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Abstract. Tele-Immersive applications possess an unusually broad range of 
networking requirements. As high-speed and Quality of Service-enabled networks 
emerge, it will becoming more difficult for developers of Tele-Immersion applications, 
and networked applications in general, to take advantage of these enhanced services. 
This paper proposes an adaptive networking framework to ultimately allow 
applications to optimize their network utilization in pace with advances in networking 
services. In working toward this goal, this paper will present a number of networking 
techniques for improving performance in tele-immersive applications and examines 
whether the Differentiated Services mechanism for network Quality of Service is 
suitable for Tele-Immersion. 

1 Introduction 
Tele-Immersion is the integration of collaborative virtual reality (VR) with audio and 
video conferencing in the context of data-mining and significant computation. The 
ultimate goal of Tele-Immersion is not only to reproduce a real face-to-face meeting in 
every detail, but to provide the "next generation" interface for collaborators, world-
wide, to work together in a virtual environment that is seamlessly enhanced by 
computation and large databases. When participants are Tele-Immersed, they are able 
to see and interact with each other in a shared virtual environment. They are able to 
query and visualize data stores and steer complex scientific and engineering 
simulations[1]. 
 
One of the challenges of Tele-Immersion is that it poses diverse requirements of the 
underlying networks. For example, to convey audio and gestures of virtual participants 
(avatars,) low network latency is required; to distribute state updates, low latency but 
reliable data transmission is preferred; and to distribute data sets high-speed bulk data 
transfer is needed. In this paper, we will present our most recent work in exploiting 
advanced networking techniques to optimize data distribution in Tele-Immersion. We 
will describe our experiences in using Quality-of-Service-enabled high-speed 
networks for supporting Tele-Immersion. We will structure this work by proposing an 
adaptive networking framework to allow application developers to map their data 
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distribution requirements to suitable networking services. We believe that as 
networking technology becomes more complex, application developers will have to 
rely increasingly on intelligent adaptive systems to make decisions on how to 
optimally distribute their data over them. The work discussed in this paper serves as a 
starting point toward that ultimate goal. 

2 Adaptive Networking for Tele-Immersion 
We propose an intelligent adaptive networking system (Fig. 1) consisting of a Strategy 
Selector, Adaptive Controller and three supporting services: a Resource Monitor, a 
Quality of Service (QoS) Provisioner and a collection of network transport 
mechanisms. The Strategy Selector’s role is to take application-specified data delivery 
requirements (e.g. bandwidth, latency, jitter, reliability, etc) and translate them into 
networking and computational resource allocations needed to meet the applications’ 
demands. The Strategy Selector must monitor the current state of the network, select 
an optimal transmission protocol, and make QoS requests (if available.) Some 
protocols such as Forward Error Corrected UDP or Parallel TCP (described later) may 
pose additional computational overhead, which the Strategy Selector must take into 
account. If QoS is available, the Strategy Selector must contact the Admission Control 
system to determine if the available bandwidth is available, and then make a 
reservation using the Reservation Controller. Once a strategy has been activated, the 
Adaptive Controller must monitor the progress of the data transmission and adjust 
networking and computational parameters to sustain the desired performance. To 
accommodate multiple simultaneous and heterogeneous network flows, the Adaptive 
Controller may alter some of the low-level transport protocol parameters (such as 
buffer or window size,) or may adjust QoS reservations dynamically. 
 
It is clear that the realization of such a system is an ambitious endeavor. In this paper, 
we will present several steps we have taken towards understanding the issues and 
creating the necessary building blocks towards such a system. These include: 

- a study of the behavior of the Differentiated Services QoS with respect to the 
requirements of real-time tele-immersive applications; 

- the development of a collection of advanced data delivery mechanisms as 
part of our CAVERNsoft Tele-Immersion toolkit[2, 3]. These include 
Reliable Blast UDP for bulk data transfer, and Forward Error Corrected UDP 
for semi-reliable, low-latency state transfer. 

3 Quality of Service for Real-time Collaborative Applications 
Network Quality of Service (QoS) refers to the ability of an application to request a 
guaranteed level of networking service in the form of bandwidth, latency or jitter. 
There are two well-known types of QoS: Integrated Services (IntServ) and 
Differentiated Services (DiffServ). IntServ achieves QoS by having intervening 
routers maintain the state of a particular network link between two end points[4]. 
While this method can provide a hard guarantee on QoS, it is ultimately not scalable to 
the larger Internet. DiffServ, on the other hand, takes the approach of marking network 
traffic with a priority level that can be interpreted by the router to effect special 
treatment of the data packet[5]. In particular, the marked packets are promoted to a 



 

higher priority queue in the router and, as a result, spend less time in the router. 
Packets that are not marked are attached to a lower priority queue, and in some cases 
may be dropped when congestion arises. A more detailed description of DiffServ may 
be found in the paper by Foster et al [6]. 
 
The common misconception in the field of collaborative virtual reality (CVR) is that 
QoS, once it is available, will solve all of CVR’s networking problems. At the same 
time networking experts believe that bandwidth provisioning is the only form of QoS 
needed by applications. The experiments described below were performed as a joint 
project between collaborative virtual reality and networking experts in order to shed 
some light on these common misconceptions. 
  
A series of experiments were performed over a wide area DiffServ testbed as part of 
the EMERGE project. EMERGE [7] is a Department of Energy funded project for 
designing, deploying and testing Differentiated Services on an IP/ATM Regional 
GigaPoP Network interoperating with ESnet for applications in Combustion, Climate 
and High-Energy Physics. The main participants of the experiments were EVL and 
Argonne National Laboratory (ANL)- approximately 30 minutes away by car. 
 
Cisco 7507 DiffServ routers at ANL were connected to DiffServ routers at EVL as 
shown in Fig. 2. The router at EVL had Weighted Fair Queueing enabled; and the 
routers at ANL had Priority Queueing enabled to produce DiffServ’s Expedited 
Forwarding behavior. Several experiments were performed over this testbed, but in the 
interest of brevity, we will report on the results of only one experiment. The reader is 
encouraged to peruse the detailed technical report at [8]. The goal of the experiment 
was to observe whether DiffServ is able to maintain bandwidth allocations while 
keeping latency low, especially during periods of high network congestion. The 
experiment began with the transmission of a steady foreground stream of UDP data at 
the networks saturation point (25Mbps) from ANL (Tundra) to EVL (Laurel). After 
some time, 25Mbps of competitive networking traffic was transmitted from Fjuk to 
Laurel to increase congestion over the inter-domain link between EVL and ANL. 
Then DiffServ was enabled on the foreground stream to determine if bandwidth and 
latency recovery would occur. GARA (the General-purpose Architecture for 
Reservation and Allocation,) developed by ANL was used to make the DiffServ 
reservation[9]. 
 
In Fig. 3 the dip in the top graph shows that when competitive traffic is injected the 
throughput of the foreground stream suffers. However, when DiffServ is enabled the 
throughput is brought back to near its original levels. This shows that DiffServ is 
effective in providing bandwidth guarantees. However, the second graph shows that 
latency was only partially restored. Note also that the restored (one-way) latency is at 
approximately 150ms, which has been shown in the past, to be intolerably high for 
real-time tightly coupled interactions in Tele-Immersion. Park et al [10] have found 
that the roundtrip latency threshold where human performance begins to noticeably 
degrade is approximately 200ms. The results suggest that while DiffServ is suitable 
for making bandwidth guarantees it is unable to reliably make latency guarantees 
under heavy network congestion. We have performed the same experiment over 



 

uncongested links (from EVL to ANL over an 80Mbps private virtual circuit) and 
have not observed the same performance degradation[8].  
 
We believe the increased latency under heavy congestion maybe due to queueing that 
is occurring at the interior router (Aruba.) Priority queueing would ensure that the 
DiffServ marked packets would receive priority transmission, however since priority 
queueing is not pre-emptive on Cisco’s 7507 router it must wait for all the packets in 
the non-priority queue to be forwarded before it can concentrate on priority traffic.  
 
Finally to confirm our results in the context of a real tele-immersive application, we 
repeated the experiment using the Tele-Immersive Data Explorer (a collaborative VR 
application for querying data mining servers)[11]. In this experiment, low-bandwidth 
avatar data represented the foreground traffic. Again over a congested network, we 
observed the same increase in latency, as in our previous experiments [8]. 

4 Advanced Data Transport Techniques for Tele-Immersion 
CAVERNsoft is an open source, cross-platform, C++ toolkit for building tele-
immersive applications[2, 3]. Although its initial intended audience was developers of 
VR applications, CAVERNsoft’s decoupled networking tools has made it useful in 
building networked applications in general. CAVERNsoft supports a broad collection 
of low-level to high-level data distribution tools. Low-level tools include classes for 
basic UDP, TCP and multicasting. Mid-level tools consist of classes for remote 
procedure calls, key/value database, parallel sockets, UDP and TCP reflectors, and 
remote file transfer. High-level tools include C++ classes for rendering articulated 
avatars, audio conferencing, and shared scene graphs. As one of the intended 
audiences for these tools are computational scientists, a 64-bit version was 
implemented- for example the 64-bit remote file transfer API allows the transfer of 
files greater than 2 Gigabytes in size. Finally, since optimal network utilization 
requires careful monitoring of network performance, every CAVERNsoft network 
class has been instrumented to measure bandwidth, latency, jitter and burstiness. 
 
In our continuing efforts to expand CAVERNsoft’s networking services, we present 
below, schemes for reliable low-latency state transmission, and high throughput bulk 
data transfer. 
 
4.1 Reliable Low-Latency Data Transfer for Tele-Immersion 
For long distance networks such as international networks, latencies are high (on the 
order of hundreds of milliseconds). In Tele-Immersion we would ideally like state 
updates in the shared environment to occur with a minimum amount of latency and 
with a high degree of reliability. A scheme is therefore needed to transmit data reliably 
over long distances without requiring the acknowledgement typically used in protocols 
such as TCP. Forward Error Correction (FEC) provides a promising solution to this 
problem. FEC works by collecting between 1 and N (typically 2 or 3) data packets and 
performing a bit-wise operation on the packets (such as XOR) to generate a 
“redundant” packet. This packet is delivered along with the regular UDP traffic as a 
separate UDP stream. If any data packets are lost, FEC packets can be used to 



 

reconstruct the missing packet. A detailed description of the encoding algorithm can 
be found in [12]. 
 
To evaluate our FEC implementation we performed a series of experiments between 
EVL and SARA (SARA- Stichting Academisch Rekencentrum Amsterdam) over 
STAR TAP (the Science and Technology Advanced Research Transit Access Point- a 
National Science Foundation funded project to interconnect international high speed 
networks.)[13]. The experiment involved comparing the latency, jitter and packet loss 
of basic UDP, TCP and UDP augmented with FEC. Details on the experimental setup 
can be found in [12]. 
  
Fig. 4 shows the results of the experiment using an FEC scheme that generated 1 
redundant packet for every 3 consecutive UDP packets. Notice that FEC does appear 
to incur lower latency than TCP but slightly higher latency than UDP. Also, note that 
the benefits of FEC are greatest at small packet sizes since it takes less time to 
accumulate and encode 3 small packets. The goal in future work would be to bring 
FEC performance closer to UDP performance while maintaining maximal reliability. 
Fig. 4 also shows the variation of latency (jitter) between TCP, UDP and FEC. Notice 
that FEC produces lower levels of jitter than TCP but higher levels than standard UDP. 
 
Finally, to observe packet loss of UDP versus FEC, packets were sent at a rate of 
50Mbps over a 100Mbps link between EVL and SARA. Then an additional 50Mbps 
of congestion traffic was injected. The results in Fig. 5 shows that FEC was quite 
effective at recovering lost packets. However, note that while our FEC scheme is good 
at recovering intermittent lost packets it cannot recover from the loss of large 
consecutive blocks of packets. To recover from this the selection of encoding packets 
must be more widely distributed across the data stream. This unfortunately has the 
effect of increasing latency. Another drawback of FEC is that the FEC packets 
themselves can become a source of congestion. Hence, careful selections of FEC 
parameters need to be made to ensure optimal performance. For the purposes of 
transmitting real-time state information in tele-immersive applications, the 
recommendation is to encode few (like 3) and small (like 1Kbyte) consecutive packets 
over networks that have the capacity to sustain the additional bandwidth needed by 
FEC. 
 
4.2 High Throughput Techniques for Tele-Immersion 
Quality of Service is designed to guarantee a level of service (mainly bandwidth) for 
the networked application. It does not however guarantee that the networked 
application will be able to take full advantage of the bandwidth, even when it is made 
available. Since tele-Immersive applications are so highly interactive, the expectation 
is for the retrieval of distantly located data sets, such as 3D models, to be equally 
expedient. This can only be achieved by being able to maximally use the available 
bandwidth to deliver the data. 
 
To support high-bandwidth bulk data transfer we have developed two techniques- 
Parallel TCP Socket Striping and Reliable Blast UDP. These two schemes allow 
applications to overcome what is classically known as the Long Fat Network (LFN) 



 

problem[14]. The LFN problem occurs over long, high-bandwidth networks, such as 
those between the United States and Europe or Asia. The high round-trip latencies in 
these networks (at best 120ms) will result in gross bandwidth under-utilization when 
default TCP is used for data delivery. This is because TCP’s windowing mechanism 
imposes a limit on the amount of data it will send before it must wait for an 
acknowledgement. The long delays that occur over international networks means that 
TCP will spend an inordinate amount of time waiting for acknowledges, which in turn 
means that the client’s data transmission will never reach the peak available 
transmission rate of the network. Traditionally this is “remedied” by modifying TCP’s 
window and buffer sizes to match the bandwidth * delay product (capacity) of the 
network. For example, for a 45Mbps link between Chicago and Amsterdam, with an 
average round trip time of 150ms, the capacity is 45*0.15/8 = 0.84Mbytes. 
Unfortunately adjusting TCP window size is problematic for two reasons: firstly, on 
some operating systems (such as IRIX for the SGI,) the window size can only be 
modified by building a new version of the kernel- hence this is not an operation a user-
level application can invoke. Secondly, one needs to know the current capacity of the 
network in order to set the window size correctly. The current capacity varies with the 
amount of background traffic already on the network. 
 
Parallel TCP Socket striping overcomes the LFN problem by partitioning a payload 
and delivering it over multiple TCP connections. Reliable Blast UDP overcomes the 
LFN problem by literally “blasting” UDP packets over the networks and then 
transmitting an acknowledgement only after the full payload has been transmitted. Our 
experiments between Chicago and Amsterdam (at SARA) will illustrate how each of 
these schemes can significantly improve throughput over LFNs. In the interest of 
brevity we refer the reader to Park et al [3] for information on our Parallel TCP socket 
striping scheme and performance results. 

Reliable Blast UDP (RUDP) 

When operating over QoS-enabled networks the probability of packet loss is low. To 
take advantage of this we have implemented an alternative reliable data transmission 
scheme using UDP augmented with acknowledgements. The scheme works by 
“blasting” the contents of a data file at just below the available bandwidth without 
asking the remote site to acknowledge any of the packets. Hence, all the bandwidth is 
used for pure data transmission. At the remote site, a tally is kept for all the packets 
that have arrived and, after some timeout period, a list of missing packets is sent back 
to the sending client. The sender reacts by resending all the missing packets and again 
waiting for another negative acknowledgement. 

Fig. 6 shows the results of using RUDP to deliver a 50M file over a 100Mbps link 
between EVL and SARA. Since QoS is currently not available between the two sites, 
we chose to send data at rates well below the maximum available bandwidth of the 
network link- in essence emulating a smaller reserved QoS link. The table shows the 
bandwidth at which RUDP data was transmitted and the effective throughput of the 
total file transfer. Notice that on an over-provisioned network, effective throughput is 
almost as high as the sending bandwidth. This is in contrast to TCP, which typically 
incurs a 20% bandwidth loss by requiring frequent acknowledgements. Note also that 
as we approach the bandwidth limit of the link, performance begins to decrease- 



 

however performance is no poorer than what is expected of optimally tuned TCP. 
Remember that these experiments were conducted without the benefit of QoS. Hence, 
interference from competing traffic streams was possible and likely. We predict that 
our results would yield even better performance with QoS. 

5 Conclusion 
The work presented in this paper serves as a beginning for our research in adaptive 
networking. While our interest has been driven mainly by our need to provide better 
networking services for Tele-Immersion, the results we have presented are 
generalizable to other networked applications. 
 
Future research on our adaptive networking framework will consist of the following 
goals: 

1. To define QoS from the point of view of application developers. For example 
QoS may mean: “reliable low-latency transmission,” “faster download,” 
“faster realtime response,” “guaranteed delivery by a deadline.” 

2. To characterize transmission protocols, QoS mechanisms and computational 
resources as a set of parameters or functions. 

3. To find suitable mappings that will translate application-level descriptions of 
QoS to characterizations of required network services. Ie. To map from item 
1. to 2. to guarantee optimal application and network performance. Heuristics 
may be used initially. For example: 

o If data requires low latency but can tolerate much loss use UDP 
o If data requires low latency and can tolerate low loss use Forward 

Error Corrected UDP 
o Else use TCP 
o If data set is large and requires reliable delivery: 

§ Use TCP and adjust window size and buffer size to match 
network capacity if possible; 

§ Else use parallel TCP socket striping; 
§ If QoS is available- use Reliable Blast UDP 

4. To find prediction models that can be used to predict the consequences of 
making mapping decisions during dynamic network situations. 

5. To test our predictions on real applications and on real networking testbeds. 
 
Our QoS experiments have shown that Differentiated Services is able to provide 
bandwidth and latency guarantees when the network is not over-subscribed. However, 
if the network is over-subscribed then only bandwidth guarantees are possible. We 
believe that Integrated Services QoS should be able to overcome the limitations of 
DiffServ. However the main drawback of IntServ is that it is not scalable to the larger 
Internet. We, as well as other researchers have proposed that a scalable solution might 
require the use of IntServ at the edge routers (where the clients connect,) and the use 
of DiffServ in the core routers (where the excess bandwidth resides.)[15] We are in 
the process of constructing a network testbed to firstly, examine IntServ, and then a 
combination of IntServ and DiffServ. 
 



 

Finally, we are in the continual process of translating our research results into useable 
tools for the computational science community. CAVERNsoft [2, 3], our open source 
toolkit for building networked applications, already has built-in performance 
monitoring, and parallel socket striping capabilities. Modules for Forward Error 
Correction and Reliable Blast UDP will be incorporated in the near future. 
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Fig. 1. Components of an Adaptive Networking System 

 
 

Cisco
7507

Cisco
7507

Cisco
7507

42

Laurel.evl.uic.edu
Tundra.mcs.anl.gov

Fjuk.mcs.anl.gov

Cisco
7507

42

100

100

100

80

25

EVL ANL

 
Fig. 2. Simplified diagram of EMERGE DiffServ Testbed. Numbers on the links represent 
bandwidth levels. 
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Fig. 3. Results showing that DiffServ, while being able to make bandwidth guarantees, may not 
always provide latency guarantees. 

 
Fig. 4. The graph on the left shows the transmission of 100 packets under TCP, UDP, FEC/UDP. 
The FEC scheme derives its greatest benefit when packet sizes are small as larger packet sizes 
incur additional buffer processing time. The graph on the right shows that FEC also introduces 
jitter in the data stream. Jitter is computed by first calculating the short-term latency over every 
20 data points and then computing the average deviation of the instantaneous latency as 
compared to the short-term latency. 

  Packet Loss 

UDP 1.90% 

FEC 0.05% 

UDP with congestion 17.40% 

FEC with congestion 4.15% 

Fig. 5. Comparison of Packet Loss in UDP vs. FEC over an uncongested and congested network. 

Sending Bandwidth (Mbps) Effective Bandwidth Number of NAKs 
20 19.7 0 
40 38.5 0 
60 54-57 1 
80 56-70 2 
90 61-77 3 

Fig. 6. Comparison of transmission bandwidth vs. effective throughput using Reliable Blast 
UDP over a 100Mbps non-QoS provisioned link between Chicago and Amsterdam. When the 
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network is over provisioned performance is good. We anticipate the best results of RUDP to 
occur in conjunction with the use of a QoS scheme such as DiffServ or IntServ. 
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