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Abstract

This paper presents an adaptive sampling method for image-based walkthrough. Our goal is to select minimal
sets from the initially dense sampled data set, while guaranteeing a visual correct view from any position in any
direction in walkthrough space. For this purpose we formulate the covered region for sampling criteria and then
regard the sampling problem as a set covering problem. We estimate the optimal set using Genetic algorithm, and
show the efficiency of the proposed method with several experiments.

Categories and Subject Descriptors (according to ACM CCS): 1.3.7 [Computer Graphics]: Virtual Reality

1. Introduction

Image-based rendering (IBR) generates novel views from a
set of input images instead of 3D models. Among the many
IBR approaches, one promising IBR approach enhances the
images with per pixel depth. This allows warping the sam-
ples from the reference image to the desired image. Gen-
erally the image-based approach using depth is called as
image-based rendering by warping IBRW) [MB95]. How-
ever, in IBRW, simply warping the samples does not guar-
antee high-quality results because one must reconstruct the
final image from the warped samples. To solve this problem,
most of all, good reconstruction algorithms such as efficient
warping, splatting etc. are needed [MMB97, McM97]. But
the fundamental and important problem of properly sam-
pling has remained largely unanswered.

The sampling is a very difficult problem since the sam-
pling rate will be determined by the scene geometry,
the texture on the scene surface, the reflection property
of the scene surface, the specific IBR representation we
take, the capturing and the rendering camera’s resolution,
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etc [Zha04]. Over-sampling was widely adopted in the early
stages [LH96, SH99]. Generally, to reduce the huge amount
of data due to over-sampling, many compression techniques
are utilized [Zha04] instead of dealing with the sampling
problem. However, sampling is more of a fundamental prob-
lem to IBR.

In this paper, we basically deal with sampling problem.
Our goal is to select minimal sets from the initially dense
sampled data set, while guaranteeing a visually correct view
from any position in any direction. For this purpose we re-
gard the sampling problem as a set covering problem and
estimate the optimal set using Genetic Algorithm.

The rest of the paper is organized in the following manner.
In Section 2, we provide previous related works, and in Sec-
tion 3 and 4 define the coverage error threshold and deduce
the set covering problem from the covered region, respec-
tively. In Section 5, a GA-based method for optimizing crit-
ical views is proposed. We propose an integration method
of the optimized set to guarantee the scalability in Section
6 and present the efficiency of the proposed method with
several experiments in Section 7. Finally we conclude and
present future work.

2. Background and Previous Work

Depending on how the capturing cameras are placed, IBR
sampling can be classified into two categories: uniform sam-

delivered by

www.eg.org

-G EUROGRAPHICS
: DIGITAL LIBRARY

diglib.eg.org



http://www.eg.org
http://diglib.eg.org

Dong Hoon Lee, Jong Ryul Kim & Soon Ki Jung / GA based Adaptive Sampling for Image-based Walkthrough

pling and non-uniform sampling. In uniform sampling, the
cameras are positioned evenly on a capture configuration
which is usually a surface or a line. The light field [LH96]
and the concentric mosaics [SH99] are the representative ex-
amples. In the case of uniform sampling, the main research
topic is to find the minimum sampling rate or largest spacing
between cameras such that one can achieve perfect recon-
struction quality on the navigation space. The goal of non-
uniform sampling analysis is also to find the minimum num-
ber of cameras while rendering the highest quality scene. But
in this case, arranging camera position is another important
problem.

In practice, objects in the scene have varying surface prop-
erties. For instance, if a scene has non-Lambertian surface
or occluded regions, more samples are needed. In general,
a real world scene is composed of Lambertian and non-
Lambertian surfaces. The Lambertian surface may need a
low sampling rate, while the non-Lambertian surface may
need a high sampling rate. Uniformly sampling the scene
without concerning about the regional surface property may
easily cause over-sampling of the Lambertian surface or
under-sampling of the non-Lambertian surface [Zha04]. It
is therefore natural to consider non-uniform sampling. One
thing to notice is, in uniform sampling, since the sampling
is periodic, we only need to tell how many images/light rays
are needed for perfect reconstruction of the scene; in non-
uniform sampling, however, we need to answer not only how
many images are needed but also where to place these cam-
eras. In this paper, the non-uniform sampling approach is
adopted.

Fleishman et al. [FCOLOO] proposed an automatic camera
placement algorithm for IBR. They assumed a mesh model
of the scene is known. The goal is to place the cameras op-
timally so that the captured images can form the best texture
map for the mesh model. They proposed an approximation
solution for the problem by testing a large set of camera po-
sitions and selecting the ones with higher gain rank. Here the
gain was defined based on the portion of the image that can
be used for the texture map. However, this method cannot
be extended to the sampling of real environment due to the
assumption of the known mesh model and is only applicable
to scenes with Lambertian surfaces.

Schirmacher et al. [SHS99] proposed an adaptive acqui-
sition scheme for a LightField setup. Assuming the scene
geometry is known, they added cameras recursively by pre-
dicting the potential improvement in rendering quality when
adding a certain view. They asserted a-priori error estima-
tor accounts for both visibility problems and illumination ef-
fects such as specular highlights used to some extent. How-
ever, this error estimator definitely has its limits unless a
ground truth data is obtained.

Depending on the application scenario, solutions to the
non-uniform sampling problem can be classified into two
categories: incremental sampling and decremental sam-

pling [Zha04]. In incremental sampling, the samples are cap-
tured one by one incrementally. The stopping criterion is ei-
ther the overall number of samples desired reached, or an
error requirement that the sampling process must achieve. In
decremental sampling, we assume there is already a dense
set of samples available that fulfills the error requirement.
This sample set might be too large, thus decremental sam-
pling can be used to reduce the size, while keeping the error
within the requirement.

Most previous image-based walkthrough systems which
have the sampling strategy have adopted the incremental
sampling approach since it was too difficult to get the ini-
tial dense samples. However, recent advances in acquisition
and modeling technologies have resulted in large databases
of real-world and synthetic environments. This is made pos-
sible by using an omni-directional camera capture system
in which the camera is placed on a motorized cart together
with a battery, computer, frame grabber and fast disk sys-
tem to store the captured images on [AFCO02]. Therefore, in
this paper, we choose the decremental sampling approach to
determine optimal view positions.
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Figure 1: An example of the sampling configuration.

3. The Problem Statement
3.1. The Covered Region

The sampling method in the decremental approach can be
expressed as a view selection problem and the optimized
views imply a kind of best view which is representative of
the sampling space. As reconstruction algorithm, we use a
3D warping algorithm [MB95] for predicting the view point
location. We estimate reconstruction quality when sampled
image at each view point location is warped into other view
point locations. The computation of the reconstruction qual-
ity is based on estimating the warping error including holes
and color mismatching error. Potential positions with a small
error, when a sampled position (source) warps into other po-
sitions (destinations), are considered as elements of the cov-
ered region at a source position. Figure 1 shows an example
of sampling configuration, where CR(e;) a set of elements
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which is covered by source image e;. In addition, the filled
circles show the sampled view position and the blanked cir-
cles indicate the non-sampled view position.

Our goal is to minimize the number of the sampled view
position while all elements must be covered by the selected
view position, which means the selected view positions guar-
antee adequate reconstruction qualities at all positions for
navigation. In other words, the elements covered by a single
set have a strong resemblance between them. This problem
can be modeled as set covering problem, which is one of the
typical problems in combinatorial optimization

3.2. Set Covering Problem

The set covering problem (SCP) is the problem of covering
the rows of an m-row, n-column, zero-one matrix (a;;) by a
subset of the columns at minimal cost. Considering a vector
X, such that x; = 1 if column j (with a cost ¢; > 0) is in the
solution and x; = 0 otherwise. The set covering problem is
then formulated as:

n

Minimize Y cjx; (1)
Jj=1
n

Subjectto Y ajix;>1, i=1,....m (2)
Jj=1
xje{0,1}, j=1,....n 3)

Equation 2 ensures that each row is covered by at least one
column and equation 3 is the integrality constraint. If all the
cost coefficients are equal, the problem is called the unicost
SCP. The SCP has been proven to be NP-complete [GJ79].

In our problem, each row indicates view position on nav-
igation space and each column means the sampled view po-
sition. The cost ¢; can be formulated by the error values ob-
tained from each element of the selected set. The sampling
configuration in Figure 1, therefore, can be formulated as
the set covering problem with 9 rows and 5 columns under
an assumption of unicost.

1001 10000
01 1001000
AT=10 001001 00
00001 0 1 1 1
00000 T1 0 1 1

A feasible solution to the instance is x = [1, 1, 0, 1, 0]
with cost 3.

4. Estimating the Covered Region

From the initial dense samples, the covered region can be
obtained at the each view point, which is performed by es-
timating the reconstruction error. The computation of the
reconstruction error is based on warping the target image
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to the candidate point and estimating the dissimilarity be-
tween the warped image and the sampled image at the can-
didate point. As mention before, in order to estimate the er-
ror associated with any candidate viewpoint, we have cho-
sen image-based rendering by warping (IBRW) as the basis
for the reconstruction of the candidate view point. McMillan
and Bishop [MB95] show how to compute the desired image
coordinates of a depth image sample using the 3D warping
equations.

owiFwi a4+ wiz v +wig - 0(ug,vy) 4
u2 - ) ( )
W31 4+ w3 -1y + w3z vy +wag-O(ug,vy)
by = Wat 4 wap - iy +wo3 - Vi +wag - O(u1,v1)

w3t + w3 up +w3z vy +wag-8(up,vy)’

where uy, v, are the desired image coordinates, u;,v; the
original (reference) image coordinates, the w’s are trans-
formation constants obtained from the reference and de-
sired image camera parameters, and &(uj,v;) is the gener-
alized disparity at sample uy, vy, which is defined as the ra-
tio between the distance to the reference image plane and
Zeye(u1,v1).

Reconstructing by simply setting a desired image pixel to
the color of the sample that warps within its boundary re-
sults in holes thus is not acceptable. Also, more than one
visible sample can warp to the same pixel, and simply dis-
carding all but one sample produces aliasing. To overcome
these problems, we use the Popescu’s Forward Rasterization
algorithm [PopO1]. Throughout the each per-pixel error, the
total error for the whole view can be estimated by the sum
of square error.

Figure 2 shows the process of error estimation. Figure
2(a) and (b) indicates the reference and the desired image,
respectively. By 3D image warping, we obtain the warped
image at the candidate view point as shown in Figure 2(c).
By applying the Forward Rasterization algorithm, visibility
holes are removed and this shows a reasonable visual qual-
ity in Figure 2(d). The dissimilarity between the warped
image (Figure 2(d)) and the sampled image (Figure 2(b)) at
the destination point determines whether the reference im-
age covers the destination position.

Since we already sampled all images at every sample posi-
tion, the evaluation of the performance is achieved by ground
truth data using the following two quality measures:

1. RMS (root-mean-squared) error between the computed

(B)

warped image d }

(1)
dj .

and the sampled ground truth image

S e _ )
= (vgln-a). e

where N is the total number of pixels in the destination
image.
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2. Percentage of bad matching pixels,

B = —j_ (’d§3>—d}T>]>5d), 6)

where § is a disparity error tolerance.

Accordingly, the total reconstruction error can be ex-
pressed as follows:

E = oR-+PB. (7

We select the weight of RMS () as 10.0 and the weight
of percentage of bad matching pixels () is 0.1. We think
the bad matching pixels have a great influence on the qual-
ity of scene and adjusted the parameters until we found an
adequate weighting value. In addition, the disparity error tol-
erance 9, sets to 15.0.

At this stage, for each position in the scene, the optimal
rate is required to find the covered region. Such an approach
would result in a very large number of reference images. Our
approach, instead, is to compromise: rather than insisting
that each pixel in the scene is covered with optimal qual-
ity, we are willing to allow lower coverage error threshold
so long as the quality does not exceed some user-specific
minimum Q. When the quality exceeds the coverage error
threshold Q, the big error value is assigned. Eventually our
goal is to select a small set of cameras such that all sets of
elements are covered with quality smaller than Q.

Figure 3 shows the warped images according to the er-
ror value. The coverage error threshold can be adjusted ac-
cording to the user’s intension. In this paper, we selected the
value as 1.85 by several experiments.

Figure 4 visualizes the error distribution of some candi-
date viewpoints. The sampling space consists of 450 images
which are 30 images with respect to 15 paths. This figure
shows an instance of the error distribution with respect to
four corner points and one center point. We can find that
each position has a different covered region according to the
complexity of the local geometry.

5. Genetic Algorithm for SCP

The set covering problem has been proven to be NP-
complete [GJ79]. Both optimal and heuristic solutions to this
problem have been reported in the literature. Among many
approaches for set covering problem, a genetic algorithm
(GA) can be known as an ’intelligent’ probabilistic search
algorithm which can be applied to a variety of combinatorial
optimization problems. Especially, the GA-based heuristic
is able to generate optimal solutions for small-size set cov-
ering problems as well as to generate high-quality solutions
for large-size set covering problems. In this paper, therefore,
we solve the set covering problem with GA.

(d)

Figure 2: An example of the 3D warping, (a) the reference
image, (b) the desired image, (c) the warped image without
hole filling and (d) the warped image generated by applying
the Forward Rastrization algorithm.

5.1. Representation and fitness function

The first step in designing a genetic algorithm for a partic-
ular problem is to devise a suitable representation scheme.
Two representation schemes have been proposed for the set
covering problem: column-based and row-based representa-
tion.

The column-based representation is an obvious choice for
the SCP since it represents the underlying 0 — 1 integer vari-
ables, i.e. for an n columns problem, an n-bit binary string
can be used as the chromosome structure. A value of 1 for the
i-th bit implies that column i is in the solution. The column-
based representation of an individual’s chromosome (solu-
tion) for the SCP is illustrated in Figure 5.

The initial population can be generated randomly. Note
that individuals in the column-based representation are not
guaranteed to the feasible. It means that not all rows will
be covered. The problem of maintaining feasibility (all rows
are covered) may be resolved by using a row-based repre-
sentation. One possible representation is to have the chro-
mosome size equal to the number of rows in the SCP. In
this representation, the location of each gene corresponds to
a row in the SCP and the encoded value of each gene is a
column that covers that row (see Figure 6). With this repre-
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Figure 3: The error images accroding to the quality measur-
ment. The reference image is located at 10th image at path 1.
(a) 1stimage at path 1 (E = 1.103154), (b) 1st image at path
2 (E =1.816137), (c) 4th image at path 2 (E = 1.9771854)
and (d) 5th image at path 4 (E = 2.134124). This figure
shows that defined low bound of quality is reasonable.

Figure 4: Error distribution of a candidate view position.
The sampling space consists of 450 images which are 30 im-
ages with respect to 15 paths. This figure shows an instance
of the error distribution with respect to four corner points
and one center point (dark = small errors, light = big er-
rOrS).

sentation, feasibility can generally be maintained throughout
the crossover and mutation procedures. But the evaluation
of the fitness may become ambiguous because the same so-
lution can be represented in different forms and each form
may give a different fitness depending on how the string is
represented. Since the same column may be represented in
more than one gene location, a modified decoding method
for fitness evaluation is used by extracting only the unique
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column(gene)
bit string

Figure 5: Column-based representation.

set of columns which the chromosome represents (i.e. re-
peated columns are only counted once). This paper, there-
fore, adopts the row-based representation.

m-1 m

row(gene) 1 2 3 | | | |
o | 49 7

3 4
string [0] 7]w0]21]

i | Ln

Figure 6: Row-based representation.

In the row-based representation, each gene has a cost
which is an error rate of the selected set with respect to the
row. Throughout the optimization with sum of cost, we can
guarantee the selected sets have optimal image quality while
the number of the set is minimized. In other words, each el-
ement, which is covered by several sets, selects the set with
minimum cost although the number of set is already opti-
mized.

5.2. Genetic Operators

Selection: The tournament selection is one of many meth-
ods of selection in GAs which runs a tournament among a
few individuals and selects the winner (the one with the best
fitness). Selection pressure can be easily adjusted by chang-
ing the tournament size. If the tournament size is higher,
weak individuals have a smaller chance of being selected.
The tournament selection has several benefits: it is efficient
to code, works on parallel architectures and allows the se-
lection pressure to be easily adjusted. The selection process
consists of two stages:

1. Select a group of N (N > 2) individuals, which N is tour-
nament size.
2. Select the individual with the highest fitness from the
group.
Crossover: Crossover is implemented with uniform
crossover operator (or called multi-point crossover) given
by Syswerda [Sys89], which has been shown to be superior
to traditional crossover strategies for combinatorial prob-
lem. Uniform crossover first generates a random crossover
mask and then exchanges relative genes between parents
according to the mask. A crossover mask is simply a binary
string with the same size of chromosome. The parity of each
bit in the mask determines, for each corresponding bit in an
offspring, from which parent it will receive that bit form.

Mutation: Mutation is performed as random perturba-
tion within the permissive range from 1 to n (represents the
number of sets which a row belongs to).



Dong Hoon Lee, Jong Ryul Kim & Soon Ki Jung / GA based Adaptive Sampling for Image-based Walkthrough

6. Integration: Sub-region Zippering

The row-based GA representation has the chromosome size
equal to the number of elements in the scene which we want
to walkthrough. Since our captured data sets usually contain
thousands of images, the optimization of the whole scene’s
elements generates too large a chromosome size. This ap-
proach is unrealistic in situations such as ours where the size
of the GA representation exceeds the capacity of host mem-
ory.
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Figure 7: The process of sub-region zippering. The blanked
box indicates the selected set and the blanked circle means
each element. (a) The critical view selection algorithm is
performed at the sub-regions A and B, respectively and then
selects sets including the border elements. (b) The region
which is covered by the selected sets is estimated. (c) With
respect to the all elements and sets at the boundary region,
we re-compute the optimal set.

The first and most obvious option for overcoming the
problem is to partition the whole scene and estimate the op-
timal solutions in the separate regions independently. This
approach is very straightforward, but does not guarantee the
optimal solution at the connected portions of each separate
region. Fortunately, a little variance of a selected point does
not affect the selection of other positions far away from the

selected point. In other words, the effect of some variance of
the selected point does not propagate global region. There-
fore, the central step in combining the separated regions is
the reorganization of sets which are located at the connected
regions. The proposed optimal zippering strategy consists of
three steps.

1. Select sets including the border elements.

2. Bound regions which consist of elements covered by the
selected sets.

3. Reorganize the optimal sets from the selected bounded
regions by the proposed GA mechanism.

7. Experimental results
7.1. Image acquisition

The system was implemented on a Pentium IV PC with a
1.7GHz CPU and 512Mbyte memory. We have captured a
synthetic environment using 3D Studio Max. We captured
three views at a location with 90° FOV and acquired a dense
Sea of Images through a large environment (see Figure 8).
Four color and depth map images at the same camera po-
sition were stitched into a panoramic image. At that time,
we captured the rays with regular angular resolution. The
amount of the test data is 450 images which are 15 stitched
images with respect to 30 paths. The sample data is Figure 9
shows one of the synthesized panoramic images.

7.2. Computational results

In our computational study, 20 trials of the GA heuristic
(each with a different random seed) were made for the test
problem. Each trial terminated when the maximum gener-
ation is up to 20,000. The population size was set to 500
for the problem and the coefficient of the mutation was 0.9
and the coefficient of crossover was 0.7. The best solution
value diverges into 66 sets and the mean error of the set is
1.680670. This shows the proposed method generate sam-
pling data with acceptable image quality.

To compare the performance of the proposed method, we
implemented the k-means clustering algorithm. The number
of cluster centers (k) was set to the number of the optimized
set obtained from the proposed GA method. The position of
the initial cluster centers were also chosen from the result of
the proposed methods. The distance measure for clustering
indicates the dissimilarity between two samples. Therefore
we utilize the error measure is used for the distance as de-
scribed in section 4. After classifying each sample according
to nearest cluster center, each mean has to be recomputed us-
ing the re-classified samples. Generally the mean is updated
by the sum of the square error. In our case, since the geo-
metric mean does not imply a representative value among
the samples in the same cluster, we select the mean as the
element with the minimum error distance with respect to the
all samples in the same cluster.
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Figure 8: A scene environment which we utilize for exper-
iments. We captured 15 stitched images with respect to 30
paths.

Figure 9: Sample image of input panorama sequence. We
have captured four views at the same location as illustrated
in (a), (b), (c) and (d) respectively. (e) is a result of stitching
with them.

As the experimental result, the error value was obtained
by 1.667272. This result shows the better solution although
this is almost similar to the result of the first experiment.
Since the k-means clustering procedure is well known as a
form of stochastic hill climbing, which lead to local optima,
this experimental result implies a possibility of the clustering
procedure as a post refinement processing.

As another experiment, we compared the proposed
method with the uniform sampling method (when given the
same number of samples). For the uniform sampling, the
multiple path-based capture configuration [DS05] is utilized
and we refine the data with k-means clustering. The experi-
mental result shows 2.139260 error values, which is inferior
to the result of the proposed method.

Table 1 summarizes the experimental results of GA.
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Table 1: The experimental results of genetic algorithm with
450 sample data. The optimized critical set is diverged as 66
and the experiments (b) and (c) are achieved with the same
number of samples.

k-means
CVS (a) clustering Uniform sampling (c)
after CVS (b)
1.680670 1.667272 2.139260

7.3. Walkthrough on optimized data set

This section shows images of a test scene rendered with the
method described. The test scene is captured with reference
depth images according to the multiple path based capture
configuration. The scene is synthetic and contains 48,000
primitives. This is a relatively simple model, but the perfor-
mance of walkthrough is the same without the scene com-
plexity. Figure 10 shows a sequence of images rotating from
one point and Figure 11 shows novel views generated by
translating along the arbitrary direction.

Figure 10: Sequence of images rotating from one point.

8. Conclusion and discussion

In this paper, we have presented an adaptive sampling
method for image-based walkthrough. We first defined the
covered region that is particularly suitable for the decre-
mental sampling method and proposed an optimization ap-
proach, which is achieved by formulating the given sam-
pling problem as set covering problem. We estimate the op-
timal set using Genetic algorithm, and also proposed the
sub-region zippering method since global optimization of
the whole scene elements generates too large chromosome
size in GA. Finally we showed the efficiency of the proposed
method with several experiments. The proposed sampling
method provided simple and easy optimization process in
large-scale scene walkthrough.
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Figure 11: Sequence of images by translating along the ar-
bitrary direction.

As part of future work, we plan to experiment the pro-
posed method in real environments and try to enhance the
proposed method with regard to the multiple reference im-
ages.
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