteed that the ap-
plication is in its initial state. The test runner ensures that
this is true by calling an application reset method between
tests. When the new test starts, it could modify the applica-
tion state to prepare for the test. For example, the test case
may ask the application to load specific data or to start in a
specific mode.

When all tests have completed execution, the application
can query the test runner for the test results. At this point,
the user reviews the results and makes changes to fix test
failures.

4. Implementation

We have implemented a VR interface testing module based
upon the ideas put forth in the previous section. This design
should be applicable to any VR software system. Our im-
plementation is an add-on module for VR Juggler**2. VR
Juggler is a suite of reusable C++ libraries that form a vir-
tual platform for VR application development. VR Juggler
includes libraries for device management, operating system
abstractions, and configuration. For this implementation, we
extended the Gadgeteer module which is responsible for all
input management within VR Juggler. We also added a new
subsystem for test management.

Our design uses names for the interfaces and the classes
that are similar to those used in CppUnit, the tool we use for
testing C++ code not related to the interaction. This should
allow developers who are already familiar with CppUnit to
understand the functionality of our test system more easily.

The core of the design consists of a test runner that man-
ages a group of tests, as shown in Figure 2. The test runner
is responsible for keeping the entire testing module synchro-
nized with the user application and for allocating processing
time to the tests. Tests consist a sequence of state checks for
a given scenario and any initialization and clean-up code re-
quired for that scenario. Test failures are triggered by throw-
ing C++ exceptions that describe the failure. The test runner
tracks the test results by storing these failures for later pro-
cessing.

** http://www.vrjuggler.org/

Bierbaum et al / Automated Testing of Virtual Reality Application Interfaces

vrj:test:TestRunner _
vrj:test:Test

#mApp:vrj::App *
#mTests:std::vector<Test*>
#mTestFailures:std::vector<TestFailure>

+setApp:void
+setUp:void
+tearDown:void
+processTest:void
+isDone:bool
+getName:std::string

+initialize:void
+processTests:void
+addTest:void
+printFailures:void

State

-~
P>
>
<<throws>> _~
>
>
—
//
L

std::exception
vrj:test:TestFailure

1. vrj:test:TestCase

#mApp:vrj::App *

+setApp:void
+getName:std::string

+getFailedTest:Test *
+getFailedTestName:std::string
+getMessage:vrj::itest::Message
+getFileName:std::string
+getLineNumber:int
+getFullDescription:std::string

UserTestCase

+setUp:void
+tearDown:void
+processTest:void
+isDone:bool

Figure 2: Overview of test system classes

We will now describe each part of the system in more de-
tail, explaining the responsibilities of each class in the test-
ing module. This description will start at the low-level input
logging and proceed up to the high-level test runner.

4.1. Input Logger

The implementation uses a module that we created for the
VR Juggler Gadgeteer input management subsystem to pro-
vide input logging. This module extends Gadgeteer to allow
for the recording, playback, and storage of entire sessions of
user input. The input is recorded by collecting the current
state of each device into a single image of the overall input.
This image is created by serializing each active input device
into an XML-based form. The serialized input data are then
collected together to present the complete input image.

The input logger also provides the ability to store check-
point identifiers in the logging data. As we described above,
these can be queried during playback to detect that the in-
put has reached some predefined state. The insertion of user-
defined checkpoints offers a convenient mechanism for de-
velopers to create tests of key pieces of interaction function-
ality.

4.2. Tests

All tests within the system are encapsulated within objects.
The vrj::test::Test class is the base class for all the
test objects within the testing system. It is an abstract base
class that defines the interface that all tests must implement
to be managed by a test runner. The interface provides a

112

class UserTestCase

{
virtual void setUp ()

{

public TestCase

inputLogger->play (“input.xml”) ;
application->reset ();

}

virtual void processTest ()

{

std::string chkpt
mInputLogger->getCheckpoint () ;
if ("selected" == checkpoint)

{

bool is_selected
mApp->mIsSelected;
TEST_ASSERT (is_selected) ;
}
else if ("moved" == checkpoint)

{

Pos cur_pos mApp->o0bj.getPos () ;
TEST_ASSERT (cur_pos == good_pos) ;

Figure 3: Test::processTest example code

setUp () method that is invoked to perform any one-time
setup and initialization at the beginning of the test execu-
tion. There is a corresponding tearDown () method that is
called by the test runner when the test has completed exe-
cution. The processTest () method is called by the test
runner once per frame. This is where the code for performing
the tests should be located. The code in this method checks
the current state of the application and when applicable, it
performs tests to verify that the application is in the expected
state. See Figure 3 for an example implementation of this
method.

The vrj::test::TestCase class is designed to be
the basis for end-user test cases. This class derives from the
vrj::test::Test class and extends it to add tracking of
the user application being tested. In the current implementa-
tion, both test classes could be combined into one, but we
plan to add several other customized test classes that will
derive from vrj: :test: : Test. For example, we plan to
add a test suite class that will allow grouping of multiple
tests into a single parent test.

4.3. Failures

The testing system processes test failures using C++ excep-
tion handling. When a test failure is detected, the test code
throws an exception. The vrj::test::TestFailure
class is the base class for the test case failure exceptions.
This class holds all the relevant information about the test
failure including the failed test name, the file name where
the failure occurred, the line number in the file, and an ex-

(© The Eurographics Association 2003.

Bierbaum et al / Automated Testing of Virtual Reality Application Interfaces

processTests():void

Application InputLogger
TestRunner <constructor>() I
< |
|
|
m Test constructor>() |
I - !
| |
| |
|
! A | addTest(test):void |
- | |
______________ |
! | initialize(this):void |
< [|
______ | |
|
|
|
|
|
|

:void
play("input.xml")

] B —

reset()

Ve

processTest():void

chkpt = getCheckpoint{)

-
.
R] 1

if(chkpt = trigger)
getAppState()

sertStateCorrect()

|
Est done] //séltNewTest()

Figure 4: Test execution

tended description of the failure. The interface requires that
each of these parameters is set at construction time and al-
lows the parameters to be queried by code that catches the
exceptions.

To simplify the creation of the failure exceptions, we pro-
vide helper macros that take a condition to be tested. If the
condition fails, the helper macros throw an exception con-
taining information about where the failure occurred and
what caused it. An example macro is TEST_ASSERT which
is used in Figure 3.

4.4. Runner

The vrj::test::TestRunner class is responsible for
executing the tests and collecting the failure information. It
synchronizes the tests with the application. It is the responsi-
bility of the application to create, initialize, and execute the
runner (when testing is enabled).

The interaction and behavior of the test runner and the ap-
plication can be seen in Figure 4. If an application wants to

(© The Eurographics Association 2003.

113

run tests, it must first create a test runner. Once the appli-
cation creates a test runner, it add tests to it with the ad—
dTest () method. When the application has added all the
desired tests, it must call the test runner initialize ()
method, passing in a reference to itself. This completes the
initialization of the individual test cases and prepares the test
runner for execution. The application is then responsible for
calling the processTests () method once at the begin-
ning of each frame. By doing this, the application gives the
test runner processing time to run the current tests. The test
runner will manage running the tests and collecting the status
information of any failures. When all the tests are completed,
the runner will notify the application, and the application can
invoke the printFailure () method to print the results
of the test runs.

5. Discussion

We are currently using this testing system to support applica-
tion development at the Virtual Reality Applications Center.
The testing system described in this paper has allowed us
to more fully apply standard software engineering method-
ologies such as those described in the background material.
This has led to an increase in application developer pro-
ductivity and to more reliable applications. We can make
use of iterative development techniques to add new features
quickly while remaining confident that existing functionality
is maintained.

5.1. Test System in Use

We have used this system to add tests to several VR appli-
cations. For application testing, we test the interaction code
for correct behavior while performing interactions such as
navigation and object manipulation. In each of these appli-
cations, we extended the VR Juggler application object to
add support for testing. First, we added a new data member
to hold a reference to the test runner and a new method to
initialize the tests when requested (see initTesting ()
in Figure 5). Then, we added the code to preFrame () to
call the test runner’s processTests () method. Once test
processing has been added to the application, we must cre-
ate the tests and record the input needed for playback during
testing.

As can be seen in the example shown in Figure 5, existing
applications can be extended to support testing with very lit-
tle new code. Because the application is monitored “as is,”
there is no need to modify the application in any other way
to allow for monitoring.

5.2. Designing for Testing

While we have found that it is possible to add interaction
testing to existing application, it is most effective if the ap-
plication is designed from inception to support testing. If an

Bierbaum et al / Automated Testing of Virtual Reality Application Interfaces

void UserApp::initTesting

{
testrunner = new TestRunner;
testrunner->addTest (new Testl);
testrunner->addTest (new Test2);
testrunner->initialize (this);

}

void UserApp: :preFrame ()

{

if (NULL != testrunner)
testrunner->processTests () ;

}

Figure 5: Extending an application to support testing.

application has not been designed to support testing, it can
be difficult to check its state externally. Applications that are
designed for testing will provide hooks for external query-
ing the application state. They may also provide methods to
store the state for later comparison during testing.

We have found this last method to be especially helpful
when creating input logs for debugging. Consider what the
user must do when the application state cannot be captured
and stored. While logging the input, the current state of the
application must be recorded manually. This may mean that
when the user stamps the input log with a checkpoint, the
user must also call a routine that prints out the current state
of all the objects in the system. The user then has to manually
look up the state information for the object to be tested, write
down this state information, and then add code for a test that
asserts this state when the given checkpoint is reached.

In the case where the state can be queried and saved, the
application can instead just save its state to a file. Then,
the test case can load this file and compare the stored state
against the active state at the time of the checkpoint.

We are currently experimenting with ways to simplify test
creation even further by extending the tests to include a col-
lection mode. While running tests in collection mode, the
tests store the current status of the application to be used for
a later check. This can greatly simplify the maintenance of
test cases by allowing test data to be reconstructed rapidly
when application design changes break tests.

We are also experimenting with standard ways to store the
application data in an XML format so that it can be incorpo-
rated into the input log with the testing checkpoints. This
builds upon the concept of saving the application state to a
persistent form. In this implementation, though, the persis-
tent form is an XML tree that is saved as an extra property of
the checkpoint entry. This alleviates the need for the devel-
oper to maintain an input log file and several separate files
with views of the system state. Instead, all this information
is combined into a single unified file.

5.3. Use with Higher Level Tools

There are many higher level VR authoring tools that could
benefit from testing. High-level tools can offer users built-in
testing features by building upon a low-level system that pro-
vides testing capabilities. The high-level programming inter-
face simply needs to provide a way for application authors
to access the testing system. This could be provided using
a pass-through interface or by creating a customized inter-
face that wraps the low-level testing facilities. The details of
how these interfaces would work are specific to the actual
high-level tool being used.

6. Conclusions and Future Work

We have described why automated testing of VR interaction
code is needed and how it differs from current unit testing
methods. We have also described the unique challenges that
interaction testing presents and have described the design
and implementation of a system that addresses these issues.

This testing system allows developers to test their applica-
tions more completely than was previously possible. It pro-
vides for a solution that allows testing of VR application in-
terfaces to be automated.

We have several areas of future work that we would like to
pursue. We are working on methods to simplify the creation
and maintenance of the tests. We are also working on meth-
ods to help automate the process of creating the tests. The
discussion of storing the application status in XML form in
the input log is an example of this research direction.

We are also experimenting with ways to test a wider va-
riety of VR applications. One area that we are particularly
interested in is testing of collaborative VR applications. This
presents many interesting new challenges for testing, but we
are confident that solutions exist.

In conclusion, we have found this system to be a very
powerful tool for creating automated testing systems for VR
applications. This system allows developers to employ stan-
dard software engineering techniques that require unit test-
ing methods.

References

1. K. Beck. Extreme Programming Explained. The XP
Series. Addison-Wesley, 2001.

2. A. Bierbaum. Vr juggler: A virtual platform for virtual
reality appliation development. Master’s thesis, lowa
State University, Ames, 1A, 2000.

3. I Jacobson, G. Booch, and J. Rumbaugh. The Uni-
fied Software Development Process. Addison-Wesley,
1998.

4. S.McConnell. Code Complete. Microsoft Press, 1993.
R. Stuart. The Design of Virtual Environments.
McGraw-Hill, 1996.

(© The Eurographics Association 2003.

