
7. International Immersive Projection Technologies Workshop
9. Eurographics Workshop on Virtual Environments (2003)
J. Deisinger, A. Kunz (Editors)

ViSTA FlowLib – A Framework for Interactive Visualization
and Exploration of Unsteady Flows in Virtual Environments

M. Schirski1†, A. Gerndt1, T. van Reimersdahl1, T. Kuhlen1, P. Adomeit2, O. Lang2, S. Pischinger3, and C. Bischof1

1 Center for Computing and Communication, Aachen University (RWTH), Seffenter Weg 23, 52074 Aachen, Germany
2 FEV Motorentechnik GmbH, Neuenhofstraße 181, 52078 Aachen, Germany

3 Institute for Internal Combustion Engines Aachen (VKA), Aachen University (RWTH), Schinkelstraße 8, 52062 Aachen, Germany

Abstract

In the past a lot of work has been invested in various aspects of an interactive visualization of CFD simulation
data. This includes e.g. increasing the rendering speed and responsiveness of complex visualizations, using and
enhancing multimodal user interfaces, and incorporating parallel approaches for an efficient extraction of flow
properties and their respective visual representation. Still, only few projects combine the significant advances in
these areas. In this paper, we describe our software framework ViSTA FlowLib, which facilitates merging current
research results of various related areas. This is done by connecting dedicated sub-modules with clearly defined
responsibilities through appropriate interfaces, whilst implementing sensible default behavior. ViSTA FlowLib
combines efficient rendering techniques and a parallel computation of the visualization with intuitive multimodal
user interfaces to allow for an interactive exploration of unsteady fluid flows in a virtual environment. Special care
has been taken to achieve a high scalability in respect to computing power, projection technology, and input-output
device availability.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Virtual Reality; I.3.6
[Computer Graphics]: Interaction Techniques; I.3.3 [Computer Graphics]: Viewing Algorithms; I.6.6 [Simula-
tion and Modeling]: Simulation Output Analysis; H.5.2 [Information Interfaces and Presentation]: Graphical User
Interfaces (GUI), User Interface Management Systems (UIMS); J.2 [Physical Sciences and Engineering]: Engi-
neering

1. Introduction

A rapid increase in available computing power and signifi-
cant improvements of simulation models have resulted in an
ever increasing amount and complexity of simulation data
being generated day by day. This has led to a need for so-
phisticated visualization methods to make optimum use of
the results of these simulation runs. Especially the multi-
dimensional nature of the data being generated complicates
an intuitive understanding with standard two-dimensional
visualization methods. In our opinion a combination of Vir-
tual Reality (VR) methods and high-performance comput-

† Corresponding author, e-mail: schirski@rz.rwth-
aachen.de

ing makes for an optimum approach to achieve an intuitive
comprehension of the processes being simulated and visual-
ized. Immersive display technology, stereoscopic and user-
centered projection, and multimodal user interfaces ease the
understanding of complex data, while a parallelized compu-
tation of the visualization improves its usability due to min-
imized response times.

Although there have been significant advances in the field
of Virtual Reality, interactive flow visualization, and human
computer interfaces in the last decade, only a few groups
combined the respective novelties. We try to facilitate an in-
corporation of the corresponding advances into a single sys-
tem by introducing our software framework ViSTA FlowLib
for an interactive visualization and exploration of flow simu-

c© The Eurographics Association 2003.

77

http://www.eg.org
http://diglib.eg.org


Schirski et al / ViSTA FlowLib

Figure 1: Interactive exploration of a CFD dataset in a vir-
tual environment. CFD data courtesy of: Aerodynamisches
Institut, Aachen University (RWTH), Germany

lation data in virtual environments. It is an extension library
of our cross-platform virtual reality toolkit ViSTA22 and uses
the open-source Visualization Toolkit (VTK)23 for a variety
of visualization algorithms.

ViSTA FlowLib incorporates both well-known and innova-
tive solutions to classical problems of an interactive visual-
ization of Computational Fluid Dynamics (CFD) data in one
flexible framework. Especially large-scale data handling, in-
tuitive interaction with 4-dimensional data in virtual envi-
ronments, and maximizing rendering speed are addressed.
Additional features of our framework include a high scala-
bility and strong extensibility.

We achieve this goal by decomposing the task at hand
into three sub-modules with clearly defined interfaces and
responsibilities, i.e. the multimodal user interface, a data
stub for transparent communication with HPC work hosts,
and a central part for rendering and time management. First
prototypes, which allow an interactive visualization of path
lines in an unsteady CFD dataset of an internal combus-
tion engine, show considerable improvements with regard
to needed computation time, visualization control, and ren-
dering speed. In this case, parameters and seed points for
the pathlines are chosen via an intuitive multimodal inter-
face, and the trajectories of the corresponding massless par-
ticles are computed on high-performance SMP clusters and
rendered efficiently to immersive display systems by a dedi-
cated visualization host, resulting in an intuitive and interac-
tive visualization of the simulated fluid flow. Every compo-
nent of this system is scalable, which allows for using lower-
end hardware as well, i.e. commodity PCs for rendering pur-
poses or LINUX clusters for tracing the particles. It is even
possible to use a single workstation for the whole process, if
the user accepts considerable performance losses with regard
to computation speed and responsiveness of the system.

Future extensibility is maintained by keeping the single
components as independent as possible. This allows for the
incorporation of e.g. different parallelization or visualiza-
tion approaches by just substituting the respective part of the
system. Especially the combination with VTK allows for a
transparent inclusion of new visualization algorithms, which
are constantly being developed and implemented by the cor-
responding open-source community.

Note, that our goal is not only the implementation of an-
other visualization toolkit, but an open library, which facil-
itates the implementation of CFD flow visualizations by of-
fering a solid amount of visualization and parallelization ca-
pabilities, paired with intuitive user interface options.

The remainder of this paper is structured as follows: The
next section gives an overview of related work, followed
by a description of the fundamental building blocks of the
framework. The sections 4 to 6 discuss these building blocks
in more detail, before a prototypical implementation, which
makes use of ViSTA FlowLib, is described. The last section
consists of some conclusions and an outlook for future work.

2. Related Work

Visualizing complex fluid flows in virtual environments is
a goal, which has been pursued by a diversity of research
groups with various objectives and approaches. Significant
progress has been achieved in single or few aspects of the
visualization process. In the remainder of this section, we
give examples for successful work in various related areas.

Concerning human computer interfaces, Laviola16 and
Ebert and Shaw7 concentrate on two-handed user-interfaces,
but seem to rely on an in-core computation of the visualiza-
tion, which limits the amount of data that can be processed.

An intuitive visualization of fluid flows is achieved
through a variety of methods19. As we consider integral
objects like streamlines or particle traces to be especially
intuitive, we concentrate on examples for using those as
given e.g. by Lane14. Zöckler et al25 and Fuhrmann and
Gröller8 describe methods for an improved perception and
basic user interfaces in virtual environments for the visual-
ization of streamlines. An out-of-core pre-computation and
sophisticated encoding of particle traces is implemented by
Bruckschen et al2, along with an interface for choosing
which particle traces to display at any given time.

The exploration of larger datasets is sped up by incorpo-
rating a parallelized computation of time consuming extrac-
tion algorithms on dedicated work hosts, e.g. with focus on
parallel computation15 or load balancing1. Streaming of (par-
allel) pre-computed visualization data to a visualization host
was considered by Olbrich et al18.

Whereas most of the given examples concentrate only on
a few aspects, some systems combine several important ap-
proaches to achieve powerful visualization schemes. This

c© The Eurographics Association 2003.

78



Schirski et al / ViSTA FlowLib

includes COVISE and its VR add-on COVER20, which al-
lows sophisticated visualization features to be computed on
parallel HPC systems and displayed in virtual environments.
Data transfer efficiency between the work host and the visu-
alization host is improved by data compression strategies12.
However, the VR user interface consists mainly of a pointing
device and basic 3D menus.

Other examples for dedicated HPC work hosts being
used for the computation of a fluid dynamics visualiza-
tion to relieve the visualization host are the Distributed Vir-
tual Windtunnel4, which is an extension of Bryson’s and
Levit’s original Virtual Windtunnel3, and the Responsive
Workbench13, 24, which both focus on a certain type of dis-
play system and interaction metaphor.

Work, which is conceptually related to ours, has
been done by Bryson with a framework for the Virtual
Windtunnel5. It offers the possibility to add new visualiza-
tion and interaction methods as well, but is limited to SGI
platforms and does not address the data acquisition part of
the visualization pipeline.

3. Fundamentals

ViSTA FlowLib uses our cross-platform VR-toolkit ViSTA22

for the implementation and management of sophisticated VR
functionality like access to immersive display systems, mo-
tion trackers, and haptic output devices (see figure 2). As
ViSTA is highly scalable in respect to available hardware,
this allows for a seamless integration of the required func-
tionality on a diversity of computing platforms, ranging from
standard commodity PCs to high-end HPC systems and from
common computer monitors to multi-screen immersive dis-
plays. ViSTA relies on a dedicated scenegraph API for scene-
graph management. For now, it uses the commercial World-
ToolKit (WTK) from Sense821, but we are planning to re-
place it with an open-source toolkit.

OpenGL

VTK Scenegraph API

OS (Win32, LINUX, SUNOS, IRIX...)

ViSTA

ViSTA FlowLib

Figure 2: ViSTA FlowLib is an extension to ViSTA (Virtual
Reality Toolkit University of Technology Aachen), which in
turn is based on VTK and a scenegraph API.

In addition, we build upon the open-source Visualization
Toolkit (VTK)23 for an implementation of several visual-
ization algorithms like isosurfaces and cut planes. As VTK

does not include functionality for time-dependent visualiza-
tion (yet), we substitute the required functionality as needed.
Examples include data management and pathline extraction
algorithms. Furthermore, we use VTK data structures for
a variety of communication processes between the paral-
lelized flow property extraction and the visualization part of
the framework. In some cases we utilize a part of the VTK
rendering pipeline for drawing standard geometry as well,
by using appropriate methods of single visualization objects,
which in turn issue OpenGL commands to the graphics sys-
tem.

As depicted in figure 3, our framework ViSTA FlowLib it-
self is comprised of several parts, which include a central
rendering and time data management part, the multimodal
user interface with a variety of default functionalities, and
a data stub for communication with dedicated HPC work
hosts.

ViSTA FlowLib

Rendering and Time 

Management

Multimodal 

User Interface

Parallelization 

Stub

HPC Work Host

Figure 3: ViSTA FlowLib includes a central data manage-
ment part, the multimodal user interface, and a data stub for
communication with dedicated HPC work hosts.

4. Time Management and Rendering

Within the time management and rendering part of the ViSTA
FlowLib framework timing information for the unsteady
datasets is provided. In addition, access to graphical re-
sources is controlled. To achieve a maximum flexibility, re-
sponsibilities are distributed according to functional entities,
each one being as independent as possible of the rest of the
system.

Time management and rendering are implemented by the
visualization controller, several visualization objects, (po-
tentially multiple) time mappers, and resource managers
(see figure 4). In the following sections these objects are
briefly described, before further details about the human
computer interface and parallelization capabilities are pre-
sented.

4.1. Visualization Controller

The visualization controller is the central entity of the visu-
alization process. It manages all visualization objects by of-
fering interfaces for run-time registration and unregistration,

c© The Eurographics Association 2003.

79



Schirski et al / ViSTA FlowLib

0..*

0..1

0..10..10..1

0..1

0..1

0..1

0..*

VtkGeometry

Tubelets

Droplets

VisController

VisObject

ResourceManager<C>

ResourceKey<C>

ParticleData

0..*

0..1

TimeMapper

Figure 4: In the time management and rendering part of the
framework responsibilities are distributed according to func-
tional entities. Besides the central visualization controller
(VisController) examples for implementations of visu-
alization objects (Droplets, Tubelets, and VtkGe-
ometry) and shared resources (TimeMapper and Par-
ticleData) are depicted, along with the respective re-
source key and resource manager objects.

as well as run-time data queries. In addition, it synchronizes
all visualization objects by managing visualization time and
calling their respective update and rendering methods.

4.2. Visualization Objects

Visualization objects represent any kind of entity, which
has to have access to graphical resources of the visualiza-
tion host, i.e. anything that is to be rendered on screen or
other display devices. As these objects have direct access
to the graphics hardware of the visualization host, they can
use highly optimized rendering algorithms and e.g. exploit
special features of modern graphics systems. This allows
for maximum rendering performance and even permits pro-
grammable graphics hardware to be used.

As a render loop is split up into several "passes", including
the drawing of opaque objects, the drawing of transparent
objects, and drawing 2D elements, visualization objects reg-
ister with the visualization controller for the respective call-
backs. When an objects is called within the render loop, it
has the opportunity to query the visualization master for run-
time information (e.g. the current visualization time or the
position of the viewer) before it renders itself via OpenGL
commands. Independent of the source of the visualization
data, i.e. a file or a parallelized computation, the visualiza-
tion object holds all data, which is needed for the graphical
representation, and selects the data to be drawn according
to the current visualization time level. If possible, all CFD
data is kept and managed on the HPC work host, and only
visualization data is transferred to the visualization host.

The benefits of this approach include high flexibility and
extensibility of the system. As every visualization object
is independent of any other object, new visualization algo-
rithms can be incorporated into the framework at will.

4.3. Resource Management

To avoid multiple instances of equivalent resources (e.g.
datasets, time mappers etc.), templatized resource managers
are introduced. In combination with appropriate resource
keys, which uniquely identify specific resources, access to
resources is provided. If a resource is requested, the resource
manager decides with the help of the given resource key, if
the resource exists already. If it does, a reference to it is re-
turned; if it does not exist, it is created according to the in-
formation given in the resource key, before the respective
reference is returned. Thus, a resource key must contain all
information that is necessary for creating the requested re-
source. Reference counting enables a resource manager to
destroy resources, if they are not in use anymore. This way,
a minimum amount of resources is allocated for the current
visualization, because data is shared wherever possible and
resources are freed as soon as possible.

Typical examples for shared resources are pre-computed
data like graphical representations of the bounds of the flow
domain or the behavior of liquid fuel droplets within the sim-
ulated fluid flow, which belong to the resulting data of the
numerical simulation. In these cases the file names are part
of the respective resource keys. Of course, a particle data ob-
ject, which acquires its data through the parallelization stub,
can act as a shared resource as well. In this case, its data can
be shared to be displayed by two different visualization ob-
jects, which implement different visualization methods, e.g.
path lines and spherical particles.

A typical life cycle of a visualization object is as follows:
After it is created, it registers with the visualization con-
troller to get access to the graphics system, before it requests
necessary resources from the resource manager. During its
lifetime its update method is called to allow the object to
update itself according to its resources and the state of the
visualization, which can be queried e.g. from the visualiza-
tion controller. Subsequently, its render methods are called
to display itself. When the visualization is finished, the ob-
ject is destroyed and all resources are freed by the resource
manager, if they are not used by another object.

4.4. Time Mapping

When dealing with unsteady flow data, different visualiza-
tion objects and their corresponding data potentially exist in
different time frames, especially if they are integral objects
or results of different simulation runs. To facilitate the han-
dling of these cases, a flexible time mapping via dedicated
time mappers is incorporated into the framework. They are
responsible for mapping normalized visualization time, i.e.

c© The Eurographics Association 2003.

80



Schirski et al / ViSTA FlowLib

time values within [0,1], to absolute simulation time and the
corresponding simulation time step or vice versa. This al-
lows for an accurate depiction of integral objects like path-
lines, whose integration steps do not necessarily coincide
with the simulation time steps. Furthermore, it facilitates
a comparison of simulations that are computed within dif-
ferent time frames. In addition, the results of several runs,
which simulate different events of a process, can easily be
assembled into a single, comprehensive visualization.

5. Multimodal Human Computer Interface

The human computer interface of our framework ViSTA
FlowLib facilitates the application development. The frame-
work provides a default human computer interface, which
can be configured individually. Besides the graphical user
interface, the multimodality of the human computer inter-
face concerns also speech input, audio output, and haptic
rendering methods of the visualization algorithms. Each vi-
sualization technique possess a default user interface with
which the visualization parameters can be modified interac-
tively. In addition, the application developer is able to build
customized user interfaces. In this case, he has to implement
the appropriate abstract interfaces to fulfill his requirements.

The framework of the Multimodal Human Computer In-
terface is divided into one sub-framework for user interfaces
and one sub-framework for a Multimodal Input Output Man-
ager (MIOM).

The basic idea of the menu user interface framework con-
sists of a set of abstract menu classes, which can be im-
plemented as needed. Thus, an application can use differ-
ent types of menus like geometry-based 3D menus (Fig. 1),
texture-based 3D menus, and remote user interface menus
for Tablet PC menus and speech input. At run-time, the users
can switch the menu type depending on their current prefer-
ence.

In the default user interfaces, we have currently imple-
mented three levels of complexity. The lowest one offers
texture-based 3D menus, which are usually attached directly
to a single input device such as a tracked wand. Here, only
the most important menu elements are accessible. The mid-
dle level implements geometry-based 3D menus, where the
user can modify more visualization parameters. The most
complex level provides a remote 2D Java GUI on a wireless
Tablet PC. To avoid user confusion after switching to an-
other menu type, we kept the menu hierarchy elements and
the parameters of all menu elements in the next higher level
and extended the access to more parameters.

To maintain consistency between the related menu types
and the visualization parameters we use the Observer
pattern9. The subject class of this pattern is the parameter
class referenced by the visualization object class. The ob-
server classes are the different menu type classes. Whenever
the parameters of a visualization object (the subject) changes

its state, all observers are notified. In response, the observers
synchronize theirs state with the current state of the subject.

In the MIOM framework, input and output events from
several modal interfaces are controlled. Here, events await-
ing processing are analyzed and transformed into other
events according to default and/or user-defined rules. For in-
stance, if the user wants to play a sound after a visualization
event is completed, he simply needs to define a rule which
adds a new sound event to the visualization event type. An-
other example is the processing of tracked input devices. If
the user wants to change the command assignment of the
buttons of a tracked joystick, he only needs to change the
appropriate rules (at run-time). In this fashion, this MIOM
approach allows for a great flexibility in using input and out-
put devices.

Figure 1 shows an example of the MIOM in action on
a HoloBench projection system. A color-coded cut plane is
interactively positioned with a tracked wand. Additionally,
the user can rotate the cylinder geometry of a spark ignition
engine via voice commands.

6. Parallelization

Higher frame-rates can be achieved by using special visu-
alization techniques and optimized graphics hardware. For
CFD post-processing, the objects to be displayed have to
be computed first. This extraction computation is often time
consuming, and the used data sets are generally huge. With
highly integrated interaction facilities, computations for the
post-processing are performed continuously. This is a big
challenge for the CFD framework.

Because graphics workstation hardware is optimized for
the rendering process and normally works at its limit in
order to offer high frame-rates, CFD post-processing pre-
vents real-time rendering and interaction. Multi-threading on
multi-processor graphics workstations can reduce this prob-
lem, but for demanding post-processing this is not a satisfy-
ing solution.

Therefore, extraction computations and CFD data man-
agement are taken over by a dedicated high-performance
computing (HPC) cluster. Our developed stub-object lo-
cated at the visualization host receives computation requests,
sends computation inquiries to the HPC work host, and man-
ages pending computation tasks. Results received from the
work host are converted to displayable objects for the ren-
dering process. The communication between stub-code and
rendering loop is carried out by multi-threading, and the
communication between stub-code and the work host uses
TCP/IP, but can fall back on MPI as well. The stub-code ab-
stracts from implementation details; i.e., it hides the location
of computation, which can be carried out either in parallel on
a remote HPC work host or sequentially on the local work-
station.

c© The Eurographics Association 2003.

81



Schirski et al / ViSTA FlowLib

6.1. 3 Layers

The work host consists of a scheduler, which schedules the
incoming requests, and a variable amount of workers for
the parallel computation. These processing elements (PEs)
communicate by messages. This communication is toolkit
independent, although it corresponds to a message passing
scheme10.

In order to make our parallelization approach more flex-
ible, we have defined three different communication layers.
The middle one contains scheduler, worker, and additional
support classes for communication between them. The low-
est one contains the actually used transport channel between
different processes. Here, one can select TCP/IP for the com-
munication to the visualization host and MPI11, the most
common message passing toolkit right now, for the commu-
nication between different PEs on the work host. In some
special situations, MPI or MPICH can also be used between
visualization host and work host. This layer concept with
clearly defined interfaces simplifies the implementation of
other parallelization toolkits and communication protocols.

The highest layer implements the required post-
processing algorithms. These algorithms are responsible for
balancing and speed-up. Likewise, loading data from a file
server is managed here. This is a very important aspect be-
cause loading data might be a crucial bottleneck. Right now,
each PE handles its own data access. For higher perfor-
mance, a more common data management is going to be
developed. This algorithmic layer is not restricted to CFD
post-processing but can also be exploited for all sorts of par-
allelizable computations.

6.2. ccNUMA

The described parallelization concept is based on mes-
sage passing and therefore works on off-the-shelf systems
like LINUX-clusters as well as on some million dollar
high-performance computers10. Generally, expensive high-
performance clusters make use of shared memory. There-
fore, we are interested in optimizing the parallelization ap-
proach for shared memory systems as well. Our main high-
performance system is a Sun-Fire cluster by Sun Microsys-
tems with 672 CPUs, 906 GByte main memory and an accu-
mulated peak performance of 1.2 TFlops/s, which is located
at the Center for Computing and Communication of Aachen
University.

This system makes use of an optimized MPI version,
which uses shared memory in order to send messages and
data, but cache coherency and ccNUMA aspects are not con-
sidered. Therefore, our parallelization framework is being
developed into an extended version that additionally uses
OpenMP6, which exploits these advanced hardware features.
However, in our concept, OpenMP will not compete with
MPI but will be applied on the algorithmic layer as a supple-

mentation. Specialized SMP algorithms should increase the
already achieved speed-up even more.

6.3. Streaming

Our parallelization approach considerably reduces the time a
user has to wait for computation results in a virtual environ-
ment. Furthermore, real-time interaction within this virtual
environment is made possible. However, the acceptance for
this implementation can suffer if the response time exceeds
a certain limit.

In order to avoid this, a concept called streaming is going
to be implemented. Partly calculated results are continuously
sent to the visualization host and are visualized directly. The
user receives a first impression of the upcoming final result
almost immediately. On this occasion, one can already begin
to evaluate the results. If the computation parameters seem
to be sub-optimal, the computation request can be withdrawn
and restarted with new parameters. Therefore, not only the
acceptance can be increased, but also the assessment of the
flow field can be sped up.

Right now, techniques to compute partial results, which
can be sent back as a continuous stream, are investigated.
We distinguish between calculations based on the Eulerian
formulation and on the Lagrangian formulation of the flow
field. A variation of multi-resolution approaches is published
for extraction algorithms of the first category18, e.g. iso-
surfaces. Streamlines and pathlines, which are derived from
the Lagrangian formulation, are more complicated. Multi-
resolution approaches are combined with increased time
consumption. However, pieces of calculated polylines can
already be transmitted and displayed.

7. Prototypical Application

We implemented a prototype with ViSTA FlowLib to demon-
strate the advantages of our framework in achieving a power-
ful fluid flow visualization. In the remainder of this section,
we discuss an intuitive and interactive approach to pathline
computation and visualization, which makes heavy use of
our framework. Apart from free navigation within the fluid
flow domain, it allows a user to intuitively control the cre-
ation of pathlines by modifying the seed points and other
parameters via a multimodal user interface. Once the seed
points are chosen, they are passed to remote HPC work
hosts, which compute the particle trajectories and return this
data to the visualization host. Finally, the particles and their
trajectories are displayed in a virtual environment efficiently,
along with other contextual data like the bounds of the flow
domain.

The implemented user interface is highly scalable with re-
spect to the working environment and available equipment,
ranging from sophisticated immersive display systems with
motion trackers to standard desktop computers with a mouse

c© The Eurographics Association 2003.

82



Schirski et al / ViSTA FlowLib

and keyboard setup. If the appropriate hardware is available,
the multimodal interface allows the use of 3D pointing de-
vices, speech recognition, and haptic rendering. On a com-
modity PC the visualization can be controlled via mouse and
keyboard as well.

As mentioned above, the particle trajectories are com-
puted in parallel on dedicated HPC work hosts. Paralleliza-
tion is done by distributing the given seed points to available
work hosts, which compute the complete trajectory of the
respective particle. This results in a considerable speed-up
in comparison to a serial computation. The parallelization is
done transparently for the visualization host, i.e. if there is no
HPC cluster available, the particle tracks can be computed
even on the visualization host itself, although a significant
performance loss must be tolerated.

Figure 5: Particle tracks are rendered as Virtual Tubelets
consisting of viewer-aligned polygons, which fake the illu-
mination of rounded geometry by appropriate textures.

The rendering part of the prototype consists of several
visualization objects. Apart from basic VTK geometry dis-
play objects, which use standard VTK rendering function-
ality, we implemented objects for an efficient depiction of
particle data and pathlines of high visual quality by using
and extending billboarding techniques17. To enhance the vi-
sualization of large amounts of particle traces we developed
Virtual Tubelets – billboarded and capped stream tube sec-
tions, which create the illusion of slightly self-illuminated,
rounded objects by faking illumination via appropriate tex-
ture maps (see figure 5). By rotating the billboards to-
wards the viewer we maintain the illusion of volumetric ob-
jects even in virtual environments with multiple projection
screens. Compared to conventional stream tubes, rendering
speed is increased significantly due to much less polygonal
complexity, while still maintaining good visual quality and
even enhancing flexibility. To further enhance visual quality
we use fake lighting via texture mapping on the billboarded
droplets, too. A comparison of geometrical cubes and the
billboarded particles is shown in figure 6, clearly showing
that the billboarded approach is superior with regard to vi-
sual quality. The same applies to rendering speed.

Figure 6: The visual quality of a cuboid representation (top)
of particles is far inferior to a billboarded representation
(bottom).

Once the particle trajectories are computed, the user inter-
face can again be used to control further parameters of the
visualization.

Figure 4 shows the main objects of the rendering part of
the prototype. The Droplets and Tubelets are imple-
mented as specializations of VisObject, data is shared
through the ParticleData object, which in turn is iden-
tified by a ResourceKey and created by a Resource-
Manager. Depending on the contents of the resource key,
particle data is loaded from a file or received from the par-
allelization stub. In the latter case, appropriate user interface
elements for the control of the seeding points are created.

The development of the rendering methods, the parallel
pathline computation, and the basic user interface modules
have been done by three disjunct groups. The implementa-
tions have been added to the single library ViSTA FlowLib,
which was later used to implement the prototype.

8. Conclusions and Future Work

We have defined a framework to combine efficient VR
rendering techniques, scalable, multimodal user interfaces,
and parallelization capabilities into a single powerful cross-
platform CFD data exploration library, which facilitates the
implementation of sophisticated flow visualizations consid-
erably. Solutions and default behavior are provided for un-
steady data and time management, parallelized flow property
computation, rendering techniques, and intuitive and scal-
able user-interfaces. In addition, every single part of the li-
brary is extensible to account for future advances in any of
the respective fields of flow visualization. First prototypes
showed promising advances for a scalable, intuitive, and in-
teractive flow visualization.

c© The Eurographics Association 2003.

83



Schirski et al / ViSTA FlowLib

For the future, we have planned to further extend ViSTA
FlowLib by making use of programmable graphics hardware
to further improve on the quality and speed of the rendering
of the visualization. This includes e.g. refining the lighting
of the Virtual Tubelets through vertex and/or fragment pro-
grams. Using our framework for texture-based volume visu-
alization will play an important role within our future work
as well.

Regarding the parallelization part, we will implement ad-
ditional flow property extraction algorithms. In addition, ad-
vanced LOD and streaming mechanisms are going to be
incorporated to improve the visualization’s responsiveness
during the parallelized computation of the visualization.

With respect to the multimodal human computer interface
part, we will refine and extend the interaction techniques,
evaluate them, and investigate the contribution to a faster
knowledge acquisition by performing user studies.

References

1. C.L. Bajaj, V. Pascucci, D. Thompson, X.Y. Zhang.
"Parallel accelerated isocontouring for out-of-core vi-
sualization". Proceedings of Parallel Visualization and
Graphics Symposium, San Francisco, California, 1999.

2. R. Bruckschen, F. Kuester, B. Hamann, K.I. Joy. "Real-
time Out-of-core Visualization of Particle Traces". Pro-
ceedings of the IEEE 2001 symposium on parallel and
large-data visualization and graphics, pp. 45–50, 2001.

3. S. Bryson, C. Levit. "The Virtual Windtunnel: An Envi-
ronment for the Exploration of Three-Dimensional Un-
steady Flows". Proceedings of Visualization ’91, pp.
17–24, 1991.

4. S. Bryson, M. Gerald-Yamasaki. "The Distributed Vir-
tual Windtunnel" Proceedings of Supercomputing ’92,
Minneapolis, Minnesota, November 1992.

5. S. Bryson, S. Johan, L. Schlecht. "An Extensible Inter-
active Visualization Framework for the Virtual Wind-
tunnel". Proceedings of the Virtual Reality Interna-
tional Symposium, pp. 106–113, 1997.

6. R. Chandra, L. Dagum, D. Kohr, D. Maydan, J. Mc-
Donald, R. Menon. Parallel Programming in OpenMP,
Morgan Kaufmann Publishers, 2000.

7. D.S. Ebert, C.D. Shaw. "Minimally-Immersive Flow
Visualization". IEEE Transactions on Visualization and
Computer Graphics, 7(4):343–350, 2001.

8. A. Fuhrmann, E. Gröller. "Real-Time Techniques For
3D Flow Visualization". Proceedings of Visualization
‘98, pp. 305–312, 1998.

9. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. De-
sign Patterns: Elements of Reusable Object-Oriented
Software, Addison Wesley, 1994.

10. A. Gerndt, T. van Reimersdahl, T. Kuhlen, C. Bischof.
"A Parallel Approach for VR-based Visualization of
CFD Data with PC Clusters". Proceedings of IMACS
2000, Lausanne, Switzerland, 2000.

11. W. Gropp, E. Lusk, A. Skjellum. Using MPI - Portable
Parallel Programming with the Message Passing Inter-
face, 2nd edition, MIT Press, 1999.

12. H. Jasak, J.Y. Lui, B. Kaluderčić, A.D. Gosman,
H. Echtle, Z. Liang, F. Wirbeleit, M. Wierse, S. Rips,
A. Werner, G. Fernström, A. Karlsson. "Rapid CFD
Simulation of Interanl Combustion Engines". SAE In-
ternational Congress and Exposition ’99, 1999.

13. W. Krüger, C.-A. Bohn, B. Fröhlich, H. Schüth,
W. Strauss, G. Wesche. "The Responsive Work-
bench: A Virtual Work Environment". IEEE Computer,
28(7):42–48, 1995.

14. D.A. Lane. "UFAT – A Particle Tracer for Time-
Dependent Flow Fields". Proceedings of Visualization
’94, pp. 257–264, 1994.

15. D.A. Lane. "Parallelizing a Particle Tracer for Flow
Visualization". 7th SIAM Conference on Parallel Pro-
cessing for Scientific Visualization, San Francisco, Cal-
ifornia, February, 1995.

16. J.J. Laviola Jr. "MSVT: A Virtual Reality-Based Mul-
timodal Scientific Visualization Tool". Proceedings of
the Second IASTED International Conference on Com-
puter Graphics and Imaging, pp. 221–225, 1999.

17. T. Möller, E. Haines. Real-Time Rendering, A K Peters
Ltd., 1999.

18. S. Olbrich, H. Pralle, S. Raasch. "Using Streaming
and Parallelization Techniques for 3D Visualization in
a High-Performance Computing and Networking Envi-
ronment". Proceedings of High-Performance Comput-
ing and Networking, 2001.

19. F. Post, B. Vrolijk, H. Hauser, R.S. Laramee,
H. Doleisch. "Feature Extraction and Visualization of
Flow Fields". State-of-the-Art Proceedings of Euro-
graphics 2002 (EG 2002), pp. 69-100, 2002.

20. D. Rantzau, U. Lang. "A scalable virtual environment
for large scale scientific data analysis". Future Gener-
ation Computer Systems, 14(3-4):215–222, 1998.

21. http://www.sense8.com.

22. T. van Reimersdahl, T. Kuhlen, A. Gerndt, J. Hen-
richs, C. Bischof. "ViSTA: a multimodal, platform-
independent VR-Toolkit based on WTK, VTK, and
MPI". Proceedings of Fourth International Immersive
Projection Technology Workshop (IPT2000), Ames,
Iowa, 2000.

23. W. Schroeder, K. Martin, and W.E. Lorensen. The Vi-

c© The Eurographics Association 2003.

84



Schirski et al / ViSTA FlowLib

sualization Toolkit: An ObjectOriented Approach to 3D
Graphics, 2nd edition, Prentice Hall, 1998

24. G. Wesche, J. Wind, M. Göbel. "The Responsive Work-
bench for Visualization of Fluid Dynamics". ERCIM
News, 31:37–39, October 1997.

25. M. Zöckler, D. Stalling, H. Hege. "Interactive Visual-
ization Of 3D-Vector Fields Using Illuminated Stream
Lines". Proceedings of Visualization ’96, pp. 107–113,
1996.

c© The Eurographics Association 2003.

85



86


