
Design review and visualization steering using the
INQUISITIVE interaction toolkit

L. Sastry, D. R. S. Boyd and M. D. Wilson
Information Technology Department

CLRC Rutherford Appleton Laboratory,
Chilton, Didcot, OX11 0QX. UK

{m.sastry|m.d.wilson|d.r.s.boyd}@rl.ac.uk

Abstract. This paper describes the architecture of an interaction toolkit for
creating virtual environments. The toolkit contains interaction techniques,
interaction objects such as menus, spanner and a runtime manager to interface to
virtual reality development tools such as Maverik. The toolkit’s use with a
number of real-world applications in science and engineering and with different
virtual reality development tools is also described. Future plans to provide an
interactive interface are described.

1 Introduction

As novel technologies are absorbed into the conventional systems development
methodology they usually pass through three phases: firstly, they are demonstrated in
specialised stand alone systems; secondly they are demonstrated in rapid prototype
environments used to elicit requirements from users unfamiliar with the potential of
the technology in their domain; and thirdly, system representations and documentation
for each contractually important development stage, and methods for moving between
them are defined incorporating best practice. As knowledge based technologies did in
the late 1980’s, so Virtual Reality (VR) technologies are now moving from the second
to the third of these phases, and establishing manageable system development
practices that can be subject to general contractual obligations [1].

The current market for VR development tools ranges from public domain toolkits to
high cost prototyping and development environments. Equally, some tools are
continuing to address a generic range of VR applications, while others are becoming
more focused to one application. For example, being linked as a real time interaction
environment to a 3D CAD modelling tool for engineering design. In this market, VR
developers have the choice of expensively maintaining the skills to support a range of
tools to meet broad customer requirements, cheaply exploiting a single tool very well
but thereby limiting their market, or developing their own custom toolkit layer that
can be applied to a range of delivery vehicles, thereby meeting the needs of a wide
customer base while also limiting the skills required by their developers to a single
toolkit. The additional cost of this third option is that it usually requires development
overheads calling on systems level skills that do not overlap with the VR designer’s.
An additional benefit of this approach in other technologies that have joined the

mailto:{m.sastry|m.d.wilson|d.r.s.boyd}@rl.ac.uk
http://www.eg.org
http://diglib.eg.org

systems development mainstream, is that such custom toolkit layers usually define
API’s that drive the development of market tools and form the basis of standards [2].
Rapid prototyping tools for the 2D WIMP-based (Windows, Icons, Menus and
Pointer) applications aided much useful research into usability issues and eventually
design guidelines. Similarly, rapid prototyping tools for the creation of interaction
rich virtual environments for the experimentation of competing interaction styles or
techniques are essential to the understanding of the full potential and hence the
exploitation of interactions in virtual environments [3].

The aim of the Interaction Toolkit development within the INQUISITIVE project is to
provide support for developing a rich set of interaction techniques for use in VR-based
applications. We are approaching this from the points of view of the user’s need for an
appropriate, consistent and effective set of interaction techniques to carry out
application-specific interaction tasks and the application developer’s need to deliver
this cost-effectively. The design should strive to provide easy configuration of the
interaction techniques to use both existing and new input devices [4]. Interaction
techniques should be flexibly adaptable by the application developer to meet the needs
of a wide range of application scenarios. The toolkit should interface to existing VR
run-time systems and input device drivers through defined application programming
interfaces (APIs). It should support the portability of interaction techniques and input
device configurations across both VR systems and hardware platforms.

The next section describes the basis from which requirements for such an interaction
toolkit is derived. The architecture and components of the toolkit is described in
Section 3 followed by some demonstration applications in Section 4. Future Work is
briefly covered in Section 5 and Conclusion in Section 6.

2 Application and Toolkit Requirements

Our customers for VR applications are scientists and engineers [5] who have two main
applications. Firstly, they wish to design and construct buildings and apparatus using
3D CAD engineering tools and undertake group design reviews using interactive real
time navigation of them in VR. Secondly, they wish to visualise the data arising from
scientific experiments and control that visualisation, maybe changing parameters of
the visualisation process, or even steering the experiment generating the data in real
time.

The users’ objective is to achieve their task goals, and they are only open to using VR
when it can be shown to help achieve that objective more effectively, or efficiently
than alternative means. One of the advantages to the users of VR is that it allows them
to do unreal things that they could not do in the real world, such as measuring between
unreachable locations, or moving immovable objects. However, even in these unreal
cases, the interaction in immersive or semi-immersive 3D may facilitate a speed of
navigation, a precision of interaction, or a perception resulting in insight that are
unattainable otherwise [6].

These users are experts in the real world domain tasks, and familiar with the real
world objects and actions in their domains, but they are also highly computer literate
in their own specialist tools, and accustomed to many computer domain user interface
conventions. For the visualisation task, the data and its relationships have no real
world representation to imitate in a virtual reality, therefore most aspects of the
visualisation scene are either domain conventions or even just conventions of a
previous computer representation. Consequently, the users are open to the full range
of realism, and VR interaction from full presence to 2D interaction with 3D graphics.

The style of use of different user groups varies considerably; some users wish to
distribute VR applications to large communities to be used around the world, so they
wish to use public domain code. Others require fully certified and supported
development and interaction environments that will conform to the quality control
constraints on general contracts for the development of multi-million satellites
systems. Therefore no single VR interaction environment will meet these
requirements, so we currently use both MAVERIK [7] as a public domain tool and
Parametric Technology's dvMockup VR kernels.

Local variations also exist in the requirements that cannot easily be met by both these
environments requiring the development of further interaction components. For
example, in one application where a public domain interaction tool is required, users
wish to use an eye-level viewpoint for gross navigation around buildings and
equipment, but wish to place the viewpoint at a fixed location for detailed study of
experimental behaviour. Large development environments, but not the public domain
interaction tools provide such facilities. A common level of implementation of these
is required to meet the user requirements so as not to lock designs into the capabilities
of a single development environment.

3 INQUISITIVE Interaction Toolkit

The interaction toolkit will improve support for developing user interaction within
task-oriented virtual environment applications. Analysis of the interaction technique
has led us to a modular design for the toolkit with defined interfaces to input devices
and existing commercial and public domain VR system kernels. The interaction
toolkit is being developed to provide application developers and human factors
researchers with a portable toolkit of interaction techniques for navigation, selection
and manipulation within virtual environments.

3.1 Toolkit Architecture

All application tasks, however complex, can be implemented in terms of a
combination of tasks from the four basic classes of user interaction - navigation,
selection, manipulation and data input, in virtual environments [8,9]. Each basic
interaction task can be realised using a number of possible interaction techniques. For
example movement can be implemented using the magic carpet or point-fly
techniques. Each application will identify one or more interaction techniques
appropriate for carrying out the tasks required in that application. This in turn will

guide the definition of the interaction techniques needed to realise those techniques. A
suitable combinations of these interaction techniques are used to achieve the
application tasks. The main functional components that the toolkit must provide to
cater for this are:

• a set of interaction techniques for the four classes of basic interaction tasks;
• a set of generic virtual interaction objects such as toolbox;
• a run-time interaction framework.

Input
DevicesUser
Fig.1. Relationship between interaction toolkit, input devices, VR system and application (the
shaded portion represent the components of the VR kernel)

Figure 1 above depicts the detailed architecture of the interaction toolkit and how it
maps on to a typical VR kernel. The toolkit provides interaction techniques for the
four classes of basic interaction tasks identified above supporting a number of
common interaction techniques for each. In navigation, for example, there will be
interaction techniques which move the user through the VE and change his viewing
direction in response to user-driven inputs from, say, a spacemouse and tracking
devices attached to the user. The toolkit must also provide the capability for an
application developer to implement new interaction techniques to meet specific
application requirements.

Contextual
Interpreter

Interaction
Techniques

Interaction
Manager

Interaction
Objects

VR System
Manager

Application
ObjectsApplication

Output
Devices

 Interaction
Toolkit

();VR Renderer
VR objects

database

Interaction objects are virtual objects with which the user is able to interact in the VE
[10]. They contain methods for describing both their functional and presentational
properties. The same object in different VR systems will have the same functional
description because its behaviour is the same but the description of its presentational
properties will be different because each VR system has its own native format for
describing the perceptual aspects of virtual objects. A simple example of an
interaction object is a virtual spanner, one of a number of objects which might be
found in a virtual toolbox used for a maintenance training application.

The run-time interaction framework defines how the input devices and the interaction
techniques are dynamically configured and how the outputs from the interaction
techniques are mapped into the run-time processes provided by the VR system for
implementing behaviour such as collision detection, for updating the VR object
database containing the dynamic state of the VE, including the interaction objects and
the virtual user, and for rendering the VE.

In its simplest definition, the interaction toolkit is a set of library routines that can be
called on to implement an interaction behaviour to an object within a virtual
environment. Figure 2 below shows a typical interaction technique mapped on to a
specific VR kernel to elaborate how the above architecture works in practice. The
example shown considers a 2D/3D mouse and virtual hand based interaction with a
generic window-pane which can be used to create simple head up displays, menus,
labels etc. and their characteristics and functionality on the fly as required.

User Input device
Maverik Application
classes

SMSOutput
devices

 Maverik
Renderer

Maverik kernel

Application

Modules for object class
implementation, querying VE state
and send VE update and action
requests to Maverik or application

Dev config., parsing mode
of interaction, resolve
local actions, generate
event tokens

2D/3D mice based
navigation, selection and
manipulation

Window pane,
buttons, label text,

virtual hand etc

I
n
t
e
r
a
c
t
i
o
n
T.
k
i
t

Figure 2. Relationship between window-pane/menu object class, virtual hand, the
Maverik VR kernel and application.

Table 1 below shows some classes of interaction objects in the interaction toolkit. All
classes of interaction object in the interaction toolkit allow VR application designers
to change appearance of widgets.

When instantiated as virtual application objects the interaction objects can be: distance
measuring tools, meters to read values of temperature, radiation etc.. from database
underlying CAD model etc.. In the later case the display on a meter can be on a
windowpane or on hand held display moving with the user depending on which
interaction object is chosen. This flexibility in instantiating application objects in
different ways shows the power of the interaction toolkit to both meet interaction
r
r

equirements, and to allow their investigation through rapid prototyping when
equired.

Interaction Objects
Window pane Billboard –

turn to user viewpoint
Fixed at location
and presentation
angle
Fixed to
head up display
location

Information presentation
screens
Selectable buttons – for menu of
application commands,
e.g. VR world creation or
editing

Attachment Red Pin calling information presentation screen on
selection

Pointer - single
handed

Laser Beam to select or manipulate remote objects

Pointer - double
handed

Laser Beams to select groups of objects in 3D space

Slider & scale To set and show values
Dial To set and show values
Constrained object Objects with behaviour constraints (e.g. hinges).
Constrainable Object Objects constrained by the environment (e.g. spanner

constrained to move in limited directions where the

axis of movement constraint is inherited from an object

 it is attached to.

t
Table 1: Classes on Interaction Objects in the Interaction Toolki

4 Toolkit Demonstrations

A sample set of interaction techniques will be presented (demonstrated) which include
application/user centred navigational and/or object manipulation, real-time interactive
editing, querying and steering of the virtual world.

The testbed demonstrator applications include an engineering design review with an
architectural walk-through and a visualisation and three-dimensional browsing of
Cluster-II satellite data implemented using the interaction toolkit.

4.1 Design Review Demonstration

Engineers need to construct a new building, particle beam target, and experiments on
beam lines off the target. Each component is being developed by different teams
throughout Europe. The CAD models of the components have been integrated and
imported into a VR environment to perform design reviews where groups of engineers
jointly view the model in an auditorium with a facilitator navigating and interacting
with it to identify and correct design errors.

Figure 3 shows a redlining tool for engineerin
image is indicative of an attached annotation

im

The group of designers undertake a vari
navigation around the model shows desig
3 that collides with the beam housing)
individual designers and marked with re
distances, radiation levels, temperature le
design and checked against requirements.
of the interaction objects supported by th
their development more quickly than ad h
the toolkit allowed the selection of intera
and group of designers at a particular me
specified in the initial requirements but co
g design review. The red pinhead in the left-hand
 that can be activated as shown in the right-hand

age

ety of interactions with the model: simple
n flaws (e.g. the vertical red pillar in Figure
; potential design problems identified by
d pinheads must be resolved by the group;
vels etc. need to be measured in the overall
These interactions require the use of several
e toolkit, and the use of the toolkit allows
oc development has in the past. The use of

ction technique appropriate to the facilitator
eting to investigate problems that were not
uld be responded to on the fly.

4.2 Data Visualisation Demonstration

Scientists need to study instrument calibration on a satellite, which is always a critical
issue on space physics missions. To do this they wish to visualise the instrument data,
navigate through it, focus in on subsets of interest, then go back to the whole set and
consider it again.

Figure 4 below shows observational data from AMPTE-UKS spacecraft in NASA
Common Data Format (CDF) in a hierarchy with associated metadata. The objective
of the experiments is to study the distribution of chemicals in the atmosphere based on
the electron density distribution in Earth’s Ionosphere. The basic measurement made
by the electron instrument on AMPTE-UKS was to count the numbers of incoming
electrons simultaneously in each of eight directional sensors. The AMPTE electron
measurements can be considered as a sequence of measurements of the three-
dimensional velocity space distributions of the electrons - with one distribution being
measured every T seconds, where T is a suitable integration time. T must be greater
than or equal to the spin period of the spacecraft (approx. 5 seconds).

Interaction to select different data files, to zoom in and out of the time period being
observed, and the density of the data, and to inspect the metadata – which instrument
used, when by whom, which sensor, data type, references to related data etc.. so that
scientists can evaluate the reliability of the data, and its relation to other data.

Figure 4: Visualisation of an electron density distribution over time (x-axis) during spacecraft
flight (y & z axes) showing an event requiring detailed investigation (black rectangle).

Such discontinuous data was previously studied in 2D graphs of energy plotted against
universal time where the information from the 8 different sensors are either
amalgamated or presented individually. Scientists need data from all 8 sensors in
single view to see how sensors are measuring data in space. Using 3D plotting in IDL
gives supports inspection of data from the 8 sensors, but does not support real time
navigation unless the data is so diluted as to be hard to interpret, and data context is

lost from the sort buckets after focussing in. If the whole data set is inspected, then the
data quantities are overwhelming.

Consequently a semi-immersive display (Crystal Eyes 3D glasses with head position
sensor and SpaceMouse) driven by a VR runtime system supports the interactive real
time selection and investigation of whole and part data sets. Current interaction
objects for navigating through and selecting data, and requesting metadata do not meet
their needs, but the INQUISITIVE interaction toolbox does, and supports tuning the
interaction objects to individual user needs.

5 Evaluation and Future Work

Besides inhibiting the adoption of VR-based interaction techniques, the lack of design
environments that do not constrain designs to their limited capabilities also inhibits
human factors research into issues such as the utility and usability of 3D techniques
for achieving user interaction goals. We will need to understand these issues in order
to be able to develop design guidelines for 3D interaction comparable to those which
exist for 2D desktop applications, and the INQUISITIVE Interaction Toolkit will
provide a starting point in developing these.

The toolkit's functionality will be evaluated for the perceptual interfaces and
interaction techniques of the testbed applications and usability guidelines developed.

This toolkit, it is hoped, together with guidelines for its use based on the
demonstrations, will help user interface designers to produce more useable and
productive applications thereby accelerating the exploitation of VR technology for
real-world engineering product design reviews and scientific visualization applications
within the Laboratory.

The toolkit is to be extended to provide a graphical user interface for low end toolkits
emulating facilities provided by current high end environments for the creation from
virtual worlds from within themselves.

6 Conclusion

The INQUISITIVE method and toolkit meet some of the needs of the VR developer at
the stage we are in the evolution of the technology where there have been attractive
demonstrations, some industrial applications, and we are moving towards the
incorporation of VR technologies into conventional system development. However,
both the method and the toolkit are early attempts, with the need for further
refinement, and the development of design guidelines to clarify the mapping from user
requirements to the design tradeoffs of VR application development.

Parts or all of the INQUISITIVE Toolkit will be made freely available to facilitate
take up of the INQUISITIVE method, and promote standardisation of technology and
methods in the VR field. Please contact the first author for license information.

Acknowledgements

The work reported in this paper was partly funded by the UK EPSRC through grant
GR/L52406 to the INQUISITIVE (INcreasing the Quality of User Interaction for
Strategic Interactive Tasks in Virtual Environments) research project.

References

1. Wilson, M.D., Duce, D.A., Simpson, D. Life cycles in Software and Knowledge
Engineering: A comparative review. Knowledge Engineering Review vol.3(4)
pp.189-204 (1989).

2. Duce, D., Kansy, K., Wilson, M.D. Report and Recommendations from the
VRML Workshop 29/30 January 1997, Abingdon UK. ERCIM Research Report,
02/97-R049, ERCIM, France.

3. Jacob, R.J.K. A visual language for non-WIMP user interfaces, In Proc. IEEE
Symposium on Visual Languages, pp.231-238 (1996). IEEE Computer Society
Press.

4. Hinckley, K., Pausch, R., Goble, J.C., Kassell, N.F. A survey of design issues in
spatial input. In Proc. ACM UIST'94 Symposium on User Interface Software and
Technology, Marina del Rey, California, 213-222, Addison-Wesley/ACM Press.

5. Sastry, L., Boyd, D. Virtual Environments for Engineering Applications Virtual
Reality vol.3 (4) pp.235-244 (1999).

6. Bowman, D., Hodges, L.F., & Bolter, J. The virtual venue: user computer
interaction in information rich virtual environments. Presence,Teleoperators and
Virtual Environments vol. 7(5), pp.478-493 (1998).

7. Maverik User Guide http://aig.cs.man.ac.uk/systems/Maverik

8. Hand, C. A survey of 3D interaction techniques. Computer Graphics Forum, vol.
16(5), pp.269-281 (1997).

9. Boyd, D. and Sastry, L. Development of the INQUISITIVE Interaction Toolkit -
Concept and Realisation. In Workshop on User Centered Design and
Implementation of Virtual Environments, (Eds.) Smith, S. and Harrison, M. pp.1-
6, 30th September, 1999, University of York, York.

10. van Dam, A. Post-WIMP user interfaces, Communications of ACM, vol. 40(2),
pp.63-67(1997).

mailto:{m.sastry|m.d.wilson|d.r.s.boyd}@rl.ac.uk
mailto:{m.sastry|m.d.wilson|d.r.s.boyd}@rl.ac.uk
http://aig.cs.man.ac.uk/systems/Maverik

	L. Sastry, D. R. S. Boyd and M. D. Wilson
	Information Technology Department
	CLRC Rutherford Appleton Laboratory,
	Chilton, Didcot, OX11 0QX. UK
	1 Introduction
	2 Application and Toolkit Requirements

	3 INQUISITIVE Interaction Toolkit
	3.1 Toolkit Architecture
	4 Toolkit Demonstrations
	5 Evaluation and Future Work
	6 Conclusion
	References

