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Abstract. Content creation for computer graphics applications is a laborious 
process that requires skilled personnel. One fundamental problem is that 
manipulation of 3D objects with 2D user interfaces is very difficult for non-
experienced users. In this paper, we describe a system that uses semantic 
constraints to restrict object motion in a 3D scene, making interaction much 
simpler and more intuitive. We compare three different levels of semantic 
constraints in a 3D scene manipulation program with a 2D user interface. We 
show that the presented techniques are significantly more efficient than 
alternate techniques, which do not use semantics in their constraints. To our 
knowledge, this is the first evaluation of 3D manipulation techniques with 2D 
devices and constraints.  

 

1    Introduction 

Many applications are readily available in the areas of 3D modeling and scene 
construction, but in general, these products are difficult to use and require many hours 
of training. For example, products such as Maya (Alias|wavefront) and 3D Studio 
Max (Discreet), have dozens of menus, modes and widgets for scene creation and 
manipulation, which can be very intimidating for an untrained user. Our efforts 
address these difficulties. 
The task of creating a 3D scene from scratch is very complex. To simplify the 
problem, we choose to focus on the creation of complete 3D scenes based on a library 
of existing objects. Here the challenge is to enable the user to easily add objects and 
to quickly position them in the environment. In general, positioning an object in a 3D 
scene is difficult as six independent variables must be controlled, three for positioning 
and three for orientation. 
Our observations of humans rearranging furniture and planning environments indicate 
that humans do not think about scene manipulation as a problem with six degrees of 
freedom. The rationale is that most real objects are not placed arbitrarily in space, but 
are constrained by physics (e.g. gravity) and/or human conventions (ceiling lamps are 
almost never placed permanently onto the floor or onto chairs). This leads us to 
believe that an interface that exposes the full six degrees of freedom to the user makes 
it harder for the average person to interact with virtual environments. Many real 
objects have a maximum of three degrees of freedom in practice – e.g. all objects 
resting on a plane. In addition, many objects are often placed against walls or other 
objects, thus further reducing the available degrees of freedom. This implies that a 
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two-dimensional (2D) input device such as a mouse is sufficient to manipulate objects 
in a virtual environment.  
In our system, information about how an object interacts with the physical world 
assists the user in placing and manipulating objects in virtual environments. Each 
object in a scene is given a set of rules, called constraints, which must be followed 
when the object is being manipulated.  

2    Previous Work 

Previous work on 3D object manipulation can be classified into two categories: those 
that use 2D and those that use 3D input devices. 
The simplest solution for a 2D input device is to decompose the manipulation task 
into positioning and orientation. Unfortunately, there is no intuitive mapping of these 
tasks with three degrees of freedom each to a mouse with three buttons. 
Bier introduced ‘Snap-Dragging’ [1] to simplify the creation of line drawings in a 2D 
interactive graphics program. The mouse cursor snaps to points and curves using a 
gravity function. Bier subsequently applied these ideas to placing and orienting 
objects in a 3D environment [2]. The main features of this system are a general-
purpose gravity function, 3D alignment objects, and smooth motion affine 
transformations of objects. Gleicher [9] built on this work and introduced a method 
that can deal even with non-linear constraints. 
For 3D scene construction Bukowski and Sequin [7] employ a combination of 
pseudo-physical and goal-oriented properties called ‘Object Associations’ to position 
objects in a 3D scene with 2D devices (mouse and monitor). A two-phase approach is 
used. First, a relocation procedure maps the 2D mouse motion into vertical or 
horizontal transformations of an object's position. Then association procedures align 
and position the object. Although intuitive, their approach has a few drawbacks. First, 
associations apply only to the object currently being moved and are not maintained 
after the current manipulation. In addition, when an object is selected for relocation, a 
local search for associated objects is performed. This can result in lag between the 
motion of the selected object and the motion of its associated objects. Cyclical 
constraints are not supported. 
Goesele and Stuerzlinger [8] built upon the ideas of Object Associations. Each scene 
object is given predefined offer and binding areas. These areas are used to define 
constraining surfaces between objects. For example, a lamp has a binding area at its 
base and a table has an offer area on its top. Consequently, a lamp can be constrained 
to a tabletop. To better simulate the way real world objects behave, a labeled 
constraint hierarchy adds semantics to the constraint process. Each constraint area is 
associated with a label from the hierarchy. A binding area constrains then only to 
offer areas whose label is equal to or is an ancestor in the constraint hierarchy. In this 
way, the legs of a chair can be constrained to the floor, or in front of a desk, but never 
to the wall. Collision detection is used to prevent objects from passing though each 
other. 
Drawbacks of this approach include the following: Once a constraint has been 
satisfied, there are no means to re-constrain an object to another surface or to un-
constrain it. Furthermore, the constraint satisfaction search is global, in that an object 
will be moved across the entire scene to satisfy a constraint, This has often-
undesirable effects for the user, especially because constraints cannot be undone. 



A number of authors have investigated the performance of object manipulation with 
3D input devices, such as a space-ball or a six degree-of-freedom tracker. Such 
devices enable direct interaction with a 3D scene. In combination with devices that 
generate a 3D view, such systems can simulate Virtual Reality (VR). 
One of the first researchers to use 3D devices to manipulate a 3D scene was Bolt in 
1980 [3]. Subsequently many other researchers studied the creation and manipulation 
of 3D environments in VR (see e.g. [12][16]). Very few of these systems utilize 
constraints for object manipulation and even these support only the simplest 
geometric constraints (e.g. on-plane). Closest to the work discussed here is the 
‘SmartScene’ system by Multigen [18]. This system uses tracked pinch-gloves in 3D 
as interaction devices.  
More recently Bowman et al. [5], Mine et al. [12], and Pierce et al. [13] proposed 
different 3D manipulation methods that can be applied in a variety of settings. 
Poupyrev et al. recently also addressed the problem of 3D rotation [15]. For a more 
complete overview over previous work in this area, we refer the reader to [6]. 
While it may seem obvious that the introduction of constraints makes interaction in 
3D easier, it is unclear how strong this effect is. An extensive search for literature was 
performed in this area, and no study that addresses was found. 

2.1    Motivation 

Our main motivation behind this work is that we wanted to analyze how semantic 
constraints affect user performance in a give task. Such constraints have been 
introduced to commercial products such as the Smartscene system [18], but to our 
knowledge, no evaluation has been performed to assess the value of these constraints. 
Our initial hypothesis was that semantic constraints would greatly simplify user 
interaction, as they make putting an object into the “right” place very simple. 

3    The MIVE System 

The MIVE (Multi-user Intuitive Virtual Environment) system extends the work done 
in [8] by improving the way existing constraints behave, and adding new useful 
constraints. This work concerns only the interaction of a single user; therefore we 
disregard the multi-user aspects of the system here. 

3.1    Semantic Constraints 

Every object in the MIVE system has constraints defined for it. Each constraint can 
be one of two types: offer or binding. Essentially, binding areas will “stick” to offer 
areas. Constraint relationships are stored in a directed a-cyclic graph called the scene 
graph. Figure 1 depicts a simple scene, and it’s associated scene graph. When an 
object is moved in the scene, all of its descendants in the scene graph move with it. 
 



 

 

 
Fig. 1. A Scene and its associated Scene Graph. 

Links describe constraint relations 

Notice that edges in the scene graph of Figure 1 correspond directly to satisfied 
constraints in the scene. The user can modify the scene graph structure by interacting 
with objects in the scene. Constraints can be broken and re-constrained with ease by 
simply clicking on the desired object, and pulling away from the existing constraint to 
break it. This allows us to dynamically change the structure of the scene graph. Figure 
2 shows the same scene as Figure 1 after the chair has been pulled away from the 
large table, and dragged under the smaller table. 
 

 

 

 
Fig. 2. Scene from Fig.1 after chair has been moved 



A labeled constraint hierarchy is used to add semantics to the constraint process. The 
hierarchy is a tree structure, and defines the behavior of the constraint and offer areas. 
Each constraint area is associated with a label from the hierarchy, which defines what 
offer areas this constraint area is allowed to attach to. A binding area constrains only 
to offer areas whose label is equal to or is an ancestor in the constraint hierarchy tree.  

Fig. 3. Semantic Constraint tree 
 

A simplified version of the semantic constraint tree is shown in Figure 3. This tree is 
used to restrict object placements and to make interactions more intuitive. For 
example, the phone in fig 1 has a binding area on it base, which has the OnWorkspace 
label associated with it, hence it can be constrained to any offer area with an 
OnWorkspace label, OnHorizontal label, or OnPlane label. The top of the table has an 
OnWorkspace label associated with its offer area, so the phone can constrain there. 
The phone cannot be placed on the floor, which has an OnFloor label associated with 
its offer area, because the label of the floor’s offer area is not an ancestor of 
OnWorkspace in the tree. Semantics are added in a similar manner to every binding 
and offer area. 

4    Constraint Satisfaction 

For our constraint system, binding and offer areas both have a polygon and vector, 
which represent their effective areas and orientation. A binding area is satisfied by an 
offer area by aligning their orientation vectors and by translating the binding polygon 
so that it lies within the offer polygon (excluding the offer polygon edges). If after 
rotation and translation the binding polygon is not completely enclosed by the offer 
polygon, then the binding area is not constrained to the offer area. In addition, a 
binding area cannot be bound to an offer area of the same object: an object cannot be 
constrained to itself. In Borning’s [4] terms, our system implements locally-predicate-
better constraints. 
To constrain an object, we attempt to satisfy all of its binding areas. For each binding 
area of an object, we search through the scene to find potential satisfying offer areas. 
Semantics restrict the offer areas that a binding area is allowed to constrain to. To 
prevent objects from jumping large distances to satisfy constraints, we only consider 
constraining an object to offer areas that are close to the object being constrained. 
Closeness is relative to object size, therefore we consider only objects that are within 
a sphere with a radius that is twice the radius of the sphere bound of the object. 
Using this heuristic, constraints remain unsatisfied until an object is moved close to a 
valid offer area. It also ensures that objects are always locally constrained. For each 
binding area, if there are multiple satisfying offer areas, the closest satisfying offer 



area found is chosen. The object is moved to connect the binding and offer areas. The 
bound object then becomes a child of the offering object in the scene graph, and the 
search is repeated for the next binding area. 
Once an object is constrained, its motion is restricted such that the binding areas of 
the object always remain in contact with the associated offer areas. This essentially 
removes degrees of freedom from object manipulations. Constraints can be broken 
with ease by simply pulling an object away from its associated offer area. 

5    MIVE Constraint Environments 

Previous systems have used a more general constraint environment, where objects 
only know that they must lie on a horizontal and/or vertical surface, such as the 
Object Association system [7]. We hypothesize that this makes interaction less 
intuitive because it gives the user less control over how objects behave in the scene. 
For example, the chair would have a horizontal constraint on its base, and could easily 
be placed on a table, bed, refrigerator, or any other horizontal surface. We have 
implemented such a constraint system in MIVE and call it the Partially Constrained 
(P) mode. 
Each object in the MIVE system has a set of semantic constraints associated with it. 
This mode uses user-defined semantics to restrict object placement to valid locations. 
We call this the Fully Constrained (C) mode.  

6    User Testing 

We designed a test where significant semantic differences between object constraints 
exist to see if a significant difference between the PC and FC modes would occur.  
Twelve pipes (3 different sizes, 4 of each size) had to be placed onto a wall. The wall 
had 12 different receptacles where pipes could be attached in FC mode. The test is 
illustrated in Figure 4. 
 
In the task, we evaluated 3 different modes: 
- Partially constrained (P) mode, where the pipes connect to all vertical surfaces 

(i.e. anywhere on the wall). There is no visual indication where pipes should be 
attached. 

- Non-semantic constrained with drawn offer areas (D) mode, where a pipe can 
connect to anywhere on wall (as in mode P), but the correct locations are 
indicated visually by a small transparent green square on the wall. However, each 
pipe could actually be placed anywhere on the wall. 

- Fully constrained (C) mode, where pipes connect only to the correct receptacle. 
Three different kinds of pipes existed. This is a simplified analogy to having gas, 
hot water and cold water pipes in a mechanical construction task, where each 
type of pipe is only allowed to connect to a subset of the receptacles. 

 
Tasks were set up so that no navigation was required for any of the tests. This avoids 
interference with problems of participants understanding navigation in 3D. 
 



  
 

Fig. 4. The initial and target scenes for our user test 

6.1    Participants 

Twelve volunteers participated in this experiment. Participants were computer science 
students with different experience and backgrounds, different computer skills and 
different degrees of exposure to 3D computer graphics. 

6.2    Apparatus 

The MIVE interface was designed to very simple. Figure 5 shows the full user 
interface of the MIVE program running with its default object list.  
 

 
Fig. 5. The MIVE interface 

The MIVE interface consists of three windows: the scene window, the object 
selection window, and the button window. The scene window sits on the right hand 
side of the screen. The participant directly interacts with objects in the scene window 
by clicking and dragging them. 
The lower left-hand corner shows the object selection window. Objects are positioned 
on an invisible cylinder, which is rotated by clicking any mouse button within the 



window and dragging left and right. Objects are added to the scene window by simply 
clicking on the desired object in the object selection window, and clicking on the 
desired location to add it in the scene window. Drag & Drop is supported as well. To 
facilitate selection of small objects all objects are scaled logarithmically. 
The upper left-hand corner of the window contains buttons for performing tasks such 
as loading or saving the scene, deleting an object, undoing the previous operation, or 
quitting the program. There is also a radio button, which can be used to switch 
between interaction and navigation mode. This functionality was disabled for the tests 
in this publication. 
The MIVE system is implemented in C++ and runs on an SGI Onyx2 running IRIX 
6.5. It is based on the Cosmo3D [10] scene graph API. 

6.3    Interaction 

The interface for MIVE was designed to be as simple and uncluttered as possible. All 
interactions between the participant and the program are done using a 3-button 
mouse.  
For this test, the three modes use only two of the three buttons. The left mouse button 
is used to move objects by clicking and dragging them to the desired new location. 
The middle mouse button is used to rotate the objects. The third mouse button is 
currently unused in these modes. 

6.4    Procedure 

A three-minute tutorial was given prior to the testing, at which time the experimenter 
gave the participant instructions on how to use the system. Each participant was then 
allowed to experiment less than two minutes with the system before testing started. 
Each test began with the participant sitting in front of a computer monitor with a 
scene displayed. A target scene was displayed on an adjacent monitor, and the 
participant was instructed to make the scene on their screen look like that in the target 
scene. The experimenter supervised the participant, and when the task was deemed 
complete the supervisor instructed the participant to continue to the next task. 
Each participant was asked to perform the task in three different modes. The order 
that the participant performed the modes was chosen using a Latin square method. 
For each of the tests, we recorded the time taken by the participant, and the accuracy 
of object placement compared to the target scene. Accuracy was measured by 
summing the distances in centimeters between each of the object centers in the 
participant’s final result and the target scene. 

7    Analysis 

At the end of each experiment task completion time and the modified scene was 
stored. The Euclidean distance between the participant’s solution and the reference 
solution was computed later on. 

7.1    Adjustments to Data 

No adjustments were made to the collected data and no trials were excluded. 



7.2    Computed Formulas 

Errors are sums of Euclidean distances. We ignore rotation because no ideal measure 
for rotation differences exists to our knowledge. Moreover it is hard to find a 
meaningful combination of translation and rotation errors into one number. 

7.3    Results 

Figure 6 summarizes the results of the test. The thick center line of a box shows the 
median, the second line is the mean, the box itself indicates the 25th and 75th 
percentile, and the ‘tails’ specify the 10th and 90th percentile.  
The analysis indicates a significant effect between modes C and P (p < 0.001). Mode 
P is clearly slower than mode C, by a factor of 2.5. More detailed analysis reveals that 
mode C is also significantly faster than mode D by a factor of 1.5. In accuracy, modes 
C and P do not have a significant difference, but mode C is significantly better than 
mode P by a factor of 8.6 (p < 0.001). 

 
Fig. 6. User test results 

Although only a small number of participants took part in this test, the statistical test 
has an extremely high power (>0.99) and we are confident that further testing would 
only re-confirm these results. The results for the tasks show that the semantic 
constraints of mode C can provide benefits for scene manipulation in environments 
where semantic differences among objects exist.  

8    Conclusion 

In this publication we presented a system that allows users to easily manipulate a 3D 
scene with traditional 2D devices. The MIVE system is based on semantic constraints, 
which enable an intuitive mapping from 2D interactions to 3D manipulations. The 
semantic constraints and manipulation techniques encapsulate the user’s expectations 
of how objects move in an environment. Based on user tests we showed that the use 
of semantic constraints, as opposed to more general constraints without semantics, 
provide clear benefits for manipulation of 3D objects in a 2D user interface.  
The benefits of our interaction techniques become very apparent when one compares 
the simple MIVE user interface with the complex 3D user interface in commercial 
packages such as AutoCAD, or Maya that are also based on 2D input devices. We can 
only hypothesize at the outcome of a test comparing our system with e.g. Maya, but 



are confident that it is clearly easier to learn our user interface due to the reduced 
complexity. In fairness, we need to point out that these packages are also capable of 
object creation and the specification of animations, which our system does not 
currently address. 

References 

1.Bier, E.A., and Stone, M.C. Snap-dragging. SIGGRAPH 1986 proceedings, ACM 
Press, pp. 233-240. 

2.Bier, E.A. Snap dragging in three dimensions, SIGGRAPH 1990, pp. 193-204. 

3.Bolt, R., Put-that-there, SIGGRAPH ‘80, 262-270. 

4.Borning, A., Freeman, B., Ultraviolet: A Constraint Satisfaction Algorithm for 
Interactive Graphics, Constraints: An International Journal, 3, 1-26, 1998. 

5.Bowman, D., Hodges, L. An evaluation of techniques for grabbing and 
manipulating remote objects in immersive virtual environments. Proceedings of 
ACM Symp. on Interactive 3D Graphics, 1997, pp. 35-38. 

6.Bowman, D., Kruijff, E., LaViola, J., Mine, M., Poupyrev, I., 3D user interface 
design, ACM SIGGRAPH 2000, Course notes # 36, 2000. 

7.Bukowski, R., and Sequin, C. Object associations. ACM Symp. Interactive 3D 
Graphics 1995, 131-138. 

8.Goesele, M, Stuerzlinger, W. Semantic constraints for scene manipulation. Proc. 
Spring Conference in Computer Graphics 1999, pp. 140-146. 

9.Gleicher, M, A Graphics Toolkit Based on Differential Constraints. Proc. UIST 93, 
109-120. 

10.Eckel, G., Cosmo 3D programmers guide. Silicon Graphics Inc. 1998. 

11.Mine, M., ISAAC: A Meta-CAD System for Virtual Environments. Computer-
Aided Design, 29(8), 97. 

12.Mine, M., Brooks, F., Sequin, C. Moving Objects in Space: Exploiting 
proprioception in virtual-environment interaction. SIGRAPH 1997, pp. 19-26.  

13.Pierce, J., Forsberg, A., Conway, M., Hong, S., Zeleznik, R. et al., Image plane 
interaction techniques in 3D immersive environments. Proceedings of ACM Symp. 
on Interactive 3D Graphics. 1997. pp. 39-43. 

14.Poupyrev, I., Weghorst, S., Billinghurst, M., Ichikawa, T., Egocentric object 
manipulation in virtual environments: empirical evaluation of interaction 
techniques. Computer Graphics Forum, 17(3), 1998, 41-52. 

15.Poupyrev, I., Weghorst, S., Fels, S. Non-isomorphic 3D rotational techniques. 
ACM CHI'2000, pp. 546-547. 

16.Shaw, C., Green, M., THRED: A Two-Handed Design System, Multimedia 
Systems Journal,5(2),1997. 

17.Shoemake, K., ARCBALL: A user interface for specifying three-dimensional 
orientation using a mouse, Graphics Interface, 1992, pp. 151-156. 

18.SmartScene promotional material, Multigen (San Jose, CA), 1999. 


