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Abstract. Research areas that require interactive visualization of simulation data
tend to dismiss virtual reality due to the lack of accessible tools for application
specialists. This paper presents an integral toolkit for interactive visualization in
virtual reality environments. The toolkit defines a framework to build applications
that allow the user to interact with arbitrary simulation software and describe
virtual measurement tools for the visualized data. The approach is illustrated with
a case study in medical imaging.

1 Introduction

Current trends in virtual reality show that interaction and collaboration are key research
topics[14]. However, researchers working with scientific simulation and visualization
seldom use these new techniques in practice[17]. This is partially due to the lack of
available software.

Visualization is commonly done using a low-level graphics library and specific
tailor-made libraries that supply collaborative and interactive aspects. These libraries
are not suited for application experts in fields of research that are not related to virtual
reality. Even though it is possible to combine existing tools and libraries to present ap-
plications in interactive scientific visualization, non-VR experts would benefit greatly
from an overall high-level approach, aimed at their application domain.

This paper describes a high-level toolkit that implements interactive paradigms for
visualization, analysis and measuring with virtual instruments[15]. The toolkit is aimed
at non-VR experts who wish to explore simulation data using virtual reality environ-
ments, towards the idea of “Virtual Laboratories”[8]. In the rest of the paper, we will
discuss related work in section 2. Section 3 describes two key issues in the acceptance
of VR outside the VR community: direct interaction with a simulation program and
quantifying observations in VR. With requirements from these issues, the functionality
of the toolkit is described in section 4. Then, a detailed case study shows the use of the
toolkit in section 5. The paper finishes with conclusions and pointers to future work in
section 6. The contributions of this paper are:

– It presents a high-level interactive visualization toolkit aimed at non-VR experts.
– The toolkit integrates access to measuring paradigms and the interaction with a

running simulation program.
– It demonstrates the toolkit using a real-world case study from dentistry research.
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2 Related Work

tool Scene Graph Data Vis. Interaction Collab. Multi-Platf. VR Hardware
OpenGL no no no no SGI+Lin.+Win. no
Direct3D D3DRM no DirectX DirectX Win. only no

IRIS Performer supported with VTK low-level no SGI+Linux with CAVElib.
Inventor supported no low-level no SGI+Lin.+Win. no

VTK no supported no no SGI+Lin.+Win. no
CAVELibrary no no low-level low-level SGI+Linux supported

VR Juggler no no low-level low-level SGI+Linux supported
CAVERNsoft no no no supported SGI+Lin.+Win. with CAVElib.

Table 1. The various available libraries and their features with respect to interactive data visuali-
zation in VR.

Approaches in scientific visualization are mostly based on either application
builders (like IBM’s DX, or AVS[2]), application programming aids (like the Visu-
alization Toolkit[12]) or proprietary programming. Because application builders are
generally not available for immersive virtual environments, one is left with program-
ming graphics and accessing tracking devices. A low-level starting point to address
visualization issues is the widespread OpenGL graphics standard. When a scene graph
(hierarchical ordering of 3D objects) is required, one can use IRIS Performer[11], a
high-performance visual simulation library. IRIS Performer provides a wide variety of
functionality, and is very general. However, it can only be used on IRIX machines and
with limited functionality also on Linux machines. To visualize relationships and con-
structions, to derive data, add color, etc. the Visualization Toolkit (VTK) can be used,
which runs on top of OpenGL. VTK is a complete toolkit, providing implementations
of many algorithms with which the programmer can do extensive data visualization.
Based on a dataflow model, where the programmer can connect objects into a data-flow
graph, VTK supports data derivations, isosurface extraction, various coloring schemes,
etc. However, VTK alone is not aimed at interactive and collaborative virtual reality.

Interaction in virtual environments is commonly handled through the CAVElibrary,
a toolkit to access CAVE hardware (trackers and displays). An alternative to this is VR
Juggler[4], an open source library that addresses similar issues. Both libraries present
a small layer around the tracker hardware and ways to channel graphics on the various
screens in the virtual reality setup. The user is left to program visual interaction and
navigation aids for analysis and measurement.

On a higher level, Open Inventor[18] provides interactive facilities, and offers an
extensive library of scene-graph related tools. Furthermore, Open Inventor is an inter-
active runtime system and defines the inventor file format, which is used as a basis for
VRML. However, Open Inventor was not tailored for VR environments.

Collaboration is supported through numerous libraries that provide network func-
tionality[1, 3, 5, 7, 13]. Among them, CAVERNsoft[6] presents a network infrastructure



and is specialized in telepresence features, like support for several protocols, shared
data management, high throughput network, avatar realization and audio/video stream-
ing. GNU/Maverik[10] and Avocado[16] present flexible communication frameworks
for larger-scale collaboration in virtual environments. Like CAVERNsoft, several issues
to realize telepresence are addressed. All of these libraries approach telepresence issues
at a relatively low-level. At this level, describing communication for the task is difficult
for non-VR experts.

Table 1 shows features that are supported by the various libraries. Note that the table
also shows a proprietary Windows-based library, Direct3D. With an increasing trend to
use off-the-shelf PC clusters (for tiled displays or CAVE-like setups), the possibility to
run the software in a Windows-environment becomes an issue. In Windows, most of
the necessary tasks are covered by DirectX, a proprietary entertainment-related high-
performance peripheral library. Direct3D is the 3D graphics part of DirectX and is to a
large extent functionally comparable with OpenGL. Retained Mode Direct3D (D3DRM
in the table) is a scene graph library on top of this, providing the basic needs for scene
graph management. Interaction and collaboration for Windows-based machines can be
handled by DirectInput and DirectPlay. Again, this only runs on Windows-based ma-
chines, and uses limited proprietary protocols and formats.

All of the above issues are described from a technical specialist’s point of view.
They require knowledge on the structure of computer graphics, the issues of network
communication and human-computer interaction aspects. As seen from table 1, data
visualization and VR hardware support can be combined with IRIS Performer. For this
purpose, special versions of VTK, the CAVElibrary and VR Juggler are available. Al-
so, IRIS Performer can cooperate with CAVERNsoft. A combination of these libraries
would thus present the tools needed to write interactive visualization applications for
VR environments. However, a user who is not to some extent expert in these issues will
dismiss the available libraries and toolkits.

3 Motivation

Ideally, a non-VR expert would rely on the functionality of one toolkit. This toolkit
provides communication, measurement paradigms and interactive VR. With very little
programming effort, the programmer would create an interactive VR application that
suits the needs of the apparent field of research.

To develop such a toolkit, two main steps can be identified. First, use the avai-
lable toolkits to arrive at a platform-independent base level. This level should hide the
platform differences between a range of different setups, and it should provide basic
visualization-oriented features, like a scene graph, simple shapes, text, graph data loa-
ding, accessing trackers, etc. In our approach, we call this step Aura. For the second
step, we need to assess and build high-level tools to provide a measuring environment on
top of the base level. This takes on the shape of an interactive framework with paradigms
to manipulate and measure graphical representations of data. In this paper, we describe
a toolkit, VIRPI, that facilitates this second step.

Two aspects in the acceptance of VR outside the VR community are important:



First, the user wishes to interact seamlessly with a remotely running simulation
program. The user wishes to rapidly understand phenomena the simulation program is
mimicking. Therefore, it is highly unwanted to alter the actual source code of the si-
mulation program by inserting probing and analyzing instructions. In some cases this is
not even possible, as the source code is not available, or altering the source would intro-
duce erroneous behavior. For VIRPI, this problem is addressed by coupling VIRPI to
CAVEStudy[9]. CAVEStudy wraps an unaltered remotely running stateless simulation
program, and presents a simple programming interface to the user in the VR environ-
ment. This way, the user can connect buttons and sliders in the virtual laboratory to
parameters of the simulation, and read out the data from the simulation.

As a second aspect in the acceptance of VR, the user wishes to quantify his obser-
vations. To enable a user to do so introduces several requirements for VIRPI. Primarily,
the user needs to be able to specify the type of measurement in a rapid and easy way. Al-
so, VIRPI needs to support ways to examine the dataset visually and specify subspaces
on which the measurement procedure has effect.

To summarize, the following requirements define Aura and VIRPI:

– Aura hides platform differences, provides scene graph support, simple shapes, text,
graph loading and access to VR hardware.

– VIRPI communicates to remote simulation programs by incorporating CAVEStudy.
– VIRPI presents an easy interface to define interactive behavior for measurements,

object examination and the selection of subspaces.

4 Functionality

Using the requirements from the previous section, we will now describe functional as-
pects of the toolkit. Figure 1 shows an overview of our approach. The left side shows
the VR environment, and the various layers that are running there. The right side shows
the simulation environment, and the connection that is made with CAVEStudy. First, we
will describe the Aura and VIRPI-layers in the VR environment. Then we describe how
CAVEStudy combines both environments and facilitates the communication. Finally,
we show how measurement paradigms can be described in this setup.

4.1 Low-level layer: Aura

Aura is the first layer as described in the previous section. It presents a lightweight
interface to underlying low-level libraries. Without noticeable decrease of efficiency, it
adds features that the underlying software lacks, or it simply passes calls in a transparent
way. The core of the graphical part of Aura consists, like IRIS Performer, of nodes in
a scene graph. These nodes can be geometry nodes, cameras, lights, etc. Next to this,
Aura defines a variety of simple shapes (cube, ball, cylinder, arrow, pyramid, etc.), can
load graph data (3D model files from modelers and other polygon descriptions), fonts
and textures/images (.JPG, .RGB, .PNG, etc.).

Aura can encapsulate the CAVElibrary or VR Juggler, providing a simple interface
to input devices and rendering contexts. On traditional workstations, a simulator (much
like the CAVElibrary simulator) fills in the missing hardware.
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Fig. 1. The software layers for scientific visualization in VR.

In the current implementation, Aura comes as a set of libraries for various setups on
different platforms. Aura is functionally the same for each setup. When the given setup
is selected, simply creating the AuraVR environment object initializes the necessary
hardware and tools.

To reduce complexity, Aura presents an interface where the connected hardware
acts as a single environment. The interface does not present issues like multi-pipe out-
put, multiprocessor systems and shared memory to the programmer. Instead, the Aura
implementation deals with it when applicable.

4.2 High-level layer: VIRPI

Beyond the level of Aura, there are no more hardware-related issues, and platform-
independence should be guaranteed. The high-level VIRPI toolkit rests on top of this
level, and is identical for all platforms. VIRPI is roughly based on concepts and ideas
from 2D GUIs like X or GTK. Where 2D GUIs use a hierarchical window-tree which
can be used for event structuring, VIRPI uses a similar concept for hierarchical interface
views.

A view is an atomic unit, which has a representation and can handle events. It is a
tree node, so it can have a parent and one or more children. A node that contains children
is called a group. The children of a group are called sub-views. Like with a scene graph,
rotation, scaling and translation can be specified for each view with respect to its parent.

Like 2D GUIs, events are passed in two ways. First, events can be passed across
the tree structure, originating at the root of the tree. These events are typically external
events, like clicks of buttons on the pointer, movement of the pointer or other trackers,
keystrokes, joystick changes, etc. Second, events can be passed directly from one view
to the other, typically, to send messages between different control views.

When an event is received by a view, it is either passed down to its children, or
processed. The user can overload event handlers for various types of events, adding
functionality to the program. Figure 2 shows how the user can overload handling of the
tracker motion event to have an object follow the user pointer (Wand, Stylus, mouse).



1 cMyApplication::OnTrackerMove(num,v,q)
2 {
3 if(num == TN_POINTER)
4 object->Translate(v);
5 else
6 cvApplication::OnTrackerMove(num,v,q);
7 }

Fig. 2. Code example showing how to overload a tracker move event.

The tracker motion event is defined as a tracker ID number, a vector indicating the
position of the tracker and a quaternion indicating the orientation of the tracker. As soon
as the tracker is moved, the OnTrackerMove method is invoked. When the tracker is
the user pointer, the object is translated to the location of the tracker. When the tracker
is something else, the inherited OnTrackerMove is called.

Completing the basic framework is an application base class. This is essentially a
view, serving as root to the rest of the program. Writing a VIRPI program means sub-
classing the application class, and adding interactive features.
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Fig. 3. An example event tree for a simple virtual experiment.

Figure 3 shows a view tree for a fictive application created with VIRPI. The ap-
plication initializes a laboratory, which displays familiar laboratory surroundings and
spatial references (for instance, a virtual room with a table). The laboratory creates a
data space, which serves as a frame of reference in which data and measuring tools
can be added. A dataset is added to the data space. Manipulating the data space will
directly manipulate the dataset as well. To do this, a manipulator is added to the data
space. The dashed line in figure 3 indicates command messages that are being sent by
the manipulator to transform the data space.

Simple Controls Next to the basic structure, VIRPI provides several simple controls
to interact with the user. Functional parts of 2D GUIs, like menus, sliders and (ra-



dio)buttons have a VR counterpart in VIRPI. These controls can be created, added and
removed to the application at will. As the interface manifests itself in an immersive 3D
environment, one can envision more new controls that are not directly related to their
desktop paradigm. This, however, is beyond the scope of the paper.

1 // in the constructor:
2
3 :
4 button = new cvButton("arrow.jpg");
5 AddView(button);
6 :
7
8 // the message handler:
9 cMyApplication::OnMessage(sender,message,...)

10 {
11 cvApplication::OnMessage(sender,message,...);
12 if((message == MSG_PRESS) && (sender == button))
13 {
14 :
15 }
16 }

Fig. 4. Code example showing how to add a button control and handle its messages.

All of these controls send events to the parent groups, indicating changes or com-
mand messages. These messages can then be processed by overloading the appropriate
methods. Figure 4 shows how a button control is added to a VIRPI application. In
the application’s constructor, the button is created and added to the application. Fur-
thermore, the application’s message handler is overloaded. First the inherited message
handler is called to process different messages, then if the message is a press-message
and originates from the button, the button action is processed.

Data Manipulation An important aspect of visually examining an object is the ability
to zoom in on it, move it and rotate it. These tasks are generally done with manipulators.
A manipulator is a construct that interprets events from the user to make an object
move, rotate or scale in an intuitive way. Internally, it is a group containing one or more
handle views with which the user can interact. A handle view is a (mostly small) object,
serving as interaction point for the manipulator. By dragging on a handle view, the user
can scale, translate or rotate the object to which the manipulator is attached. Depending
on the scheme of handle views and the functionality they provide, a manipulator can
have many functions. Several standard manipulators are provided in a similar fashion
as for Open Inventor.

4.3 Steering of a Simulation

As noted, one of the requirements of VIRPI is that it allows the user to interact with
a running simulation. To minimize programming for the control of the simulation and
the data management, the user has to describe the simulation with an XML description



file. This file is processed by CAVEStudy to generate two objects, a proxy and a server
(see Figure 1). The simulation is wrapped into a server object to control its execution.
The server’s interface provides methods to start, stop, pause and resume the simulation.
The data generated by the simulation are automatically propagated to the proxy object.
This object can be seen as a local copy of the remote simulation. Through the network,
it reflects the input values and the commands to the server. Furthermore, it manages the
incoming data from the simulation, and presents it to VIRPI.

CAVEStudy generates C++ code for the server and the proxy object, using the CAV-
ERNsoft[5] network layer, as shown in figure 1. CAVERNsoft uses a “subscribe and
publish” paradigm. A site can define keys to publish its own data, and a remote site that
subscribes to these keys will automatically receive the data through call-back functions.
This mechanism can be used for small data (tracker data), but also for large datasets
(data-mining) using different policies.

The CAVEStudy code generator produces objects for the server and the proxy. Each
of these objects contains a set of keys with their associated call-back functions to trans-
mit input and output values. The marshaling code for all the types is generated to be
able to use the system in a heterogeneous environment. A set of keys is also created for
the control of the simulation (initialize, start, stop, pause, resume, shutdown methods).
It is therefore possible to manipulate proxy and server entities as C++ objects, without
dealing with network issues. For the server, the program is an endless loop, waiting for
remote method invocations. The proxy object is embedded into VIRPI.

By using CAVERNsoft, it is possible to access one simulation with multiple VR
setups. This way, a basic collaboration setup can be realized among multiple sites. Each
site can, depending on their VR setup and the individual wishes of the users, display
different representations of the data.

4.4 Measurement

Theoretically, measuring can be defined as a quantification of an observation in a given
space. We see a virtual environment which displays the simulation results as space in
which we can observe, and on which we can perform measurements. Some examples
of measurements that can be done in VR are:

– In a gas simulation, dynamically count the number of atoms inside a given volume,
and related to this give information about pressure and temperature.

– For a molecular dynamics simulation, measure the local electromagnetic field at a
point, derived from potential data or the charge distribution from the simulation.

– From an MRI-scan of the human upper body, measure the volume and surface of a
lung, or parts of a lung.

There are two key issues in making the toolkit useful for writing measurement ap-
plications as described. First, the user needs to be able to describe geometrical subsets
of the data. He needs to select atoms, describe a volume, a surface, etc. Second, the user
must specify the measurement itself, the calculations that need to be done on the data
subset.

Basic subsets, like point sets, spherical volumes, box volumes or rectangular sur-
faces can be described in VIRPI by adding a selection view to the data (or rather, a data



space as described in section 4.2) in an identical fashion as adding a manipulator. A
combination of more subsets can be defined by means of constructive solid geometry
operations.

1 cMyTool::Update(data,selection)
2 {
3 count = 0;
4 for(all atoms)
5 if(selection contains(atom[i]))
6 count++;
7 SendMessage(display,MSG_UPDATE,count);
8 }

Fig. 5. Code example showing how to implement a measuring tool.

To describe a measurement procedure, the user can overload the Update method
of the basic VIRPI measurement tool. This method gets called every time the dataset
changes or the subset selection changes. In the Update method, the user has access to
the elements of the dataset and the geometrical extents of the selected subset. Figure 5
shows the implementation of an example measuring tool that counts atoms in a given
box volume. The Update method of the basic measuring tool class is overloaded, and
using the selected volume, the atoms are counted. The result of this is transmitted to a
display object.

5 Case Study

This section presents a case study implemented using Aura and VIRPI. The case stu-
dy is representative for a range of applications in medical imaging. Furthermore, the
application allows to compare results from virtual measurements with results from real-
world measurements. Using this case study we describe how to setup Aura and VIRPI
to examine data and quantify observations from it.

In order to clean the root canal of a patient’s molar effectively, it is essential to
know its exact length. Traditionally, measuring this length is done by sticking various
sized files into the molar, guided by one or more X-ray photographs in different orien-
tations. Figure 6 shows an alternative to this. By using a local CT scanning technique,
the patient’s molar is scanned, and a volume of 16-bit grey-scale voxels is calculated
from the resulting images. An external program can produce isosurfaces for different
threshold values from the volume, using VTK’s Marching Cubes implementation. The
isosurface is visualized by the VIRPI application, and the user measures the length of
the root canal. This application was considered because it shows how the non-VR ex-
pert dental researcher is able to use VIRPI. Also, it lets the user measure on a visualized
reconstruction in VR.

Figure 7 shows the setup in a VR environment for the application and the corre-
sponding view tree. The root application group creates a data space and adds the tooth
data to it. To measure the length of the inherently curved root canal, the application adds
a yardstick to the data space. This yardstick is an application-specific view containing



Fig. 6. The process steps from tooth to VR application.

a controlled Catmull-Rom spline representation and four interactive control points. The
control points are VIRPI data subset selectors, and messages from the control points
are processed by updating the spline coefficients of the yardstick.
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Fig. 7. Setup and corresponding view tree for the dental application.

Interaction with the simulation is implemented by adding a slider to the applica-
tion. The slider’s messages are passed to the CAVEStudy proxy object, which indicates
changes in the threshold value to the marching cubes program.

To display the length, a display is added to the application. The display receives
messages from the yardstick’s Update method every time it changes shape (indicated



by the dotted line in figure 7(b)). Finally, a manipulator is added to the data space
(indicated by the cylinder cube in figure 7(a)), so the user can rotate the tooth and
the yardstick, in order to view the experiment from a better angle. Dragging the edge
cylinders of the cube makes the tooth rotate around the parallel axes.

6 Conclusions

The paper shows that a high-level toolkit, available on various setups, allows non-VR
expert users to consider VR for their work. It also shows, by means of a case study,
that it is possible to use VR as an experimentation environment where real-world mea-
suring paradigms can be applied. Furthermore, it shows that it is feasible to implement
such a toolkit for various platforms. Issues that are addressed regarding the differences
in underlying operating systems and libraries present no unovercomable drawbacks.
However, a lot of testing still needs to be done, as the project grows.

Towards a more complete environment which is considered useful by non-VR ex-
perts, some aspects still require attention. Currently, visualization of data in VIRPI is
application-specific and limited to simple user-defined representations. An interface
with data-flow visualization packages, like VTK or IBM’s Data Explorer, should en-
able more genereral descriptions of the representations. Also, one could envision an
interactive description of the representation, where the user can directly adjust the vi-
sualization data-flow to specific needs.

Next to this, although basic collaborative capabilities using CAVEStudy are men-
tioned, more work on this is desirable. We plan to research and implement more tight
collaboration schemes in Aura/VIRPI that enable higher level telepresence aspects for
measurement environments. Scientists can greatly benefit from the availability of a col-
laborative examining environment, in which they can discuss findings with peers around
the world.
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