
EGVE Symposium (2008)
B. Mohler and R. van Liere (Editors)

BAT - a distributed meta-tracking system

Ferenc Kahlesz and Reinhard Klein

email: {fecu,rk}@cs.uni-bonn.de

University of Bonn
Institute of Computer Science II

Computer Graphics Group
Germany

Abstract
This paper describes the design of the ‘BAT’ (Bonn Articulated Tracker) visual tracking framework. This system
allows the easy implementation of real-time, multi-camera motion tracking that can be distributed (also in multi-
threaded sense) across several computing nodes (or CPU cores). The system in itself does not realize any specific
tracking system, but manages a meta-algorithm flow between processing blocks. An actual tracking implementa-
tion is realized by specifying the processing blocks through plugins. Depending on the plugins supplied, ‘BAT’ is
capable to instantiate a wide-variety of systems ranging from object-detection methods to model-based deformable
object tracking based on time-coherence, allowing also for hybrid algorithms. Being a “meta dataflow system”,
‘BAT’ also naturally facilitates sensor fusion. Moreover, it can be used as a testbed to compare and evaluate
different kind of tracking algorithms or algorithm substeps.

Categories and Subject Descriptors (according to ACM CCS): I.3.1 [Computer Graphics]: Input devices, Parallel
processing

1. Introduction

Examining the area of ‘vision-based motion tracking’ one
can find a multitude of different kinds of algorithms: direct
object-detection methods, model or feature based tracking
systems exploiting time coherence and hybrid-systems fu-
sioning the previous two disciplines. Also the goals existing
methods solve differ strongly: how many objects should be
tracked, whether these objects are two or three dimensional
and/or rigid or deformable, the class of 2D/3D transforma-
tions these objects may undergo, whether the systems em-
ploy monocular or multi-camera imaging and whether they
aim real-time or offline processing.

1.1. Tracking for Human-Computer-Interaction

The development of markerless visual tracking systems for
Human Computer Interaction (HCI) in Augmented or Vir-
tual Reality (AR/VR) environments is an especially demand-
ing task. The aim of such systems is to replace conventional
tracking methods like datagloves or electro-magnetic posi-
tion and orientation tracking devices, in order to allow more

instantaneous, natural and immersive user experience by not
requiring the user to put on, possibly calibrate and wear any
extra devices during interaction. Such systems would enor-
mously benefit AR/VR applications e.g. at exhibition booths
or in virtual museums, where it would grant access to the
AR/VR content for a much larger number of users from
the audience. Currently, available technology in the field of
markerless visual tracking limits the realizable AR/VR sys-
tems that rely only on such methods as input devices, de-
spite the enormous research activity carried out in the fields
of markerless body [Gav99] [MHK06] and hand tracking
[EBN∗07] [dC06] since the beginning of the 1990s.

The main difficulty of realizing interface quality tracking
systems is that interaction does not lend itself to offline so-
lutions: “offline interaction” does not exist. Offline tracking
algorithms, however sophisticated and stable, cannot be ap-
plied in practice. Moreover, as immersive user-experience is
decisive regarding the acceptance or refusal of the tracking
system as an input device, the system should even track the
users’ actions “as-fast-as-possible” in order to minimize la-

c© The Eurographics Association 2008.

http://www.eg.org
http://diglib.eg.org


F. Kahlesz & R. Klein / BAT - a distributed meta-tracking system

tency between user action and the reaction of the AR/VR
system.

Another important problem is that lost tracking detection
and (re)bootstrapping should preferably happen without any
user assistance in order not to hinder seamless interaction.

1.2. Visual HCI and multiple-target tracking

Though state of the art literature of visual HCI focuses on
tracking the body of one person or her hand in particular,
general HCI input systems should track multiple objects,
e.g. multiple persons for telepresence or both hands for two
handed object manipulation. Thus, tracking for visual HCI
can be considered as a special case of the broader scope
of general purpose tracking systems for multiple, possibly
articulated/deformable targets in real-time. Besides visual
HCI, such systems can serve numerous other purposes e.g.
security video surveillance, automatic sports video analysis
or traffic monitoring.

Therefore, although the idea of ‘BAT’ originates from the
visual HCI field and we use examples from this application
domain to demonstrate the capabilities of our system, our
concept benefits the more general field of multiple-target
tracking.

1.3. Computational complexity

Due to the curse of dimensionality, algorithms used in visual
HCI tracking tend to be computationally expensive, like non-
linear model-fitting to image evidence or maintaining dis-
tributions in particle filters. Computational complexity can
be challenged with any combination of the following ap-
proaches: (1) developing computationally less demanding
algorithms (2) using heuristics, (3) using special purpose
HW for algorithm (sub)steps and (4) distribute the imple-
mentation among different computers or processor-cores via
multithreading or both.

In this paper we concentrate on the last approach: dis-
tributed implementation and multi-threading. We consider
this an important problem, because given the state-of-the art
in high-DOF articulated object tracking algorithms and off-
the-shelf HW it is the only way to achieve usable framerates
for visual HCI and thus, to reduce the overall end-to-end la-
tency of AR/VR systems to a level where usability studies
about interaction metaphors can be conducted (if the only
bottleneck is the tracking latency).

Besides being such an enabling technology, having an
easy way to implement distributed tracking has other ad-
vantages. If the mathematical algorithm used supports par-
allelism, this can be straightforwardly exploited. Increasing
robustness or tracking volume is also facilitated by simply
adding new cameras to the system, even if it necessitates the
presence of new computers.

Please note, that our focus is the distributed implementa-
tion of centralized tracking systems. Decentralized tracking
methods and distributed sensor networks [CES04] are a dis-
tinct topic.

1.4. Distributed implementation issues

Implementing distributed tracking systems requires the de-
velopment of infrastructure-level code for multithreading
and/or network communication and appropriate synchro-
nization logic. This can be done bottom-up using OS facili-
ties or top-down, by using some distributed middleware. The
amount of infrastructure-code in both cases can easily out-
weigh the amount of algorithm-level implementation.

Interesting parts of creating a tracking system from a re-
search point-of-view are the mathematical development of
an algorithm and its implementation. If there is some “hard
limit” on execution time, which requires distributed imple-
mentation (like in visual HCI), scalability and adaptability
are usually traded for performance. Thus, research proto-
types tend to be custom solutions where algorithm imple-
mentation is intertwined with low level infrastructure code
for a specific communication topology between computers
and/or threads.

Because of this, making changes to the realized algo-
rithms or algorithm execution distribution requires the time-
consuming rewrite of significant components of the sys-
tem, partly infrastructure-level, partly algorithm-level. This
clearly hinders research.

Therefore research-level code must be separated from
infrastructure-level code. Given such separation, research
and prototyping could solely focus on high-level issues, in-
stead of also committing resources to software infrastruc-
ture.

1.5. BAT

‘BAT’ provides the mentioned separation for the case of dis-
tributed multicamera, multi-object tracking. After develop-
ing several prototype distributed hand-tracking systems, a
pattern has emerged as to what parts of the systems belong to
algorithm-level and what to infrastructure-level implementa-
tion. The infrastructure-code has been formalized as ‘BAT’;
its core constitutes a possibly network and/or thread trans-
parent meta-algorithm-flow (MAF) implemented in C++.

The MAF describes the dataflow of a general tracking sys-
tem that can be specialized to instantiate a concrete algo-
rithm by specifying dataflow processing nodes through plu-
gins. Specifying the plugins also determines the type of the
data flowing across nodes. The name of the plugins to use
along with their network execution place are defined in a
configuration file.

Figure 1 illustrates the metaflow concept for the simple

c© The Eurographics Association 2008.

26



F. Kahlesz & R. Klein / BAT - a distributed meta-tracking system

HW interface displaysegmenter

grayscale
DCAM

bitmap
viewer

background
subtraction

grayscale
image

viewer
color

depth +
RGB

RLE
bitmap compB

A)

B)

compA

<segmenter>

</segmenter>
<display>

</display>

<HW−interface>

</HW−interface>

<PC> compA </PC>
<plugin> DCAM </plugin>

<PC> compA </PC>
<plugin> bkg_subst </plugin>

<PC> compB </PC>
<plugin> bmp_view </plugin>

C)

segmentation
Time of Flight
+RGB camera

mask

depth

Figure 1: The meta-algorithm-flow (MAF) concept. A) MAF
of a segmenter algorithm. The rectangles are the plugin
placeholders. The dashed line depicts an allowed, but not
required connection. B) An instance of the segmenter algo-
rithm distributed on two computers using DCAM input. The
text in the ellipses shows the data-types for this instance.
(RLE: run-length-encoded). Below the image a theoretical
XML configuration file for this instance. C) Instance on a
single computer with TOF/RGB input. The possible dashed
connection from A) is also utilized for color output.

case of a theoretical segmentation algorithm (this is not the
MAF of the system, which will be described later in Sec-
tion 3.3). Figure 1 B) also demonstrates how the function-
ality and distribution can be specified in a system config-
uration file. The input and output datatypes of the plugins
must match each other for successful operation. As the plu-
gins must define their in/out types, this can be checked by
the system on startup.

As ‘BAT’ takes care of network communication and mul-
tithreading, only algorithm-level code has to be implemented
through the plugin interfaces. Finally, it is important to note
what ‘BAT’ does not do:

• It does not schedule the network or CPU-core distribution
of the plugins for optimal performance. The responsibil-
ity to achieve this lies by the user and is made possible
through the system configuration file.

• ‘BAT’ is not a general dataflow system. Its MAF is
geared toward tracking and it is not possible to add flow-
processing nodes outside the meta-flow.

2. Previous work

Several papers have proposed frameworks for acquiring im-
ages from different camera sources on a network. Some of

them [LZT06] [AIM04] concentrated exclusively on syn-
chronized grabbing and storing data for subsequential offline
processing. Others [TBAR05] [DSVG03] [TLMS03] advo-
cated online operation. They, however, either do not spec-
ify how such processing should happen, or describe exact
algorithms to be carried out. In contrast, ‘BAT’ specifies a
framework geared toward tracking and can be seen as a tool
to realize various algorithms online, without enforcing any
specific algorithm.

The open-source OpenTracker [RS01] and VRPN
[RMTHS∗01] tracking data communication frameworks
ease the implementation of distributed AR/VR systems by
providing a network transparent access to different tracking
devices. ‘BAT’ can be seen complementary to these systems,
because it allows the creation tracking devices that can be
used as tracking sources in them.

Another open-source project, FlowVR [AGL∗04], is a
middleware dedicated to cluster- or grid-based VR applica-
tions. Its purpose is to make it simpler to create a whole VR
system, like the GrImage platform [AFM∗06], by realizing
an easy-to-use, general purpose dataflow system. ‘BAT’ is
not that general, but aims to be much easier for the specific
purpose of distributed tracking system implementations.

[dC06] describes a system where different autonomous
trackers for different objects communicate their results to
a standalone viewer via network. Apart from sending the
tracked states to the viewer, the trackers operate indepen-
dently. ‘SAI’ [Fra04] proposes a C++ framework for devel-
oping distributed, asynchronous parallel data-driven applica-
tions, including real-time vision software. ‘YARP’ [MFN06]
is a collection of libraries written in C++ for development of
distributed control software for robotics. ‘YARP’ seems to
be born out of the similar reasons as ‘BAT’: (1) as stated
in [MFN06] “one processor is never enough” and (2) to
clearly separate “infrastructure-level” code from “research-
level” code in order to allow reusability.

Both ‘SAI’ and ‘YARP’ are freely available for down-
load. Unfortunately, they lack features for our purposes: they
themselves do not make it possible to create a network trans-
parent dataflow graph given a desired configuration.

3. System components

The system consists of four main components: a database,
sensor handlers, a bootstrapper/lost tracking detector and a
tracker (see Figure 2). The database holds the tracked states
of the objects and any kind of algorithm parameters. As
‘BAT’ runs distributed on several computers, the database is
shared on the network. The sensor handlers manage sensor
HW.

The basic idea is that the bootstrapper detects objects and
verifies the validity of the currently tracked states in a very
robust manner, but is not fast enough itself to provide the

c© The Eurographics Association 2008.

27



F. Kahlesz & R. Klein / BAT - a distributed meta-tracking system

DB

bootstrapper/
lost detector sensors tracker

objects?

Y

wait

Figure 2: Overview of the main components and their com-
munication.

required tracking framerate. It introduces new objects to the
database and deletes lost objects.

The tracker runs only if there are objects present in the
system. The role of the tracker is to maintain a usable state
update frequency during the execution time of the bootstrap-
per, most probably based on time coherence of the tracked
states. If the tracker loses tracking of some objects, this fact
will be noticed either by itself or the bootstrapper and the
objects in question will be deleted from the database. If the
bootstrapper is efficient enough on its own, the tracker is not
needed. This is the special case of a purely detection based
system.

In the following we will describe the main building blocks
of the meta-system. The most interesting is the metaflow
of the bootstrapper (the tracker has identical MAF), which
is described in Section 3.3. For examples of how concrete
choice of the plugins and their connection can realize actual
tracking systems, please refer to Section 4.

Although the dataflow will be considered in a networked
environment, ‘BAT’ can instantiate a full-fledged tracker
also on a single computer using multithreading.

3.1. Network database

The network database serves two main purposes. First and
foremost, it holds the states of currently tracked objects.
These states are synchronized after every tracking cycle over
the network. Second, it stores system-wide parameters for
the different plugins. These parameters can be any kind of
data interesting in an actual tracking system, e.g. skin-color
distribution for a color segmenter, thresholding values or
CAD model descriptions of object classes for a model-based
tracker, etc. Such records in the database are synchronized
only if they were modified and are sent only to the com-
puters where they are referenced from the plugins. As the
database can be accessed and written from an external pro-
gram, this allows online tuning of algorithm parameters or
visualization of the tracking results.

Database instances on a computer can also hold local
records that can be used for out-of-band communication be-
tween not-directly-consecutive dataflow nodes (plugins) re-
siding on the same computer. If A → B → C are three suc-
cessive nodes of the dataflow and A and C exist on the same

PC then A can pass on data to C via the local records di-
rectly without the need to send it through B with networking
involved.

3.2. Sensors

The input sensors are handled by user supplied plugins that
continuously inject measurements into the input ringbuffers
of the ‘BAT’. They run in their own threads, which allows
measurement preprocessing (e.g. background subtraction or
filtering) in the background, if needed. Although usually the
boostrapper and the tracker share the same set of input sen-
sors, they are allowed to use different measurements sources.

By implementing sensor plugins that present the next
measurement only if their output have been consumed by all
dataflow nodes that reference their measurement (more on
this in Section 3.3), it is possible to change the input data-
feed from online to offline. This facilitates algorithm evalu-
ation using prerecorded data.

3.3. Bootstrapping and lost tracking detection

This section introduces the main bootstrapping metaflow.
First, a high-level overview is given, then we describe the
details of distributed execution.

3.3.1. Overview of the MAF

Figure 3 depicts the MAF of the tracking algorithms that
are realizable by our system. The rectangular boxes repre-
sent plugins. Clearly, by specifying different plugins, differ-
ent kind of tracking algorithms can be instantiated (examples
for concrete trackers are present in Section 4). Although for
the sake of clarity the algorithm flow is presented as a mono-
lithic stream in this high level overview, multiple instances
of the plugins denoted with an asterisk are allowed, e.g. mul-
tiple sensor handlers for multiview input. This is described
in further detail in 3.3.2.

sensor
handler extractor

feature state
estimator done? refiner

DB

N

Y

checker
lost

state of objects + algorithm parameters

* *
*

Figure 3: Bootstrapping MAF overview. Please refer to Sec-
tion 3.3.1. Asterisk above a plugin means that multiple in-
stances of that plugin are allowed.

The input data from a sensor (e.g. color camera) is pushed
into the system by the sensor handler. The next step is car-
ried out by the feature extractor (e.g. color segmentation or

c© The Eurographics Association 2008.

28



F. Kahlesz & R. Klein / BAT - a distributed meta-tracking system

edge-detection). Based on the results of the feature extrac-
tion, the state of the tracked objects is estimated by state
estimator (e.g. gesture classification or crude positioning for
later refinement).

In some cases the states of the objects can be inferred in
one step from the feature extraction results. In other cases
only initial state estimates can be computed that need to be
refined in subsequent iteration. The second case is supported
by the possibility to define a refiner (e.g. hypothesis iteration
based on some kind of visual error measure).

After the states have been estimated, the lost checker ver-
ifies the states produced by the tracker based on the esti-
mates of the state estimator. The exact way this is carried
out is tracking system specific and depends on the number
of allowable objects or object-classes. Nonetheless, the lost
checker should somehow “cross correlate” the opinion of the
bootstrapper with the belief of the tracker for the same point
in time.

‘BAT’ supports lost tracking detection by accumulating
tracking results during the execution of the bootstrapper. If
both the bootstrapper and the tracker use a common (sub)set
of sensors, the results of the tracker for the same input can
be identified based on timestamps and retrieved from the
database. If this is not the case, tracking results in the vicin-
ity of the timestamps of the measurements for bootstrapping
can still be queried. Please note that it is not necessary that
the tracker produces the same kind of state estimate as the
bootstrapper: it is possible e.g. to compare probability distri-
butions from the state estimator with maximum-likelihood
estimates from the tracker. Of course, the database should
be written in a way that can be interpreted by the tracker.
In simple cases the, the lost checker can be omitted and its
functionality implemented in state estimator.

The lost checker is not the only plugin that is allowed to
utilize the database. The blue arrows from the database to
the processing plugins serve two purposes: (1) to retrieve
algorithm parameters and (2) to make it possible to incor-
porate knowledge about the state of the system during boot-
strapping e.g. for occlusion handling. As side-effect, it also
lets algorithms implement “lost-detection” in plugins prior
to lost checker.

The red dashed arrow from the sensor handler to the state
estimator and the refiner illustrate that these components can
subscribe to measurement data if it makes sense from an ac-
tual tracking system’s point of view. The green dashed arrow
indicate similar subscription possibilities as with the sensor
handler, but between the feature extractor output and the re-
finer.

3.3.2. Distribution of the MAF

The detailed dataflow of the general bootstrapping algorithm
is depicted in Figure 4. The input originates from S sensors,
handled by the appropriate plugins.

finished?

DB

lost
checker

extractor N
feature

sensor
handler Shandler 1

sensor

...

...

...

feature
extractor 1

sync

state estimator

sync

Y

refiner 1 refiner M
update

Figure 4: Bootstrapping and lost tracking detection
dataflow. The rectangular boxes represent the plugins that
must be supplied by the user. The sensor and database con-
nections to the tracker are omitted for clarity. See Section 3.3
for details.

The red arrow from sensor handler 1 to feature extractor
1 signifies that at least one feature extractor must reference a
sensor data. The red dashed arrows illustrate the subscription
possibilities to the sensor handlers. For the sake of clarity
such possible connections are shown only for sensor han-
dler 1. If both a sensor handler and a plugin subscribed to
it run on the same PC, the measurement simply remains in
the main memory as long as it is needed. If not, the data will
be sent asynchronously through the network. This avoids the
inefficient synchronous propagation of the data through the
whole dataflow.

The measurements are processed by N feature extractors
(S = N is not necessary). The green dashed arrows depict
subscription possibilities to the feature extractors. The bidi-
rectional arrow between feature extractor 1 and N indicates
that, if required, it is possible to allocate communication
channels during system initialization between the feature ex-
tractors. The outputs of the feature extractors are fed to the
state initializer. This is a synchronization point, because the
state initializer is not executed until all of its inputs are avail-
able.

If the estimated states require refinement, it is handled by
the M refiner plugins. Similarly to the feature extractors, the
refiners can also communicate among themselves if the need
arises.

c© The Eurographics Association 2008.

29



F. Kahlesz & R. Klein / BAT - a distributed meta-tracking system

3.4. Tracking

The tracking module has the same setup as the bootstrapper,
without the lost checker plugin. The tracker might have its
own Stracker sensors, Ntracker feature extractors and Mtracker
refiners. In practice, however, it often happens that both the
bootstrapper and the tracker use the same algorithm for fea-
ture extraction for mutual sensors. This can be handled as
a special case to avoid executing the same algorithm for the
same measurements twice. Figure 5 B) illustrates this for the
case when the bootstrapper and tracker share all the sensors
and feature extractors.

Whether this happens depends on the user: it is of course
possible to instantiate the bootstrapper on different comput-
ers than the tracker, while they can still use common fea-
ture extraction. This is useful if the tracker must be in the
vicinity of the sensors for performance reasons, whereas the
bootstrapper can receive measurements on a slower network
connection.

FE 1 FE N

FE Nboot
...FE 1 FE Ntrack

sync sync

sync sync

sensors

...

A)

B)

sensors

...FE 1

bootstrapper tracker

Figure 5: Bootstrapper and tracking input with different fea-
ture extractors for both module (A) and with the same feature
extractors (B). FE means ‘feature extractor’.

3.5. A note on plugins

‘BAT’ provides a decomposition of a tracking system
through plugins and possible connections between them.
The subscription facility to processing results, local (same
PC) plugin communication through the database and the
possibility to communicate e.g. the refiner plugins allows for
a very flexible algorithm design.

Surely it is possible to show examples, where this kind
of granularity is not enough. If a skin-color feature extractor
would like to adapt its color-distribution based on the pre-
vious tracking results, it can do so only sequentially during
its execution time. If this update is time-consuming, this will
slow the whole tracking cycle.

Note however, that such problems can be avoided by im-
plementing plugins that are multithreaded themselves, albeit
with explicit infrastructure-level implementation provided
by the user.

4. Examples

In this section we present examples of realizable tracking
systems by specifying concrete algorithm choices for the dif-
ferent plugins and the connections between them. The im-
portance of the user’s choice about the placement of the plu-
gins on different nodes is also illustrated.

4.1. Monocular hand-tracking on a single PC

This example system (cf. Figure 6) tracks hands with
stretched fingers that appear approximately planar to the im-
age plane. A DV-camcorder input is controlled by the sensor
handler plugin. There is only one feature extractor that im-
plements a Viola-Jones detector [VJ01] trained for hands in
the bootstrapper. Supposing a fast enough implementation
the tracker is not needed. The lost checker plugin can be
omitted and the state initializer simply stores the detection
results in the database, e.g. 4 float values for position, scale
(≈depth) and approximate orientation per hand.

camcorder
interface

Viola−Jones
detector

sensor
handler

write to
database

DB

feature
extractor

state
initializer

sync

boostrapper−only system on a single node

Figure 6: Simple monocular system. The plugin names
(roles) are set in italics beside the plugins. Synchronization
is not needed in such a simple case, it is only shown to ease
matching the system with the general dataflow depicted in
Figure 4. The dashed arrow illustrates that the Viola-Jones
classifier data comes from the database and serves as an ex-
ample how algorithm parameters can be stored there.

4.1.1. Modifying the system

Modifying and improving this simple system is straightfor-
ward. If one would like to use a DCAM input camera for
higher-resolution or framerates, only the sensor handler plu-
gin has to be replaced. By adding a lost checker to the system
that maintains a Kalman-Filter for every hand present tem-
porary occlusions can be handled – the extra tracked param-
eters e.g. for velocity can be stored in the database (actually
in this simple case this could also be done in the state ini-
tializer).

4.2. Additional cameras for larger tracking volume

Suppose we would like to add additional cameras to the sys-
tem described in Section 4.1 in order to track the user in a
larger interaction volume. There is only certain amount of

c© The Eurographics Association 2008.

30



F. Kahlesz & R. Klein / BAT - a distributed meta-tracking system

cameras that can be added to the system in a single PC im-
plementation, because either the detector will not be able to
maintain its framerate for the additional images or simply
the limit of allowed cameras per PC will be reached.

Solving this problem with ‘BAT’ is easy: the detectors can
be executed on different computers. This can be achieved
by modifying the state initializer plugin implementation (the
position data must be interpreted in a camera-dependent con-
text) and updating the system configuration file to let ‘BAT’
instantiate additional sensor handlers and detectors on other
computers.

4.2.1. The responsibility of the user for distribution

write to
database

Viola−Jones
detector

Viola−Jones
detector

Viola−Jones
detector

state
initializer DB

PC 1 (single−core)
sync

PC 2 (dual−core)

Figure 7: Bootstrapper-only 3 camera system with a single-
and a dual-core PC. The sensor handlers are omitted for
clarity.

Figure 7 depicts a system with 3 cameras distributed on
2 computers. Network communication and multithreading
is automatically handled by the meta-system without user
code. It is, however, the user’s task to configure the system
in a way that exploits processing power intelligently. In the
example of Figure 7, PC2 is powerful enough to handle two
detectors, therefore two detectors are delegated to it. PC1
handles only one detector and the state initialization.

If state initializer becomes computationally too complex,
it is probable that PC1 will experience framedrops. In this
case, it is possibly beneficial to move this plugin to a third
computer. Please note that this requires only to redefine the
network placement of the plugin in the ‘BAT’ configuration
file, without the need to write a single line of code.

4.3. Model- and view-based 6DOF tracker for multiple
gestures

Figure 8 depicts a tracking system that tracks distinct hand
gestures in 6DOF. This system has three inputs, two color
cameras and a near-infrared (NIR). Thus, it also serves as an
example for sensor fusion. The system has both a bootstrap-
per and a tracker. The bootstrapper uses solely data from
one color input and initializes the user handstate based on an
appearance database. It also detects and updates the differ-
ent gestures, which avoids the loss of tracking for the model
based tracker in the case of gesture change.

The tracker is model based and optimizes the 6DOF hand-
state for every frame. For the color cameras the hand area is
segmented on the GPU where also an XOR error function
with the model fit is evaluated. The PC with the NIR in-
put does not do feature extraction and evaluates the fit of a
current hypothesis based on the edge distances between the
model and the NIR image.

As the bulk of the tracking happens only in graphics hard-
ware, the first PC has CPU time to search for best-fit initial-
ization in the appearance database.

finished?

GPU XOR
error

segmenter 1
GPU color

GPU XOR
error error

GPU edge

do
nothing

color
segmenter 2

DB

state initializer

state initializer

refiner M

Y

color color NIR

T T T

T

T T T

B

Figure 8: 6DOF multi-gesture tracker distributed on 3 PCs.
Plugins with ‘T’ beside them belong to the tracker, the boot-
strapper (B) consists only of a state initializer. For explana-
tion cf. Section 4.3.

5. Conclusions

We presented ‘BAT’, a framework that alleviates problems
connected to implementing distributed (in the parallel exe-
cution sense) tracking systems. The motivation for such sys-
tems is that in some tracking tasks, like visual HCI, tracking
framerate is of utmost importance. By parallelizing execu-
tion, one has the ability to exploit all the processor cycles
available, not only in a multithreaded but also in a multi-
computer sense.

Implementing such distributed systems involves a lot of
infrastructure level code considering e.g. network commu-
nication or thread synchronization. ‘BAT’ takes care of
these problems and allows researchers to concentrate on
algorithm-level system development. The plugins imple-
mented for ‘BAT’ are in fact reusable research results that
can be easily combined in different ways. This encourages
experimentation and accelerates system prototyping.

We plan to release ‘BAT’ under the FreeBSD software li-

c© The Eurographics Association 2008.

31



F. Kahlesz & R. Klein / BAT - a distributed meta-tracking system

cense. For more information, plase visit the project website:
http://cg.cs.uni-bonn.de/project-pages/BAT/.

References

[AFM∗06] ALLARD J., FRANCO J.-S., MENIER C.,
BOYER E., RAFFIN B.: The grimage platform: A mixed
reality environment for interactions. In ICVS ’06: Pro-
ceedings of the Fourth IEEE International Conference on
Computer Vision Systems (Washington, DC, USA, 2006),
IEEE Computer Society, p. 46.

[AGL∗04] ALLARD J., GOURANTON V., LECOINTRE

L., LIMET S., MELIN E., RAFFIN B., ROBERT S.:
Flowvr: a middleware for large scale virtual reality ap-
plications. In Proceedings of Euro-par 2004 (Pisa, Italia,
August 2004).

[AIM04] AHRENBERG L., IHRKE I., MAGNOR M.: A
mobile system for multi-video recording. In 1st European
Conference on Visual Media Production (CVMP) (2004),
IET, pp. 127–132.

[CES04] CULLER D., ESTRIN D., SRIVASTAVA M.:
Guest editors’ introduction: Overview of sensor networks.
Computer 37, 8 (Aug. 2004), 41–49.

[dC06] DE CAMPOS T.: 3D Visual Tracking of Articulated
Objects and Hands. PhD thesis, Oxford University, Jan-
uary 2006.

[DSVG03] DOUBEK P., SVOBODA T., VAN GOOL L.:
Monkeys — a software architecture for ViRoom — low-
cost multicamera system. In 3rd International Confer-
ence on Computer Vision Systems (April 2003), Crowley
J. L., Piater J. H., Vincze M., Paletta L., (Eds.), no. 2626
in LNCS, Springer, pp. 386–395.

[EBN∗07] EROL A., BEBIS G., NICOLESCU M., BOYLE

R., TWOMBLY X.: Vision-based hand pose estimation: A
review. 52–73.

[Fra04] FRANÇOIS A. R.: A hybrid architectural style for
distributed parallel processing of generic data streams. In
Proceedings of the International Conference on Software
Engineering (Edinburgh, Scotland, UK, May 2004).

[Gav99] GAVRILA D. M.: The visual analysis of human
movement: A survey. Computer Vision and Image Under-
standing: CVIU 73, 1 (1999), 82–98.

[LZT06] LITOS G., ZABULIS X., TRIANTAFYLLIDIS G.:
Synchronous image acquisition based on network syn-
chronization. cvprw 0 (2006), 167.

[MFN06] METTA G., FITZPATRICK P., NATALE L.:
Yarp: Yet another robot platform. International Journal
of Advanced Robotics Systems, special issue on Software
Development and Integration in Robotics 3, 1 (2006).

[MHK06] MOESLUND T. B., HILTON A., KRÜGER V.: A
survey of advances in vision-based human motion capture
and analysis. Comput. Vis. Image Underst. 104, 2 (2006),
90–126.

[RMTHS∗01] RUSSELL M. TAYLOR I., HUDSON T. C.,
SEEGER A., WEBER H., JULIANO J., HELSER A. T.:
Vrpn: a device-independent, network-transparent vr pe-
ripheral system. In VRST ’01: Proceedings of the ACM
symposium on Virtual reality software and technology
(New York, NY, USA, 2001), ACM, pp. 55–61.

[RS01] REITMAYR G., SCHMALSTIEG D.: Opentracker-
an open software architecture for reconfigurable tracking
based on xml. In VR ’01: Proceedings of the Virtual Re-
ality 2001 Conference (VR’01) (Washington, DC, USA,
2001), IEEE Computer Society, p. 285.

[TBAR05] TSOUMAKOS D., BITSAKOS K., ALOI-
MONOS Y., ROUSSOPOULOS N.: A framework for dis-
tributed human tracking. In PDPTA (2005), pp. 863–868.

[TLMS03] THEOBALT C., LI M., MAGNOR M., SEIDEL

H.-P.: A flexible and versatile studio for synchronized
multi-view video recording. Proc. IMA Vision, Video, and
Graphics 2003 (VVG’03), Bath, UK (July 2003).

[VJ01] VIOLA P., JONES M.: Robust real time object de-
tection. In SCTV01 (2001).

c© The Eurographics Association 2008.

32

http://cg.cs.uni-bonn.de/project-pages/BAT/

