
Eigth Eurographics Workshop on Virtual Environments (2002)
S. Müller, W. Stürzlinger (Editors)

 The Eurographics Association 2002.

Avatar Markup Language

Abstract
Synchronization of speech, facial expressions and body gestures is one of the most critical problems in
realistic avatar animation in virtual environments. In this paper, we address this problem by proposing a
new high-level animation language to describe avatar animation. The Avatar Markup Language (AML),
based on XML, encapsulates the Text to Speech, Facial Animation and Body Animation in a unified man-
ner with appropriate synchronization. We use low-level animation parameters, defined by the MPEG-4
standard, to demonstrate the use of the AML. However, the AML itself is independent of any low-level pa-
rameters as such. AML can be effectively used by intelligent software agents to control their 3D graphical
representations in the virtual environments. With the help of the associated tools, AML also facilitates to
create and share 3D avatar animations quickly and easily. We also discuss how the language has been
developed and used within the SoNG project framework. The tools developed to use AML in a real-time
animation system incorporating intelligent agents and 3D avatars are also discussed subsequently.

Keywords:
Avatar animation, Virtual human animation, Animation language, Agent controlled animation.

1. Introduction
Avatar animation is no longer a mere research

topic. Many efforts in this area, combined with
standardization (e.g. MPEG-4 facial and body
animation), have lead to a wide use of virtual faces and
bodies for the interactive web based and entertainment
applications. Recently, very believable virtual humans
have been seen in the movies. However, such
production demands many days or even months of
manual design work from highly skilled animators. On
the contrary, real-time avatar animation on the web
cannot be completely pre-defined with the accuracy and
the artistic precision evident in the computer generated
movies of today. The advent of web-based e-commerce
applications demand powerful and easy to use high-
level interfaces, capable of animating web-based
characters, instantly and smoothly. Such an interface
finds immediate applications for web-based virtual
sales assistants, controlled by an intelligent agents, and
face-to-face avatar interaction. In recent years, there
have been several efforts for the development of such a
high-level control mechanism for character animation,
from IMPROV [1] to BEAT [2]. The IMPROV system
suggested use of high-level scripts and tools for
creation of real-time behavior based animation with
non-repetitive motions and smoothness. The system

allowed animators to create rules governing how the
synthetic actors communicate and make decisions.
More recently, BEAT (Behavior Expression Animation
toolkit) used text input to create behavioral animation,
using the behavioral rules defined by the animator. The
toolkit generated appropriate and synchronized
nonverbal behaviors and synthesized speech. In spite of
all such efforts, the current shared virtual environment
systems still rely on limited iconic interactions and pre-
defined gestures like “smile” and “wave”. For example,
several applications have been developed on the
Microsoft Virtual World platform [3] and the Blaxxun
community platform [4]. However, it is evident that
there are several limitations on the interactivity of
today’s integrated systems, in spite of use of 3D face
and body representations. It appears that it is difficult
for a common web user to quickly and easily design
animations for her own avatar. One of the solutions to
reduce this difficulty, can be to drive the avatar by an
intelligent agent that accepts natural language
commands. In this case, we need an interface between
the intelligent agent and the avatar animation engine.

This paper aims to provide such an interface by
specifying a new animation language. The Avatar
Markup Language (AML) enables high-level

Sumedha Kshirsagar
Nadia Magnenat-Thalmann

Anthony Guye-Vuillème
Daniel Thalmann

Kaveh Kamyab
Ebrahim Mamdani

MIRALab, CUI 24 rue du General Dufour
CH 1211 Geneva, Switzerland

LIG, EPFL
1015 Lausanne, Switzerland

IIS, Imperial College
London SW7 2BT, UK

169169

http://www.eg.org
http://diglib.eg.org

2 Kshirsagar et. al. / Avatar Markup Language

  The Eurographics Association 2002.

specification of avatar animations, to be used by
intelligent agent systems as well as web users and
designers, with ease and rapidity. We choose MPEG-4
Facial Animation Parameters (FAP) and Body
Animation Parameters (BAP) as the basis for the
animation [5,6]. However AML is not constrained by
the use of MPEG-4 animation parameters. An
advantage of AML is that it provides a powerful high-
level animation interface, without requiring intricate
knowledge of the low-level animation parameters
(MPEG-4 or otherwise) controlling the 3D avatar. The
discussion in the paper is limited to the development
and definition of AML. The use of AML in an
animation system can exploit various possible
techniques for face and body animations, for
example[7,8], and hence not elaborated here.

We refer here to another prominent effort to solve
the problem of interaction with the virtual characters
using only high level language, VHML (Virtual Human
Markup Language) [9]. This proposal under develop-
ment uses various sub-elements to control speech, face
and body animations of a virtual human. A variety of
tags are defined to control various parameters relating
to virtual human animation in a structured manner.
Though it is an independent development, VHML is an
XML based scripting language with similar aims to
AML. We delay the discussion on VHML in the light
of comparison with AML till Section 5. We begin by
describing the requirements and needs that led to the
development of AML, within the framework of the
project SoNG. Section 3 defines the syntax and various
elements of AML and how it can be used in defining
unified face and body animations along with Text to
Speech (TTS) capability. Section 4 presents a detailed
explanation of a complete scheme using AML in an
MPEG-4 compliant animation system. We conclude
with discussion on other possible applications of AML
and future directions for development.
2. The SONG Project

SoNG (portalS of Next Generation) is a European
Union funded project that commenced in January 2000
as a consortium of 13 European academic and indus-
trial partners. Portal is a term synonymous with an
access point to resources and services on the Web.
Typical services offered by portals include: directory of
resources, search facilities, news, e-mail, voice chat,
map information, and sometimes community forums.
These services generally rely on point-and-click on
structured information like text, still pictures or 2D
graphics. The project intends to investigate, develop
and standardize the building blocks for the next genera-
tion of portals. These building blocks include existing
Web technologies, but also 3D computer graphics ele-
ments as in computer games, intelligent agents embod-
ied in realistic avatars, new user-friendly interfaces and
real-time audio-visual communications. The technology

integration platform is aimed to be a fully MPEG-4
compliant player. The project will demonstrate how
these new technologies when integrated into a sample
e-commerce application allow an easier and more natu-
ral access to resources and services. In this section we
explain how the specifications of such an application
led to the development of AML. We would like to em-
phasize that, though the requirements of this particular
project have lead to the development of the AML,
maximum efforts have been devoted to make the lan-
guage independent of specific platform and available
animation methods. The requirements discussed here
form the important aspects of any interactive system
with high level control of virtual humans and intelli-
gently controlled avatars.
2.1. Requirements and Purpose

Figure 1. Animation Scenario

To demonstrate the technology developed during
the project, the SoNG consortium is building a 3D e-
commerce application equipped with a virtual shop
assistant controlled by intelligent agents. For this, it
was found necessary that the intelligent agents control
their 3D avatars, i.e. faces and bodies that are fully
MPEG-4 compliant, effectively. Yet, the intelligent
agents cannot (and need not) communicate to the avatar
directly using the low-level MPEG-4 streams. The
primary mode of such communication should be mere
high-level language comprising of text, expressions and
gestures. For example, when a shop assistant welcomes
a virtual customer, it would smile, bow a little, and say,
“May I help you?”. In order to facilitate such multi-
modality in its interaction, the agent is required to
trigger the appropriate face animation, body animation
and TTS modules in a time-synchronized and easy
manner. This may involve mixing of multiple gestures
and expressions into a single animation, as shown in
Figure 1. At the same time, the context in which the
agent must operate is often unpredictable and can be a
function of the user’s actions, events in the
environment and/or the agent’s own personality and
emotions. It may be also necessary to trigger parametric
behaviors such as pointing at an object or moving to a
specific coordinate in the 3D space. Similarly, it is
required to have a high-level interface tool that will

FA

BA

TTS

170

 Kshirsagar et.al. / Avatar Markup Language 3

 The Eurographics Association 2002.

enable end users to control their own avatars in the
virtual shop with a similar variety of animations. To
this end, it is merely not adequate to use a set of pre-
defined facial expressions and body gestures in order to
attain believability. Thus, it is necessary to define a
high-level language to assemble the interaction
modalities into a unified animation while providing the
required flexibility. We propose to use AML as the
high-level language. We use the MPEG-4 FAPs and
BAPs as low-level animation parameters to realize the
AML based system. A database of facial expressions
and body gestures using MPEG-4 FAPs and BAPs
respectively is developed to be used for this purpose.
Figure 2 shows selected snapshots of the facial
expressions and body gestures that form part of the
database used as the building blocks of the avatar
animation.

Figure 2. Face and Body Animation snapshots

For the scenario under consideration, Figure 1
shows three tracks, one each for face animation, body
animation and TTS. A red line indicates the presence of
the particular track during that time interval. Note that
the face animation and TTS overlap at times. For
example, the avatar may be smiling and starts speaking
as it continues to smile. Appropriate co-articulation
needs to be implemented while rendering realistic
speech animation. The carefully weighted sum of facial
animation parameters is required in order to avoid jerky
animation or artefacts [10]. In order to have proper
body animation synchronized either with speech or
with facial expressions, appropriate positioning of these
tracks is necessary. The complex scenarios with
overlapping animation elements, as described above,
must be supported in order to allow flexible and
seamless animation.

2.2. MPEG-4 Animation Parameters
As the SoNG platform is completely MPEG-4 com-

pliant, the choice of the MPEG-4 FAPs and BAPs for
avatar animation is a natural choice. In this section we
give a brief overview of the FAPs and BAPs. A com-
plete and detailed description is beyond the scope of
this paper, instead, we refer to [5,6].

MPEG-4 defines certain key locations on the face as
feature points. The FAPs are defined in terms of the
normalized displacements of these feature points from
their neutral positions, thus resulting in different ex-
pressions. There are 66 low-level and 2 high-level

paraeters. Stretch right corner lip, raise left inner eye-
brow, puff cheek etc. are examples of low-level FAPs.
The two high-level FAPs are: visemes and expressions.
Each viseme can take one of the 14 pre-defined values
corresponding to groups of phonemes. Each expression
can take one of the 6 values (joy, sadness, anger, dis-
gust, fear, and surprise) Depending on the application,
the high-level parameters can be specified in terms of
low-level parameters when precision and variety is of
prime importance.

The MPEG-4 body animation is defined in terms of
296 Body Animation Parameters, which represent a
certain Degree Of Freedom (DOF) of a given body
articulation standardized by the H-Anim [11]. The DOF
are translations or rotations along an axis. BAP values
specify a specific state of human skeleton e.g.
sacroiliac tilt, left hip twisting, skull base rotation etc.
The full body animation requires 186 basic BAPs; 110
other BAPs being reserved for extensions like tail
animation or to deform some parts of the bodies.

3. AVATAR MARKUP LANGUAGE (AML)
This section explains how high-level animation

description can be achieved by using the AML. We
explain the syntax and elements of the AML with
examples.

3.1. Syntax and Elements
Figure 3 shows the AML syntax with the basic

elements. The root tag <AML> marks the beginning and
end of the script. It accepts four attributes: face_id (the
reference id for the 3D face to be animated), body_id
(the reference id for the 3D body to be animated),
root_path (the root path for animation files such as
expression files, FAPs and BAPs, explained in detail in
the next subsections) and name (the name of the
animation project). <AML> has 2 sub-elements: <FA>
or Facial Animation and <BA> or Body Animation.

Figure 3. AML Syntax

The <FA> and <BA> tags both accept two attributes:
start_time (the relative start time of the respective
scripts) and input_file (the name of Avatar Face
Markup Language (AFML) or Avatar Body Markup

<AML face id=“x” body id=“y” root path= “p”
name = “name of animation”>

<FA start_time=“t1” input_file= “f1”>

<TTS mode = “m” start_time = “t3” out-
put_fap = “f3” output_wav = “f4”>

<Text>TextToBeSpoken<\Text>

<\TTS>

<AFML>…<\AFML>

<\FA>

<BA start_time = “t2” input_file = “f2”>

<ABML>…<\ABML>

<\BA>

<\AML>

171

4 Kshirsagar et. al. / Avatar Markup Language

  The Eurographics Association 2002.

<AFML>

<Settings>

<Fps>FramesPerSecond</Fps>

<Duration>mm:ss:mmm</Duration>

<FAPDBPath>“path for expression (.ex)
files”</FAPDBPath>

<SpeechPath>“path for speech animation
(.vis) files”</SpeechPath>

</Settings>

<ExpressionsFiles>

<File>“expression file name” </File>

</ExpressionsFiles>

<ExpressionsTrack name=“Track name”>

<Expression>

<StartTime>mm:ss:mmm</StartTime>

<ExName>“name”</ExName>

<Envelope>

<Point>

<Shape>{log,exp,linear}</Shape>

<Duration>InSeconds</Duration>

<Int>NormalizedIntensity</Int>

</Point>

</Envelope>

</Expression>

</ExpressionsTrack>

<SpeechTrack name=“name_of_track”>

<StartTime>mm:ss:mmm</StartTime>

<FileName>“viseme or fap file name”
</FileName>

<AudioFile>“FileName”</AudioFile>

</SpeechTrack>

</AFML>

Language (ABML) file if they are predefined;
input_file can also have the value “none”). In the case
that input_file is “none” the AFML and ABML are
defined within the AML script.

The <FA> further has an optional sub-element
<TTS> or Text To Speech. The <TTS> tag accepts
four attributes: mode (“annotated” if the TTS input is
annotated with emotional tags, “plain” otherwise),
start_time (the relative start time of the TTS rendering),
output_fap (the filename to use when generating FAP
output) and output_wav (the filename to use when
generating audio output). Though we use the fap file as
output here, it may be possible to use any other format
(viseme or phoneme), provided the parser and further
processing are designed accordingly. <TTS> has a sub-
element <Text>, which defines the text to send to the
TTS engine. The speech animation can be added either
in <TTS> tag or directly in the AFML, as will be
explained in the following sub-sections.

3.2. Avatar Face Markup Language

Figure 4. AFML Syntax

We use MPEG-4 FAP as low-level parameters for
animation. The FAP Database (FAP DB) contains a
variety of pre-defined facial expressions, defined in

terms of MPEG-4 FAPs (see Section 4). The
<Settings> tag contains the information like the frame-
rate, length of animation, and the local path of FAP DB
as well as pre-defined speech animations, if any.

A number of tracks can be defined in the AFML.
Each track can be given a name; e.g. emotions, head
movements, eye movements etc. This separation
enables distinct control over various parts of the face.
There may be as many <ExpressionsTrack>
elements as required. Further, there may be as many
<Expression> elements as required in each
<ExpressionsTrack>. The expressions may or
may not be overlapping. Each <Expression> has a
start time, a name, and a time envelope defined. The
name, in fact, refers to the static expression file from
the FAP DB. We chose this scheme rather than using a
distict set of tags to define expressions, so that the
animation is not restricted by the tags defined by the
language. The designer of the system can add as many
expressions as desired to the FAP DB and all of them
are available for use in AFML. Each time envelope is
defined by as many <Point> elements as required.
The shape defines the interpolation from the previous
point to the current one, and can take value of
logarithmic, exponential or linear. The first default
point is with zero intensity at the start time. The
intensity is normalized and duration is specified in
seconds. The <SpeechTrack> is reserved for the
viseme or fap files corresponding to a pre-defined
speech animation. The viseme file contains timing
information for each of the viseme and the fap file
contains frame-by-frame information of the low-level
facial animation parameters for the speech animation.
The speech track also specifies the audio file for the
pre-recorded speech by the <AudioFile> tag. It
should be noted that the inclusion of the speech track
enables the use of pre-defined or pre-recorded speech
animations. Unlike the expression track, the speech
track cannot be overlapping. The syntax of AFML is
shown in Figure 4. Following is an example of an
expression track:

<ExpressionsTrack name=“Emotions”>
<Expression>

<StartTime>00:00:800</StartTime>

<ExName>smile.ex</ExName>

<Envelope>

<Point>

<Shape>log</Shape>

<Duration>0.5<Duration>

<Int>1<Int>

</Point>

<Point>

<Shape>log</Shape>

<Duration>0.5<Duration>

172

 Kshirsagar et.al. / Avatar Markup Language 5

 The Eurographics Association 2002.

<Int>0.7<Int>

</Point>

<Point>

<Shape>exp</Shape>

<Duration>0.8<Duration>

<Int>0<Int>

</Point>

</Envelope>

</Expression>
</ExpressionsTrack>

Following is an example of a speech track:

<SpeechTrack>

<StartTime>00:07:600</StartTime>

<FileName>speech1.fap</FileName>

<AudioFile>speech1.wav</Audiofile>

</SpeechTrack>

3.3. Avatar Body Markup Language

ABML is very similar in format to AFML. The
<Settings> tag is the same except that it contains
one <BAPLibPath>, to locate the pre-defined BAP
animations, in addition to the <Fps> and
<Duration> tags. There can be many
<BodyAnimtionTarck>, each specifying certain
actions. The <Mask> tag can be used to indicate which
BAPs are active for a particular track, so that the
calculation of all the BAPs is not necessary. Though
this tag is specific to MPEG-4 BAPs (and hence
optional), it is retained for the computational advantage
it offers to the underlying animation module. The body
animation uses BAP files (using
<PredefinedAnimation> tag) and behaviors
(using various “Action” tags) as the basic elements for
animation. One or more body animation tracks can be
defined as shown in Figure 5 above. Each track has a
start time, speed and priority of the action. The speed
can be slow, normal, or fast. The <Priority> tag
specifies which BAPs are to be used when several
sequences overlap. An intermediate solution is
automatically computed when the given priorities are
equal. The <Intensity> tag for the pre-defined
animation can be used to exaggerate or scale down the
effect of the pre-defined animation.

3.4. Behaviors
The purpose of defining the behaviors is to

generate, in real-time, a BAP output for gestures that
cannot be predefined (e.g. a shop assistant wants to
point at a particular item and tell its cost). The
behaviors are embedded in the ABML as shown above.
The Facing, Pointing, Walking, Waiting and Resetting
are the basic behaviors defined. Each behavior has
target location specified by the x, y, and z coordinates
(by <XCoor>, <YCoor>, and <ZCoor> tags) in 3D
space. Additionally, the walking behavior can specify
any number of control points through which the avatar
must pass, by using one or more <ControlPoint>

Figure 5. ABML Syntax

<BodyAnimationTrack name=“Track name”>

<Mask>int[296], the BAP indices that are
affected by this track are set to 1, the
rest 0 – optional tag</Mask>

<PredefinedAnimation>

<StartTime>

{mm:ss:mmm/autosynch/autoafter}

</StartTime>

<FileName>“filename.bap”</FileName>

<Speed>{normal/slow/fast}</Speed>

<Intensity>0 to n</Intensity>

<Priority>0 to n</Priority>

</PredefinedAnimation>

<FacingAction>

<StartTime>

{mm:ss:mmm/autosynch/autoafter}

</StartTime>

<XCoor>target’s X coordinate in meters

</XCoor>

<YCoor>target’s Y coordinate in meters

</YCoor>

<ZCoor>target’s Z coordinate in meters

</ZCoor>

<Speed>{normal/slow/fast}</Speed>

<Priority>0 to n</Priority>

</FacingAction>

<PointingAction>

<StartTime>

{mm:ss:mmm/autosynch/autoafter}

</StartTime>

<XCoor>target’s X coordinate in meters
</XCoor>

<YCoor> target’s Y coordinate in meters
</YCoor>

<ZCoor>target’s Z coordinate in meters
</ZCoor>

<Speed>{normal/slow/fast}</Speed>

<Priority>0 to n</Priority>

</PointingAction>

<WalkingAction>

<StartTime>

{mm:ss:mmm/autosynch/autoafter}

</StartTime>

<ControlPoint>

<XCoor> target’s X coordinate in meters
</XCoor>

<ZCoor> target’s Z coordinate in meters
</ZCoor>

</ControlPoint>

<Speed>{normal/slow/fast}</Speed>

<Priority>0 to n</Priority>

</WalkingAction>

<ResettingAction>

<StartTime>

{mm:ss:mmm/autosynch/autoafter}

</StartTime>

<Speed>{normal/slow/fast}</Speed>

<Priority>0 to n</Priority>

</ResettingAction>

</BodyAnimationTrack>

173

6 Kshirsagar et. al. / Avatar Markup Language

  The Eurographics Association 2002.

tags. Figure 6 below shows an example of ABML
containing pre-defined animation as well as behaviors.

Since the duration of parametric actions may not be
known at design time, a "synchro mode" has been
added to the ABML as an alternative to the starting
time parameter, which allows actions to be triggered
relative to each other: “autosynch”, in place of the start
time, indicates that the action will be triggered at the
same time as the preceding action, “autoafter”, in place
of the start time, indicates that the action will be
triggered directly after the preceding action has
completed. There are no limitations to the possible
combinations of start time/autosynch/autoafter.

Figure 6. ABML Example

4. AML Processing
Figure 7 gives the details of the specific AML

processor that will be integrated in the MPEG-4
compliant real-time animation platform. All the
associated software modules have been implemented

and are under testing and further development for real
time animation, to be plugged into the SoNG player.

The following subsections explain the various
elements required for the AML processing.

4.1. AML Processor
The AML processor synchronizes all the peripheral

modules, shown in Figure 7, and described below. It
accepts an AML script, parses it and makes appropriate
calls to the TTS Engine, AFML parser and the ABML
parser with corresponding data extracted from the AML
as input. The AML processor obtains the phoneme
information from TTS. It then inserts it into the AFML
with appropriate timing information, before calling the
AFML parser. This facilitates mixing of facial
expressions and the lip movement information that is
obtained from TTS. Finally, the resulting audio and
FAPs/BAPs from these modules are passed on to the
Audio and FBA encoders respectively. The resulting
encoded streams are encapsulated into an MPEG-4
complaint bit stream, ready to be transmitted over the
network.

Figure 7. AML Processing Scheme

4.2. TTS Engine
The TTS engine, in general, receives text as input

from the AML Processor and outputs a combination of
an audio stream and phoneme sequence with timing
information. Some specific implementations (as the one
used in SoNG project) are able to output an MPEG-4
fap file or a viseme file (representing lip movements),
in addition to the phoneme sequence. Both these files
contain the timing information about speech and facial
expressions for an animation sequence. Further, it may
be possible to annotate the input text with emotional
tags. These tags should affect the audio as well as the
resulting faps, providing expressive speech as well as
facial animation. AML does not specify the format for
the expression tags embedded in text, but any format
acceptable by the underlying TTS engine in use is

<ABML>

<Settings>

<Fps>25</Fps>

<Duration>00:10:000</Duration>

<BALibPath>.\BAPFiles\</BALibPath>

</Settings>

<BodyAnimationTrack name=“Dance”>

<PredefinedAnimation>

<StartTime>00:00:000</StartTime>

<FileName>charleston.bap</FileName>

<Speed>normal</Speed>

<Intensity>1</Intensity>

<Priority>1</Priority>

</PredefinedAnimation>

</BodyAnimationTrack>

<BodyAnimationTrack name=”FacedPoint”>

<FacingAction>

<StartTime>00:02:000</StartTime>

<XCoor>-10</XCoor>

<YCoor>-10</YCoor>

<ZCoor>-10</ZCoor>

<Speed>normal</Speed>

<Priority>2</Priority>

</FacingAction>

<PointingAction>

<StartTime>autoafter</StartTime>

<XCoor>45</XCoor>

<YCoor>10</YCoor>

<ZCoor>10</ZCoor>

<Speed>normal</Speed>

<Priority>2</Priority>

</PointingAction>

</BodyAnimationTrack>

</ABML>

174

 Kshirsagar et.al. / Avatar Markup Language 7

 The Eurographics Association 2002.

valid. The text within the <Text> tag of the <TTS>, is
directed to the TTS engine, and thus the AML does not
put any restrictions on its format. Microsoft SAPI tags
[13] or MPEG-4 defined TTS bookmarks [5] are two
such possibilities.

4.3. AFML Parser
The AFML parser receives AFML as input and

generates FAP streams by merging a number of
expression tracks. Expression tracks are based on
predefined animation units stored in the FAP Database
(FAP DB). However, the parameters such as duration,
intensity and time envelopes etc. can be varied using
the tags of the AFML. AFML can also include a
sequence of phonemes (a viseme file generated by
TTS), which can be converted into lip animation by the
AFML parser. Co-articulation for speech animation,
blending between various expressions activated at the
same time, and mixing between speech and expressions
are the important tasks of the AFML parser to generate
smooth animations. The parser reads the AFML from
either a file or a text stream. It generates either a FAP
file to be used for animation later, or returns FAPs
frame by frame when requested.

4.4. FAP DB
The AFML uses various animation units stored in

the FAP DB. As explained in Subsection 2.2, there are
66 low-level FAPs and 2 high level FAPs. All the
definition files for the high level FAPs (for 14 visemes
and 6 expressions) form part of the FAP DB. In
addition, there are several other “non-standard”
expression files useful to add variety to animations, e.g.
confused, sleepy etc. Thus, it is very easy to extend the
database and refer the newly defined expressions in the
AFML by the filenames without any need to have any
additional tags. The same is true with the ABML and
BAP DB.

4.5. ABML Parser
Similar to AFML, ABML is parsed by an ABML

parser, which generates BAP streams. The ABML
parser is capable of working with a number of body
animation tracks containing predefined BAP files
stored in the BAP DB or it can also generate body
animations from parameterized behavior calls. The
parser provides a way to organize bodily behaviors
(gestures and postures) using timing information
relative to each other (e.g. simultaneous or temporally
serial), and allows the real-time modification of the
animation's speed, intensity and extent (using masks
which can inhibit some part of the skeleton). It is also
computes intermediate skeleton states for several
gestures (morphing) when overlapping specifications
are given, which users can control by assigning
different priorities to each action.

4.6. BAP DB
The BAP DB contains a number of body animation

files that are the basic building blocks used by the
ABML Parser. These MPEG-4 animations can be
generated using motion capture techniques. They can
also be manually designed using dedicated authoring
software such as 3DS Max and appropriate exporter
plug-ins developed within the SoNG project. As
explained previously, the body animation in MPEG-4 is
defined in terms of 296 Body Animation Parameters. A
bap file, like a fap file, contains fare-by-frame bap
information for an animation, in addition to the
information such as frame rate and length of animation.

4.7. Behavior Library
The Behavior Library is triggered by the ABML

parser. The C++ based library makes use of classic
animation techniques based on matrix manipulation
(e.g. quaternion interpolation) and of IKAN, an inverse
kinematics library developed at the University of
Pennsylvania [12]. The modular structure of the
architecture and extensive use of powerful C++
features such as polymorphism, make it very easy to
add new behaviors and greatly facilitate the reuse of
already developed behaviors. E.g. the walking behavior
automatically triggers several facing and predefined
animations, thus it is very simple and easily
maintainable. The ABML parser processes (e.g. mixes
with predefined animations, changes speed etc.) the
animations generated by the Behavior Library
transparently, just like any other predefined animation.

4.8. FBA and Audio Encoders
FAPs and BAPs extracted by the AML Processor

from the AFML and ABML parsers are passed to the
Face and Body Animation (FBA) encoder. The output
of this module is binary FBA data that merges the an-
imations generated independently by the aforemen-
tioned modules. The FBA output is subdivided into
Access Units (AU) each associated with a BIFS-anim
compliant header. It is compressed using the Discrete
Cosine Transform (DCT). In accordance with the
MPEG approach, some AU can be encoded in an Intra
mode (all values quantized) while others can be stored
as predictive frames (the relative frame to frame change
is quantized). Similarly the encoded audio stream along
with the FBA stream can be used to transmit the anima-
tions over an MPEG-4 compliant network.

In the current implementation, the FAPs and BAPs
are finally encoded and transmitted across the network
from server to client. However, it is possible that AML
itself is used for communication and the AML
processor is implemented on each client. Though AML
was not designed for this particular purpose, this will
reduce the bandwidth requirements. However, this puts
two requirements on the client, availability of the FAP

175

8 Kshirsagar et. al. / Avatar Markup Language

  The Eurographics Association 2002.

DB and the BAP DB and implementation of the AML
processor.

5. Discussion and Conclusion
After explaining the AML in its full details, it is

time to compare AML with VHML [9], mentioned in
Section 1. VHML proposes to encapsulate various
other markup languages to describe face and body
animations, TTS and dialogue management attributes.
Still under development, it does not provide support to
body animations yet, and especially behavioral
animations. For facial animation and speech, the
biggest difference between AML and VHML is the
lack of time sychronization information in VHML. This
information is vital for seamless animation. Consider
the following example in VHML:

<happy duration=“7s’’/>
It’s my birthday today.

This would lead to the virtual human showing

happy emotion for a duration of 7 seconds while the
sentence is being said. However, if one wants to only
partially overlap speech and expression, this format is
not sufficient. For example, the avatar starts speaking,
and the happy expressions is dealyed slightly. Further,
the happy expression can continue even after the
speech is over. This effect will be achived by AFML by
the following:

<ExpressionsTrack name=“Emotion”>

<Expression>

<StartTime>00:00:800</StartTime>

<ExName>“happy”</ExName>

<Envelope>

<Point>

<Shape>linear</Shape>

<Duration>3.5<Duration>

<Int>1<Int>

</Point>

<Point>

<Shape>linear</Shape>

<Duration>3.5<Duration>

<Int>0<Int>

</Point>

</Envelope>

</Expression>

</ExpressionsTrack>

<SpeechTrack name=“birthday”>

<StartTime>00:00:000</StartTime>

<FileName>“birthday.vis” </FileName>

<AudioFile>“birthday.wav”</AudioFile>
</SpeechTrack>

Thus, mixing of various expressions can be carried

out at any temporal position and with any time
envelope allowing lot of control over final animation. It
is alternatively possible to add a TTS track in AML
with the required sentence, if a TTS module is
available. It is easy to notice that the addition of the

detailed timing information makes AML a bit
complicated as compared to VHML. However, in
return we get a lot of power and flexibility to the
definition of animation. VHML leaves the details of the
animation to the particular implementation, such as
how expressions are mixed with speech and other
expresions. On the other hand, AML has possibility to
encode these details making the implementation of the
real-time animation module a lot simpler. The
separation between speech and various expression
tracks in AML allows a flexible control over rich facial
animations, rather than attaching expression tags
directly to sentences. This feature also allows AML to
be used as a design tool for creative animators. Further,
any high level user defined expression can be used in
AFML (including the emotions and facial movements
like look-left, eyes-down) as opposed to only pre-
defined tags in VHML. All the commonly used
expressions are defined in the FAP DB, and more can
be defined and referred in AFML thus allowing a lot of
variety in animations. The same is the case with the
BAP DB and the ABML. Though we have used
MPEG-4 FAPs and BAPs as parameters, the language
itself is not restricted by any such specification.

In conclusion, we have proposed a new animation
language describing complete avatar animation consist-
ing of face and body animation and text to speech as
the basic elements. The important features of AML are:

• It is a high-level language easy to be used by
the intelligent agents driving 3D avatar ge-
ometries.

• It is also easy to use by animators to create
animations dynamically. It is flexible enough
to create a rich variety of animations, even
though it uses basic pre-defined animation
blocks. It is not restricted by a fixed set of
expression/gesture tags, but can be easily ex-
tended.

• It allows seamless animations using expres-
sions, gestures and TTS, and also gives ex-
plicit control over their mutual synchroniza-
tion.

• It is independent of the underlying low-level
animation parameters, and hence the design-
ers of various avatar based systems are free to
choose their own implementations, but still
able to share the animations.

Though we have addressed only avatar animation
in this paper, it would further be interesting to
recognize the user’s speech, facial expressions and
body postures automatically and convert directly into
AML. An intelligent interactive agent can then use this

176

 Kshirsagar et.al. / Avatar Markup Language 9

 The Eurographics Association 2002.

information not only to drive the avatar, but also to
formulate appropriate responses and reactions.

6. Acknowledgements
The European IST Project 10192 SoNG has

supported the work described in this paper. We are
grateful to all the partners of the SoNG project for their
direct and indirect involvement and help. Many thanks
to Yasmin Arafa for providing inspiration for this
work. Finally, special thanks are due to Chris Joslin for
proof reading the manuscript.

References

1. K. Perlin, and A. Goldberg, “Improv: A System
for Scripting Interactive Characters in Virtual
Worlds”, Proceedings of SIGGRAPH 96, ACM
Press, pp. 205-216.

2. J. Cassell, H. Vilhjalmsson, and T. Bickmore,
“BEAT: the Behavior Expression Animation
Toolkit”, Proceedings of SIGGRAPH 01, ACM
Press, pp. 477-486.

3. Microsoft Virtual Worlds,
http://www.vworlds.org/

4. Blaxxun Interactive, http://www.blaxxun.com/
5. ISO/IEC JTC 1/SC 29/WG11 N2502, Informa-

tion Technology – Generic Coding of Audio-
Visual Objects, Part 2: Visual, October 1998.

6. ISO/IEC JTC 1/SC 29/WG11 N2739 subpart 2,
MPEG-4 Version 2- BIFS, March 1999.

7. S. Kshirsagar, T. Molet, N. Magnenat-Thalmann,
“Principal Components of Expressive Speech
Animation”, Proceedings Computer Graphics In-
ternational 2001, IEEE Computer Society, July
2001, pp 38-44.

8. R. Boulic, P. Becheiraz, L. Emering, and D.
Thalmann, “Integration of motion control tech-
niques for virtual human and avatar real-time
animation”, Proceedings ACM Symposium on
Virtual Reality Software and Technology 1997,
ACM Press, September 1997, pp. 111-118.

9. http://www.vhml.org/
10. S. Kshirsagar, M. Escher, G. Sannier, N. Magne-

nat-Thalmann, "Multimodal Animation System
Based on the MPEG-4 Standard", Proceedings
Multimedia Modelling 99, Ottawa, Canada, Oc-
tober 1999, World Scientific Publishing, pp. 215-
232.

11. http://www.h-anim.org/
12. D. Tolani, A. Goswami, and N. Badler: "Real-

time inverse kinematics techniques for anthro-
pomorphic limbs." Graphical Models 62 (5),
Sept. 2000, pp. 353-388.

13. Microsoft Speech Technologies,
http://www.microsft.com/speech

177

