

Adaptive Networking for Tele-Immersion

Jason Leigh+, Oliver Yu, Dan Schonfeld, Rashid Ansari,
Eric He, Atul Nayak, Jinghua Ge, Naveen Krishnaprasad,

Kyoung Park, Yong-joo Cho, Liujia Hu, Ray Fang,
Alan Verlo, Linda Winkler, Thomas A. DeFanti

+spiff@evl.uic.edu

Electronic Visualization Laboratory (EVL)

Dept EECS, MC 154, 1120 SEO, 851 S. Morgan St.

University of Illinois at Chicago
Chicago, IL 60607, USA

Abstract. Tele-Immersive applications possess an unusually broad range of
networking requirements. As high-speed and Quality of Service-enabled networks
emerge, it will becoming more difficult for developers of Tele-Immersion applications,
and networked applications in general, to take advantage of these enhanced services.
This paper proposes an adaptive networking framework to ultimately allow
applications to optimize their network utilization in pace with advances in networking
services. In working toward this goal, this paper will present a number of networking
techniques for improving performance in tele-immersive applications and examines
whether the Differentiated Services mechanism for network Quality of Service is
suitable for Tele-Immersion.

1 Introduction
Tele-Immersion is the integration of collaborative virtual reality (VR) with audio and
video conferencing in the context of data-mining and significant computation. The
ultimate goal of Tele-Immersion is not only to reproduce a real face-to-face meeting in
every detail, but to provide the "next generation" interface for collaborators, world-
wide, to work together in a virtual environment that is seamlessly enhanced by
computation and large databases. When participants are Tele-Immersed, they are able
to see and interact with each other in a shared virtual environment. They are able to
query and visualize data stores and steer complex scientific and engineering
simulations[1].

One of the challenges of Tele-Immersion is that it poses diverse requirements of the
underlying networks. For example, to convey audio and gestures of virtual participants
(avatars,) low network latency is required; to distribute state updates, low latency but
reliable data transmission is preferred; and to distribute data sets high-speed bulk data
transfer is needed. In this paper, we will present our most recent work in exploiting
advanced networking techniques to optimize data distribution in Tele-Immersion. We
will describe our experiences in using Quality-of-Service-enabled high-speed
networks for supporting Tele-Immersion. We will structure this work by proposing an
adaptive networking framework to allow application developers to map their data

http://www.eg.org
http://diglib.eg.org

distribution requirements to suitable networking services. We believe that as
networking technology becomes more complex, application developers will have to
rely increasingly on intelligent adaptive systems to make decisions on how to
optimally distribute their data over them. The work discussed in this paper serves as a
starting point toward that ultimate goal.

2 Adaptive Networking for Tele-Immersion
We propose an intelligent adaptive networking system (Fig. 1) consisting of a Strategy
Selector, Adaptive Controller and three supporting services: a Resource Monitor, a
Quality of Service (QoS) Provisioner and a collection of network transport
mechanisms. The Strategy Selector’s role is to take application-specified data delivery
requirements (e.g. bandwidth, latency, jitter, reliability, etc) and translate them into
networking and computational resource allocations needed to meet the applications’
demands. The Strategy Selector must monitor the current state of the network, select
an optimal transmission protocol, and make QoS requests (if available.) Some
protocols such as Forward Error Corrected UDP or Parallel TCP (described later) may
pose additional computational overhead, which the Strategy Selector must take into
account. If QoS is available, the Strategy Selector must contact the Admission Control
system to determine if the available bandwidth is available, and then make a
reservation using the Reservation Controller. Once a strategy has been activated, the
Adaptive Controller must monitor the progress of the data transmission and adjust
networking and computational parameters to sustain the desired performance. To
accommodate multiple simultaneous and heterogeneous network flows, the Adaptive
Controller may alter some of the low-level transport protocol parameters (such as
buffer or window size,) or may adjust QoS reservations dynamically.

It is clear that the realization of such a system is an ambitious endeavor. In this paper,
we will present several steps we have taken towards understanding the issues and
creating the necessary building blocks towards such a system. These include:

- a study of the behavior of the Differentiated Services QoS with respect to the
requirements of real-time tele-immersive applications;

- the development of a collection of advanced data delivery mechanisms as
part of our CAVERNsoft Tele-Immersion toolkit[2, 3]. These include
Reliable Blast UDP for bulk data transfer, and Forward Error Corrected UDP
for semi-reliable, low-latency state transfer.

3 Quality of Service for Real-time Collaborative Applications
Network Quality of Service (QoS) refers to the ability of an application to request a
guaranteed level of networking service in the form of bandwidth, latency or jitter.
There are two well-known types of QoS: Integrated Services (IntServ) and
Differentiated Services (DiffServ). IntServ achieves QoS by having intervening
routers maintain the state of a particular network link between two end points[4].
While this method can provide a hard guarantee on QoS, it is ultimately not scalable to
the larger Internet. DiffServ, on the other hand, takes the approach of marking network
traffic with a priority level that can be interpreted by the router to effect special
treatment of the data packet[5]. In particular, the marked packets are promoted to a

higher priority queue in the router and, as a result, spend less time in the router.
Packets that are not marked are attached to a lower priority queue, and in some cases
may be dropped when congestion arises. A more detailed description of DiffServ may
be found in the paper by Foster et al [6].

The common misconception in the field of collaborative virtual reality (CVR) is that
QoS, once it is available, will solve all of CVR’s networking problems. At the same
time networking experts believe that bandwidth provisioning is the only form of QoS
needed by applications. The experiments described below were performed as a joint
project between collaborative virtual reality and networking experts in order to shed
some light on these common misconceptions.

A series of experiments were performed over a wide area DiffServ testbed as part of
the EMERGE project. EMERGE [7] is a Department of Energy funded project for
designing, deploying and testing Differentiated Services on an IP/ATM Regional
GigaPoP Network interoperating with ESnet for applications in Combustion, Climate
and High-Energy Physics. The main participants of the experiments were EVL and
Argonne National Laboratory (ANL)- approximately 30 minutes away by car.

Cisco 7507 DiffServ routers at ANL were connected to DiffServ routers at EVL as
shown in Fig. 2. The router at EVL had Weighted Fair Queueing enabled; and the
routers at ANL had Priority Queueing enabled to produce DiffServ’s Expedited
Forwarding behavior. Several experiments were performed over this testbed, but in the
interest of brevity, we will report on the results of only one experiment. The reader is
encouraged to peruse the detailed technical report at [8]. The goal of the experiment
was to observe whether DiffServ is able to maintain bandwidth allocations while
keeping latency low, especially during periods of high network congestion. The
experiment began with the transmission of a steady foreground stream of UDP data at
the networks saturation point (25Mbps) from ANL (Tundra) to EVL (Laurel). After
some time, 25Mbps of competitive networking traffic was transmitted from Fjuk to
Laurel to increase congestion over the inter-domain link between EVL and ANL.
Then DiffServ was enabled on the foreground stream to determine if bandwidth and
latency recovery would occur. GARA (the General-purpose Architecture for
Reservation and Allocation,) developed by ANL was used to make the DiffServ
reservation[9].

In Fig. 3 the dip in the top graph shows that when competitive traffic is injected the
throughput of the foreground stream suffers. However, when DiffServ is enabled the
throughput is brought back to near its original levels. This shows that DiffServ is
effective in providing bandwidth guarantees. However, the second graph shows that
latency was only partially restored. Note also that the restored (one-way) latency is at
approximately 150ms, which has been shown in the past, to be intolerably high for
real-time tightly coupled interactions in Tele-Immersion. Park et al [10] have found
that the roundtrip latency threshold where human performance begins to noticeably
degrade is approximately 200ms. The results suggest that while DiffServ is suitable
for making bandwidth guarantees it is unable to reliably make latency guarantees
under heavy network congestion. We have performed the same experiment over

uncongested links (from EVL to ANL over an 80Mbps private virtual circuit) and
have not observed the same performance degradation[8].

We believe the increased latency under heavy congestion maybe due to queueing that
is occurring at the interior router (Aruba.) Priority queueing would ensure that the
DiffServ marked packets would receive priority transmission, however since priority
queueing is not pre-emptive on Cisco’s 7507 router it must wait for all the packets in
the non-priority queue to be forwarded before it can concentrate on priority traffic.

Finally to confirm our results in the context of a real tele-immersive application, we
repeated the experiment using the Tele-Immersive Data Explorer (a collaborative VR
application for querying data mining servers)[11]. In this experiment, low-bandwidth
avatar data represented the foreground traffic. Again over a congested network, we
observed the same increase in latency, as in our previous experiments [8].

4 Advanced Data Transport Techniques for Tele-Immersion
CAVERNsoft is an open source, cross-platform, C++ toolkit for building tele-
immersive applications[2, 3]. Although its initial intended audience was developers of
VR applications, CAVERNsoft’s decoupled networking tools has made it useful in
building networked applications in general. CAVERNsoft supports a broad collection
of low-level to high-level data distribution tools. Low-level tools include classes for
basic UDP, TCP and multicasting. Mid-level tools consist of classes for remote
procedure calls, key/value database, parallel sockets, UDP and TCP reflectors, and
remote file transfer. High-level tools include C++ classes for rendering articulated
avatars, audio conferencing, and shared scene graphs. As one of the intended
audiences for these tools are computational scientists, a 64-bit version was
implemented- for example the 64-bit remote file transfer API allows the transfer of
files greater than 2 Gigabytes in size. Finally, since optimal network utilization
requires careful monitoring of network performance, every CAVERNsoft network
class has been instrumented to measure bandwidth, latency, jitter and burstiness.

In our continuing efforts to expand CAVERNsoft’s networking services, we present
below, schemes for reliable low-latency state transmission, and high throughput bulk
data transfer.

4.1 Reliable Low-Latency Data Transfer for Tele-Immersion
For long distance networks such as international networks, latencies are high (on the
order of hundreds of milliseconds). In Tele-Immersion we would ideally like state
updates in the shared environment to occur with a minimum amount of latency and
with a high degree of reliability. A scheme is therefore needed to transmit data reliably
over long distances without requiring the acknowledgement typically used in protocols
such as TCP. Forward Error Correction (FEC) provides a promising solution to this
problem. FEC works by collecting between 1 and N (typically 2 or 3) data packets and
performing a bit-wise operation on the packets (such as XOR) to generate a
“redundant” packet. This packet is delivered along with the regular UDP traffic as a
separate UDP stream. If any data packets are lost, FEC packets can be used to

reconstruct the missing packet. A detailed description of the encoding algorithm can
be found in [12].

To evaluate our FEC implementation we performed a series of experiments between
EVL and SARA (SARA- Stichting Academisch Rekencentrum Amsterdam) over
STAR TAP (the Science and Technology Advanced Research Transit Access Point- a
National Science Foundation funded project to interconnect international high speed
networks.)[13]. The experiment involved comparing the latency, jitter and packet loss
of basic UDP, TCP and UDP augmented with FEC. Details on the experimental setup
can be found in [12].

Fig. 4 shows the results of the experiment using an FEC scheme that generated 1
redundant packet for every 3 consecutive UDP packets. Notice that FEC does appear
to incur lower latency than TCP but slightly higher latency than UDP. Also, note that
the benefits of FEC are greatest at small packet sizes since it takes less time to
accumulate and encode 3 small packets. The goal in future work would be to bring
FEC performance closer to UDP performance while maintaining maximal reliability.
Fig. 4 also shows the variation of latency (jitter) between TCP, UDP and FEC. Notice
that FEC produces lower levels of jitter than TCP but higher levels than standard UDP.

Finally, to observe packet loss of UDP versus FEC, packets were sent at a rate of
50Mbps over a 100Mbps link between EVL and SARA. Then an additional 50Mbps
of congestion traffic was injected. The results in Fig. 5 shows that FEC was quite
effective at recovering lost packets. However, note that while our FEC scheme is good
at recovering intermittent lost packets it cannot recover from the loss of large
consecutive blocks of packets. To recover from this the selection of encoding packets
must be more widely distributed across the data stream. This unfortunately has the
effect of increasing latency. Another drawback of FEC is that the FEC packets
themselves can become a source of congestion. Hence, careful selections of FEC
parameters need to be made to ensure optimal performance. For the purposes of
transmitting real-time state information in tele-immersive applications, the
recommendation is to encode few (like 3) and small (like 1Kbyte) consecutive packets
over networks that have the capacity to sustain the additional bandwidth needed by
FEC.

4.2 High Throughput Techniques for Tele-Immersion
Quality of Service is designed to guarantee a level of service (mainly bandwidth) for
the networked application. It does not however guarantee that the networked
application will be able to take full advantage of the bandwidth, even when it is made
available. Since tele-Immersive applications are so highly interactive, the expectation
is for the retrieval of distantly located data sets, such as 3D models, to be equally
expedient. This can only be achieved by being able to maximally use the available
bandwidth to deliver the data.

To support high-bandwidth bulk data transfer we have developed two techniques-
Parallel TCP Socket Striping and Reliable Blast UDP. These two schemes allow
applications to overcome what is classically known as the Long Fat Network (LFN)

problem[14]. The LFN problem occurs over long, high-bandwidth networks, such as
those between the United States and Europe or Asia. The high round-trip latencies in
these networks (at best 120ms) will result in gross bandwidth under-utilization when
default TCP is used for data delivery. This is because TCP’s windowing mechanism
imposes a limit on the amount of data it will send before it must wait for an
acknowledgement. The long delays that occur over international networks means that
TCP will spend an inordinate amount of time waiting for acknowledges, which in turn
means that the client’s data transmission will never reach the peak available
transmission rate of the network. Traditionally this is “remedied” by modifying TCP’s
window and buffer sizes to match the bandwidth * delay product (capacity) of the
network. For example, for a 45Mbps link between Chicago and Amsterdam, with an
average round trip time of 150ms, the capacity is 45*0.15/8 = 0.84Mbytes.
Unfortunately adjusting TCP window size is problematic for two reasons: firstly, on
some operating systems (such as IRIX for the SGI,) the window size can only be
modified by building a new version of the kernel- hence this is not an operation a user-
level application can invoke. Secondly, one needs to know the current capacity of the
network in order to set the window size correctly. The current capacity varies with the
amount of background traffic already on the network.

Parallel TCP Socket striping overcomes the LFN problem by partitioning a payload
and delivering it over multiple TCP connections. Reliable Blast UDP overcomes the
LFN problem by literally “blasting” UDP packets over the networks and then
transmitting an acknowledgement only after the full payload has been transmitted. Our
experiments between Chicago and Amsterdam (at SARA) will illustrate how each of
these schemes can significantly improve throughput over LFNs. In the interest of
brevity we refer the reader to Park et al [3] for information on our Parallel TCP socket
striping scheme and performance results.

Reliable Blast UDP (RUDP)

When operating over QoS-enabled networks the probability of packet loss is low. To
take advantage of this we have implemented an alternative reliable data transmission
scheme using UDP augmented with acknowledgements. The scheme works by
“blasting” the contents of a data file at just below the available bandwidth without
asking the remote site to acknowledge any of the packets. Hence, all the bandwidth is
used for pure data transmission. At the remote site, a tally is kept for all the packets
that have arrived and, after some timeout period, a list of missing packets is sent back
to the sending client. The sender reacts by resending all the missing packets and again
waiting for another negative acknowledgement.

Fig. 6 shows the results of using RUDP to deliver a 50M file over a 100Mbps link
between EVL and SARA. Since QoS is currently not available between the two sites,
we chose to send data at rates well below the maximum available bandwidth of the
network link- in essence emulating a smaller reserved QoS link. The table shows the
bandwidth at which RUDP data was transmitted and the effective throughput of the
total file transfer. Notice that on an over-provisioned network, effective throughput is
almost as high as the sending bandwidth. This is in contrast to TCP, which typically
incurs a 20% bandwidth loss by requiring frequent acknowledgements. Note also that
as we approach the bandwidth limit of the link, performance begins to decrease-

however performance is no poorer than what is expected of optimally tuned TCP.
Remember that these experiments were conducted without the benefit of QoS. Hence,
interference from competing traffic streams was possible and likely. We predict that
our results would yield even better performance with QoS.

5 Conclusion
The work presented in this paper serves as a beginning for our research in adaptive
networking. While our interest has been driven mainly by our need to provide better
networking services for Tele-Immersion, the results we have presented are
generalizable to other networked applications.

Future research on our adaptive networking framework will consist of the following
goals:

1. To define QoS from the point of view of application developers. For example
QoS may mean: “reliable low-latency transmission,” “faster download,”
“faster realtime response,” “guaranteed delivery by a deadline.”

2. To characterize transmission protocols, QoS mechanisms and computational
resources as a set of parameters or functions.

3. To find suitable mappings that will translate application-level descriptions of
QoS to characterizations of required network services. Ie. To map from item
1. to 2. to guarantee optimal application and network performance. Heuristics
may be used initially. For example:

o If data requires low latency but can tolerate much loss use UDP
o If data requires low latency and can tolerate low loss use Forward

Error Corrected UDP
o Else use TCP
o If data set is large and requires reliable delivery:

§ Use TCP and adjust window size and buffer size to match
network capacity if possible;

§ Else use parallel TCP socket striping;
§ If QoS is available- use Reliable Blast UDP

4. To find prediction models that can be used to predict the consequences of
making mapping decisions during dynamic network situations.

5. To test our predictions on real applications and on real networking testbeds.

Our QoS experiments have shown that Differentiated Services is able to provide
bandwidth and latency guarantees when the network is not over-subscribed. However,
if the network is over-subscribed then only bandwidth guarantees are possible. We
believe that Integrated Services QoS should be able to overcome the limitations of
DiffServ. However the main drawback of IntServ is that it is not scalable to the larger
Internet. We, as well as other researchers have proposed that a scalable solution might
require the use of IntServ at the edge routers (where the clients connect,) and the use
of DiffServ in the core routers (where the excess bandwidth resides.)[15] We are in
the process of constructing a network testbed to firstly, examine IntServ, and then a
combination of IntServ and DiffServ.

Finally, we are in the continual process of translating our research results into useable
tools for the computational science community. CAVERNsoft [2, 3], our open source
toolkit for building networked applications, already has built-in performance
monitoring, and parallel socket striping capabilities. Modules for Forward Error
Correction and Reliable Blast UDP will be incorporated in the near future.

6 Acknowledgements
We would like to graciously thank our collaborators at SARA, CERN and Argonne
National Laboratory without whom these experiments would not have been possible.
We would also like to thank our collaborators at the National Center for Data Mining
for sharing their parallel socket algorithm.

The virtual reality research, collaborations, and outreach programs at the Electronic
Visualization Laboratory (EVL) at the University of Illinois at Chicago are made
possible by major funding from the National Science Foundation (NSF), awards EIA-
9802090, EIA-9871058, ANI-9980480, ANI-9730202, and ACI-9418068, as well as
NSF Partnerships for Advanced Computational Infrastructure (PACI) cooperative
agreement ACI-9619019 to the National Computational Science Alliance. EVL also
receives major funding from the US Department of Energy (DOE), awards
99ER25388 and 99ER25405, as well as support from the DOE's Accelerated Strategic
Computing Initiative (ASCI) Data and Visualization Corridor program. In addition,
EVL receives funding from Pacific Interface on behalf of NTT Optical Network
Systems Laboratory in Japan and Microsoft Corporation.

TCP U D P
Forward Error

Corrected UDP
Parallel TCP

Reliable Blast
U D P

Transport Mechanisms

Network Monitor CPU Monitor

Resource Monitor

Admission
Control

Reservation
Control

Quality of Service
Provisioner

Strategy Selector

Adaptive
Controller

Fig. 1. Components of an Adaptive Networking System

Cisco
7507

Cisco
7507

Cisco
7507

42

Laurel.evl.uic.edu
Tundra.mcs.anl.gov

Fjuk.mcs.anl.gov

Cisco
7507

42

100

100

100

80

25

EVL ANL

Fig. 2. Simplified diagram of EMERGE DiffServ Testbed. Numbers on the links represent
bandwidth levels.

DiffServ Latency

0

50

100

150

200

250

300

1 12 23 34 45 56 67 78 89 10
0

11
1

12
2

13
3

14
4

15
5

Time (s)

1
w

ay
 L

at
en

cy
 (

m
s)

Fig. 3. Results showing that DiffServ, while being able to make bandwidth guarantees, may not
always provide latency guarantees.

Fig. 4. The graph on the left shows the transmission of 100 packets under TCP, UDP, FEC/UDP.
The FEC scheme derives its greatest benefit when packet sizes are small as larger packet sizes
incur additional buffer processing time. The graph on the right shows that FEC also introduces
jitter in the data stream. Jitter is computed by first calculating the short-term latency over every
20 data points and then computing the average deviation of the instantaneous latency as
compared to the short-term latency.

 Packet Loss

UDP 1.90%

FEC 0.05%

UDP with congestion 17.40%

FEC with congestion 4.15%

Fig. 5. Comparison of Packet Loss in UDP vs. FEC over an uncongested and congested network.

Sending Bandwidth (Mbps) Effective Bandwidth Number of NAKs
20 19.7 0
40 38.5 0
60 54-57 1
80 56-70 2
90 61-77 3

Fig. 6. Comparison of transmission bandwidth vs. effective throughput using Reliable Blast
UDP over a 100Mbps non-QoS provisioned link between Chicago and Amsterdam. When the

0

50

100

150

200

250

300

350

400

0 500 1000 1500 2000 2500
Packet size in bytes

1-
w

ay
 la

te
n

cy
 in

 m
s

DiffServ Bandwidth

0

5

10

15

20

25

1 12 23 34 45 56 67 78 89 10
0

11
1

12
2

13
3

14
4

15
5

Time (s)

B
an

d
w

id
th

 (
M

b
p

s)

0

2

4

6

8

10

12

14

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77

Ji
tt

er

UDP

TCP

FEC/UDP

network is over provisioned performance is good. We anticipate the best results of RUDP to
occur in conjunction with the use of a QoS scheme such as DiffServ or IntServ.

7 References
[1] J. Leigh, Johnson, A., DeFanti, T., et al., "A Review of Tele-Immersive

Applications in the CAVE Research Network," presented at IEEE VR99,
Houston, Texas, 1999.

[2] J. Leigh, Cho, Y. J., Krishnaprasad, N., Nayak, A., Fang, R., "the
CAVERNsoft Tele-Immersion Toolkit :
http://www.evl.uic.edu/cavern/cavernG2."

[3] K. Park, Cho, Y., Krishnaprasad, N., Scharver, C., Lewis, M., Leigh, J.,
"CAVERNsoft G2: A Toolkit for High Performance Tele-Immersive
Collaboration," presented at ACM Symposium on Virtual Reality Software
and Technology, Seoul, Korea, 2000.

[4] IntServ, http://www.ietf.org/html.charters/intserv-charter.html.
[5] DiffServ, http://www.ietf.org/html.charters/diffserv-charter.html.
[6] I. Foster, Kesselman, C., "Globus. A Metacomputing Infrastructure Toolkit,"

International Journal of Supercomputing Application, vol. 11, pp. 115-128,
1997.

[7] EMERGE, "EMERGE : http://www.evl.uic.edu/cavern/EMERGE."
[8] J. Leigh, Yu, O., Verlo, A., Roy, A., Winkler, L., DeFanti, T. A.,

"Differentiated Services Experiments Between the Electronic Visualization
Laboratory and Argonne National Laboratory :
http://www.evl.uic.edu/cavern/papers/DiffServ12_12_2K.pdf," 2000.

[9] I. Foster, Sander, V., Roy, A., "A Quality of Service Architecture that
Combines Resource Reservation and Application Adaptation," presented at
8th International Workshop on Quality of Service (IWQOS, 2000.

[10] K. Park, Kenyon, R, "Effects of Network Characteristics on Human
Performance in a Collaborative Virtual Environment," presented at IEEE VR,
Houston, Texas, 1999.

[11] N. Sawant, Scharver, C., Leigh, J., Johnson, A., Reinhart, G., Creel, E.,
Batchu, S., Bailey, S., Grossman, R, "The Tele-Immersive Data Explorer: A
Distributed Architecture for Collaborative Interactive Visualization of Large
Data-sets," presented at 4th International Immersive Projection Technology
Workshop, Ames, Iowa, 2000.

[12] R. Fang, Schonfeld, D., Ansari, R., Leigh, J., "Forward Error Correction for
Multimedia and Tele - immersion Streams : http://www.startap.net/images
/PDF/RayFangFEC1999.pdf," 2000.

[13] T. A. DeFanti, Goldstein, S., "STAR TAP, http://www.startap.net."
[14] W. R. Stevens, "TCP/IP Illustrated," vol. 1: Addison Wesley, 1994, pp. 344-

350.
[15] O. Yu, "Dynamic QoS and Routing Support for Real-time Multimedia

Applications over Next Generation Internet," presented at Proceedings of
IEEE International Conference on Multimedia and Expo 2000, 2000.

